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This phase I study was designed to examine the maximum tolerated dose (MTD), the dose-limiting toxicities (DLTs), the
recommended dose (RD) for phase II, and the pharmacokinetics of NK105, a new polymeric micelle carrier system for paclitaxel
(PTX). NK105 was administered as a 1-h intravenous infusion every 3 weeks, without antiallergic premedication. The starting dose
was 10 mg m�2, and the dose was escalated according to the accelerated titration method. Nineteen patients were recruited. The
tumour types treated included pancreatic (n¼ 11), bile duct (n¼ 5), gastric (n¼ 2), and colonic (n¼ 1) cancers. Neutropenia was the
most common haematological toxicity. A grade 3 fever developed in one patient given 180 mg m�2. No other grades 3 or 4
nonhaematological toxicities, including neuropathy, was observed during the entire study period. DLTs occurred in two patients given
180 mg m�2 (grade 4 neutropenia lasting for more than 5 days). Thus, this dose was designated as the MTD. Grade 2 hypersensitivity
reactions developed in only one patient given 180 mg m�2. A partial response was observed in one patient with pancreatic cancer.
The maximum concentration (Cmax) and area under the concentration (AUC) of NK105 were dose dependent. The plasma AUC of
NK105 at 150 mg m�2 was approximately 15-fold higher than that of the conventional PTX formulation. NK105 was well tolerated,
and the RD for the phase II study was determined to be 150 mg m�2 every 3 weeks. The results of this phase I study warrant further
clinical evaluation.
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Paclitaxel (PTX), an antimicrotubule agent, has a wide spectrum of
antitumour activity including ovarian, breast, stomach, lung, and
head and neck cancers (Rowinsky et al, 1990; Carney, 1996; Crown
and O’Leary, 2000). The clinically used PTX preparation is a
mixture of Cremophor EL and ethanol because of PTX’s poor
water solubility. However, the use of Cremophor EL is known to be
associated with acute hypersensitivity reactions (Weiss et al, 1990;
Rowinsky and Donehower, 1995; Kloover et al, 2004). Other PTX
preparations that have been categorised as drug delivery systems
(DDS) have also been developed. These preparations include
Xyotax (polyglutamate-conjugated PTX; Singer et al, 2003; Boddy
et al, 2005), Abraxane (PTX coated with albumin; Ibrahim et al,
2002; Deisai et al, 2003; Nyman et al, 2005), and Genexol-PM (a
PTX micelle in which PTX has been simply solubilised; Kim et al,
2004). The common advantage shared by these formulations is that
they are injectable intravenously without the mixture of Cremo-
phor EL and ethanol. Among them, Abraxane has been approved
for metastatic breast cancer by the Food and Drug Administration
in the USA based on the results of a randomised phase 3 trial. In
this trial, Abraxane demonstrated significantly higher response

rates, compared with standard PTX, and a significantly longer time
to progression (Gradishar et al, 2005). In addition, the incidence of
grade 4 neutropenia was significantly lower for Abraxane than for
PTX. However, peripheral sensory neuropathy was more common
in the arm (Gradishar et al, 2005).

NK105 is a PTX-incorporating ‘core-shell-type’ polymeric
micellar nanoparticle formulation (Hamaguchi et al, 2005). This
particle can be injected intravenously without the use of
Cremophor EL or ethanol as a vehicle. Therefore, NK105 is
expected to possess a clinical advantage similar to that of the
above-mentioned PTX formulations. The difference between
NK105 and the other PTX dosage forms is that NK105 is expected
to yield a markedly higher plasma and tumour area under the
concentration (AUC), compared with those for the other PTX
formulations. Moreover, regarding the toxic profiles, the repeated
administration of NK105 to rats at 7-day intervals produced
significantly fewer toxic effects on peripheral nerves than free PTX.
Macromolecular drugs, including NK105, have been developed
based on the characteristic macroscopic features of solid tumours,
such as hypervasculature, the presence of vascular permeability
factors stimulating extravasation within cancer, and the sup-
pressed lymphatic clearance of macromolecules. These character-
istics, which are unique to solid tumours, constitute the basis of
the enhanced permeability and retention (EPR) effect (Matsumura
and Maeda, 1986; Maeda et al, 2000; Duncan, 2003). The in vivo
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antitumour activity of NK105 was significantly more potent than
that of free PTX, probably because of enhanced tumour exposure
through the EPR effect (Hamaguchi et al, 2005).

We conducted a phase I clinical trial using NK105 in patients
with advanced solid tumours. The objectives of this trial were to
determine the maximum tolerated dose (MTD), the phase II
recommended dose (RD), and the pharmacokinetics of NK105.

PATIENTS AND METHODS

The protocol and all materials were approved by the Institutional
Review Board of the National Cancer Center, Tokyo. This study
was conducted in compliance with the Good Clinical Practice
Guidelines of the International Conference on Harmonization and
the Declaration of Helsinki Principles. Written informed consent
was obtained from all the patients.

Therapeutic agent

NK105 was supplied by Nippon Kayaku Co. Ltd. (Tokyo, Japan) in
20-ml glass vials containing a dose equivalent to 30 mg of PTX.
When reconstituted in 10 ml of 5% glucose solution and diluted
with a total volume of 250 ml of 5% glucose, the reconstituted
solution was stable for 24 h at room temperature. In our preclinical
study, DLS and HPLC analysis showed that less than 2% of PTX
incorporated in the micelles was released for 24 h at room
temperature (data not shown).

Figure 1 shows the schematic structure of NK105, a PTX-
entrapped polymeric micelle formulation. The NK105 polymers
were constructed using polyethylene glycol (PEG) as the hydro-
philic component and modified polyaspartate as the hydrophobic
component. PEG is believed to form the outer shell of the micelle,
producing a ‘stealth’ effect that enables NK105 to avoid being
captured by the reticuloendothelial system.

The modified polyaspartate chain is hydrophobic and is believed
to form the hydrophobic inner core of the micelles in aqueous
media. The hydrophobic inner core enables NK105 to entrap a
sufficient amount of PTX. NK105 has a diameter of about 90 nm
(Hamaguchi et al, 2005).

Patients

Patients with solid tumours refractory to conventional chemo-
therapy and for whom no effective therapy was available were
eligible for enrolment in this study, provided that the following
criteria were met: a histologically confirmed malignant tumour; a
performance status of p2; an age of X20 and o75 years; a normal
haematological profile (neutrophil count X2000 mm�3, platelet
count X100 000 mm�3, hemoglobin X9 g dl�1); normal hepatic
function (total bilirubin level p1.5 mg dl�1, AST and ALT p2.5

times the upper normal limit); normal renal function (serum
creatinine p1.5 mg dl�1); normal cardiac function (New York
Heart Association (NYHA) classification of p1); normal pulmon-
ary function (PaO2X60 mm Hg); no chemotherapy within 4 weeks
(6 weeks for nitrosourea or mitomycin C) of the administration of
NK105; and a life expectancy of more than 2 months. Patients with
serious infections (including hepatitis B, hepatitis C, or HIV) were
ineligible for enrolment in the study. Patients who had been
previously treated with a taxane were excluded because of
assessing neuropathy. Patients were also excluded if they were
pregnant or lactating. Additionally, any patient whom the
investigators considered ineligible was excluded.

Drug administration

NK105 was dissolved in 5% glucose solution for injection at room
temperature. NK105 was administered intravenously without in-
line filtration and without premedication. NK105 solution was
infused using an electric pump at a speed of 250 ml h�1.

Dosage and dose escalation

The starting dosage of NK105 was 10 mg m�2, which is one-third of
the toxic dose low in dogs. NK105 was administered once every 3
weeks, and the treatment was continued unless a severe adverse
event or disease progression was observed. Dose escalation was
performed according to the previously described accelerated
titration method (Simon et al, 1997; Matsumura et al, 2004).

Toxicity was graded from 1 to 4 using the National Cancer
Institute Common Toxicity Criteria (version 2.0). Intrapatient dose
escalation was not permitted. The MTD was defined as the level at
which two out of six patients experienced dose-limiting toxicities
(DLTs). The recommended dosage for a phase II trial was defined
by the Efficacy and Safety Assessment Committee based on the
safety, pharmacokinetics, and efficacy results of this trial. DLT was
defined as grade 4 neutropenia lasting more than 5 days, a platelet
count of less than 25 000 ml�1, or grade 3 or higher non-
haematological toxicity, with the exception of nausea, vomiting,
appetite loss, and hypersensitivity.

Pretreatment assessment and follow-up care

A complete medical history and physical examination, perfor-
mance status evaluation, complete blood cell count (CBC), blood
chemistry, urinalysis, electrocardiogram (ECG), and a computed
tomography (CT) examination were performed in each patient.
Other examinations were performed only in the presence of a
specific clinical indication. Patients were physically examined
every day until the second administration of NK105; CBC and
blood chemistry tests were performed on day 3 and weekly
thereafter. An ECG examination was repeated before each
administration of NK105. Tumour marker levels were also
measured before every administration. Tumour response was
evaluated according to the Response Evaluation Criteria in Solid
Tumors criteria (Therasse et al, 2000).

Liquid chromatography/tandem mass spectrometry
determination of PTX concentrations

The PTX concentrations determined in the present phase I study
represented the total drug concentrations (both micelle-entrapped
and released). It was difficult to measure released PTX and micelle-
entrapped PTX separately, because the equilibrium between both
forms could not keep constant during the separating procedure.
PTX was extracted from human plasma (0.2 ml) or urine (0.5 ml)
by deproteinisation with acetonitrile. The quantifications of PTX
in plasma and urine were performed using liquid chromatography/
tandem mass spectrometry. Reversed-phase column-switching

PEG outer shell

Hydrophobic inner core

PTX

Block copolymer

PEG P(Asp)

Figure 1 Schematic structure of NK105. A polymeric micelle carrier of
NK105 consists of a block copolymer of PEG (molecular weight of about
12 000) and modified polyaspartate. PEG is believed to be the outer shell
of the micelle. PEG is believed to form the outer shell of the micelle.
NK105 has a highly hydrophobic inner core, and therefore can entrap a
sufficient amount of PTX.
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chromatography was conducted using an ODS column and
detection was enabled by electrospray ionisation of positive mode.

Pharmacokinetic analysis

The following pharmacokinetic parameters were calculated for each
patient using a non-compartmental model using the WinNonlin
Professional version 4.1 program (Pharsight Corporation, Mountain
View, CA, USA). The maximum concentration (Cmax) was the
maximum observed plasma concentration of PTX, and the time-to-
the-maximum concentration (Tmax) was the time corresponding to
Cmax. The area under the concentration (AUC)–time curve from
time zero up to the last quantifiable time point (AUC0 – t) was
calculated using the linear trapezoidal rule, and the area under the
concentration–time curve from zero until infinity (AUC0 – inf.) was
calculated as the sum of AUC0 – t and the extrapolated area under the
zero moment curve from the last quantifiable time point to infinity
calculated by dividing the plasma concentration of the last
quantifiable time point (observed value) by the elimination rate
constant. The half-life of the terminal phase (t1/2Z) was calculated as
loge 2/lz, where lz is the elimination rate constant calculated from
the terminal linear portion of the log of the concentration in plasma.
Total clearance (CLtot), the volume of distribution at steady state
(Vss), and renal clearance (CLr) were calculated using the following
equations, where D is the dose and AUMCinf. the area under the first
moment curve from time zero until infinity:

CLtot ¼ D=AUCinf :

Vss ¼ AUMCinf :=AUCinf :�CLtot

CLr ¼cumulative urinary excretion=AUCinf :

=body surface area

RESULTS

Patient characteristics

Nineteen eligible patients were recruited for the study (Table 1).
All the patients had received chemotherapy before enrolment.
Prior therapies ranged from 1 to 3 regimens of chemotherapy.
None of the patients had received taxane chemotherapy. All the
patients were included in the safety and response analyses.

Dosing

Dosage escalation started at 10 mg m�2 and was increased up to
180 mg m�2. In total, 73 administrations were performed in 19
patients. Eighteen patients received more than two administra-

tions. The maximum number of treatments was 14 courses at
150 mg m�2; the average number of administrations at all levels
was 3.8 courses. Up until 80 mg m�2, grade 2 toxicity was not
observed during the first course.

According to the original protocol, the dosage of NK105 should
have been doubled for each escalation until grade 2 toxicity.
However, the safety committee recommended that the dosage
should be raised by 40% instead of 100% at 110 mg m�2 and that a
modified Fibonacci escalation method should be implemented.
Therefore, we recruited three patients at dosage level 5
(110 mg m�2) and re-started the dose identification study using a
modified Fibonacci method.

Haematological toxicity

Significant myelosuppression was not observed up to level 4
(80 mg m�2). At level 7 (180 mg m�2), two out of five patients
appeared to have acquired DLTs, namely grade 4 neutropenia
lasting for more than 5 days. On the basis of these results,
180 mg m�2 was considered to be the MTD, with neutropenia as
the DLT. Since a dosage of 150 mg m�2 was considered to be the
recommended dosage for phase II studies, an additional four
patients were enrolled at a dosage of 150 mg m�2; one patient
developed DLT, namely grade 4 neutropenia lasting for more than
5 days (Table 2). During the entire period of this study, G-CSF was
never used to rescue patients.

Nonhaematological toxicity

The NK105 injection was generally uneventful and well tolerated in
terms of nonhaematological toxicities (Table 2). Most of the
toxicities were grade 1; none of the patients manifested grade 4
toxicity. A few patients developed a grade 1 elevation in AST or
ALT, but these changes were transient. Pain or local toxicity in the
area of the injection was not observed in any of the patients treated
with NK105. No infusion-related reactions were observed; such
reactions sometimes occur during liposomal drug administration.
Patients were not premedicated with steroids or antihistamines.
Only one patient at 180 mg m�2 developed grade 2 hypersensitiv-
ity. After the first course, the patient received premedication of
hydrocortisone and did not develop such hypersensitivity after
that. The other 18 patients did not experience any hypersensitivity
during the study. Neuropathy occurred in a typical stocking/glove
distribution and was manifested by numbness. Three patients at
level 6 (150 mg m�2) and three patients at level 7 (180 mg m�2)
experienced grade 1 neurotoxicity during 1 cycle. Of the four
patients who received multicycle treatment more than five times,
only three patients developed grade 2 neuropathy and the other
patient developed grade 1 neuropathy. Even one patient who
received 14 cycles of treatment experienced only grade 2
neuropathy.

Pharmacokinetics

The plasma concentrations of PTX after the intravenous infusion
of NK105 were determined in each of the patients enrolled at a
dose of 150 mg m�2 (Figure 2A). The Cmax (Figure 2B) and AUC
(Figure 2C) increased as the doses were escalated from 10 to
180 mg m�2. The pharmacokinetic parameters are summarised in
Table 3. The t1/2Z ranged from 7.0 to 13.2 h, and a slight tendency
towards a dose-dependent extension of this parameter was
observed. The CLtot ranged from 280.9 to 880.4 ml h�1 m�2, and
the Vss ranged from 3668.9 to 10 400.3 ml m�2. Although these
parameters were slightly reduced depending on the dose, linear
pharmacokinetics was assumed to have been observed in the dose
range from 10 to 180 mg m�2. The AUC of NK105 at 150 mg m�2

(recommended phase II dose) was about 15-fold larger than that of
conventional PTX at dose of 210 mg m�2 (conventional dose for a

Table 1 Patient characteristics

Number of patients 19
Male/female 13/6

Age (years)
Median 57
Range 43–72

ECOG PS
Median 0

0 10
1 9

Prior treatment
Chemotherapy regimens

Median 1
Range 1–3
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3-week regimen in Japanese patients) (Tamura et al, 1995). The Vss

and CLtot of NK105 were significantly lower than those of
conventional PTX.

The cumulative urinary excretion rates of PTX (0–73 h) after the
administration of NK105 were 2.8–9.2%. These values were low,
similar to those reported after the administration of conventional
PTX (Tamura et al, 1995). The CLr ranged from 11.7 to
66.4 ml h�1 m�3, and was slightly decreased with the dose. Since
the ratio of CLr to CLtot was 3–9%, CLr hardly contributed to CLtot.

Therapeutic response

Six patients (two gastric, two bile duct, one colon, and one
pancreatic) were evaluated as having had a stable disease for longer
than 4 weeks at the time of the study’s completion. A partial response
was seen in a patient with metastatic pancreatic cancer who had been
treated at 150 mg m�2, and in whom the size of the liver metastasis
had decreased by more than 90%, compared to the baseline scan
(Figure 3A). This patient had previously undergone treatment with
gemcitabine. The antitumour response was maintained for nearly 1
year. In a patient with stomach cancer who was treated at
150 mg m�2, about 40% reduction was observed in a peritoneal
metastasis, but a liver metastasis remained stable (Figure 3B).

DISCUSSION

The observed toxicities of NK105 were similar to those expected
for conventional PTX. The DLT was neutropenia. The recom-

mended phase II dose using a 3-week schedule was determined to
be 150 mg m�2. This recommended dose of NK105 is less than that
of conventional PTX (210 mg m�2). Since the plasma AUC of the
recommended dose of NK105 was 15- to 20-fold higher than that of
the recommended dose of conventional PTX (210 mg m�2),
whether the so-called therapeutic window of NK105 is wider than
that of conventional PTX should be determined in a future phases
II or III trial, although the therapeutic window of NK105 appears
to be wider than that of free PTX in mice experiments (Hamaguchi
et al, 2005).

In general, haematological toxicity was mild and well managed
in this trial. PTX is known to cause cumulative peripheral
neuropathy resulting in the discontinuation of treatment with
PTX. At a dose of 150 mg m�2, three out of seven patients
experienced only grade 1 neuropathy during the first cycle. Since
the patients enrolled in this trial had almost intractable cancer,
such as pancreatic or stomach, a relatively small number of
patients received multiple cycles of treatment. Therefore, NK105-
related neurotoxicity could not be evaluated in this study.
However, three out of four patients who received more than five
cycles of treatment experienced transient grade 2 peripheral
neuropathy, and other patient developed transient grade 1
peripheral neuropathy. Future phase II trials may clarify whether
NK105 is less toxic in terms of peripheral neuropathy when
compared with conventional PTX, Abraxane, and other PTX
compounds. Another characteristic adverse effect of PTX is
hypersensitivity, which may be mainly caused by Cremophor EL.
Since NK105 is not formulated in a Cremophor EL-containing
solvent, we presumed that hypersensitivity would be diminished.

Table 2 Haematological and nonhaematological toxicities (cycle 1 and all cycles)

10–110 mg m�2 (n¼ 7) grade 150 mg m�2 (n¼ 7) grade 180 mg m�2 (n¼ 7) grade

1 2 3 4 1 2 3 4 1 2 3 4

Cycle 1
Leukopenia 2 0 2 0 1 5 1 0 1 1 3 0
Neutropenia 1 0 1 1 0 2 1 3a 0 0 3 2b

Thrombocytopenia 1 0 0 0 2 0 0 0 4 0 0 0
Hemoglobin 1 0 0 0 2 2 0 0 1 0 0 0
Neuropathy 0 0 0 0 3 0 0 0 3 0 0 0
Myalgia 1 0 0 0 3 0 0 0 2 1 0 0
Arthralgia 1 0 0 0 4 0 0 0 3 0 0 0
Hypersensitivity 0 0 0 0 0 0 0 0 0 1 0 0
Rash 1 0 0 0 1 3 0 0 4 0 0 0
Fatigue 1 0 0 0 5 0 0 0 4 0 0 0
Fever 2 0 0 0 2 0 0 0 1 0 1 0
Anorexia 0 0 0 0 3 0 0 0 1 0 0 0
Nausea 1 0 0 0 1 0 0 0 1 0 0 0
Stomatitis 0 0 0 0 1 0 0 0 1 0 0 0
Alopecia 3 0 — — 5 0 — — 5 0 — —

All cycles
Leukopenia 3 0 2 0 1 4 2 0 1 1 3 0
Neutropenia 1 0 1 1 1 1 1 4 0 0 3 2
Thrombocytopenia 1 0 0 0 3 0 0 0 4 0 0 0
Hemoglobin 1 0 0 0 1 5 0 0 1 0 0 0
Neuropathy 2 0 0 0 1 3 0 0 4 0 0 0
Myalgia 1 1 0 0 3 0 0 0 2 1 0 0
Arthralgia 2 0 0 0 4 0 0 0 3 0 0 0
Hypersensitivity 0 0 0 0 0 0 0 0 0 1 0 0
Rash 1 0 0 0 3 3 0 0 4 0 0 0
Fatigue 3 0 0 0 5 1 0 0 4 0 0 0
Fever 3 0 0 0 3 1 0 0 1 0 1 0
Anorexia 2 1 0 0 2 1 0 0 2 0 0 0
Nausea 1 0 0 0 1 0 0 0 2 0 0 0
Stomatitis 1 0 0 0 2 0 0 0 1 0 0 0
Alopecia 2 2 — — 4 3 — — 4 1 — —

aOne of three patients developed DLT, namely grade 4 neutropenia lasting for more than 5 days. bThese two patients developed DLT, namely grade 4 neutropenia lasting for
more than 5 days.
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Indeed, the results of this clinical trial show that NK105 can be
administered safely as a short infusion (1 h) without the
administration of antiallergic agents like dexamethasone and
antihistamine, although one patient at 180 mg m�2 developed
transient grade 2 hypersensitivity at the first course. Therefore,
NK105 may offer advantages in terms of safety and patient
convenience and comfort.

The pharmacokinetic analysis of NK105 suggests that the
distribution of PTX-incorporating micelles is mostly restricted to
the plasma and, in part, to extracellular fluids in the body. This is
consistent with data obtained in a preclinical study (Hamaguchi
et al, 2005) showing that the distribution of NK105 in tissues is
characterised by an EPR effect, similar to that of tumour and
inflammatory lesions, or by the presence of a reticuloendothelial
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Figure 2 (A) Individual plasma concentrations of PTX in seven patients following 1-h intravenous infusion of NK105 at a dose of 150 mg m�2. (B)
Relationships between dose and Cmax, and (C) between dose and AUC0�inf. of PTX in patients following 1-h intravenous infusion of NK105. Regression
analysis for dose vs Cmax was applied using all points except one patient at 80 mg m�2 whose medication time became 11 min longer and one patient at
180 mg m�2 who had medication discontinuation and steroid medication. (Plots were shown as open circle). Regression analysis for dose vs AUC0�inf. was
applied using all points except one patient who had medication discontinuation and steroid medication. (Plot was shown as open circle.) Relationships
between dose and Cmax, and AUC0�inf. in patients following conventional PTX administration were plotted (closed square, see Tamura et al, 1995).

Table 3 Pharmacokinetic parameters

Dose (mg m�2) n Cmax (lg ml�1) AUC0�inf. (lg h ml�1) t1/2 (h) CLtot (ml h�1 m�2) Vss (ml m�2) UEa (%) CLr (ml h m�2)

NK105 10 1 0.9797 11.4 9 880.4 10 400.3 7.5 66.4
20 1 2.8971 29.1 8.5 687.9 8027 8.6 59.4
40 1 8.8334 93.9 13.2 426.1 5389.8 5.2 22
80 1 18.4533 149.3 7 535.8 5875.8 4.7 25.3

110 3 23.3924 232 9.7 483.3 5881.2 7.6 35.6
75.6325 739.1 71.6 782.7 71512.0 71.7 76.9

150 7 40.1699 369.8 10.6 408.6 4527.1 5.3 21.6
75.5334 735.2 71.3 737.3 7639.5 71.5 76.5

180 4b 45.6278 454.5 11.3 416.5 4983.4 5.9 23.7
78.6430 7119.1 70.6 7104.7 7887.5 71.4 74.2

aUE, urinary excretion. bOne patient at 180 mg m�2 level was omitted from the calculation of summary pharmacokinetic parameters, as there was administrating interruption for
developing allergic reactions.
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system. When compared with conventional PTX at a dose of
210 mg m�2 (conventional dose for a 3-week regimen in Japanese
patients), NK105 at a dose of 150 mg m�2 (recommended phase II
dose) exhibited more than 15-fold larger plasma AUC and a 26-
fold lower CLtot. The larger plasma AUC is consistent with the
stability of the micelle formulation in plasma. The Vss of NK105

was 13-fold lower than that of conventional PTX. This suggests
that PTX may have a relatively lower distribution in normal tissue,
including normal neural tissue, following NK105 administration.
Regarding the drug distribution in tumours, nanoparticle drug
carriers have been known to preferentially accumulate in tumour
tissues utilising the EPR effect (Matsumura and Maeda, 1986;

Baseline

Baseline

After 4th course

After 5th course

A

B

Figure 3 Serial CT scans. (A) A 60-year-old male with pancreatic cancer who was treated with NK105 at a dose level of 150 mg m�2. Baseline scan
(upper panels) showing multiple metastasis in the liver. Partial response, characterized by a more than 90% decrease in the size of the liver metastasis (lower
panels) compared with the baseline scan. The antitumour response was maintained for nearly 1 year. (B) A 64-year-old male with stomach cancer who was
treated with NK105 at a dose level of 150 mg m�2. Baseline scan (left panel) showing a peritoneal metastasis and liver metastasis. About 40% reduction
(right panel) was observed in peritoneal metastasis, but not in the liver metastasis after fifth course.

Table 4 Pharmacokinetic parameters

Dose (mg m�2) n Cmax (lg ml�1) AUC0�inf. (lg h�1 ml�1) t1/2 (h) CLtot (ml h�1 m�2) Vss (ml m�2) UE (%) CLr (ml h m�2)

NK105 150 7 40.1699 369.8 10.6 408.6 4527.1 5.3 21.6
75.5334 735.2 71.3 737.3 7639.5 71.5 76.5

PTX 210 5 6.744 23.18 13.3 10740 58 900 9.45 1020
72.733 710.66 71.5 74860 724 700 73.76 7648

XYOTAXa 233 4 NA 1583 120 276 6200 NA NA
7572 728 763 72100

Abraxane 300 5 13.52 17.61 14.6 17 700 370 000 NA NA
70.95 73.70 72.04 73894 785 100

Genoxol-PM 300 3 3.107 11.58 11.4 29 300 NA NA NA
71.476 74.28 72.4 713 800

aConjugated taxanes.
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Maeda et al, 2000; Duncan, 2003). We speculate that NK105
accumulates more in tumour tissues than free PTX, since NK105 is
very stable in the circulation and exhibits a markedly higher
plasma AUC than free PTX. Moreover, a polymeric micelle carrier
system for a drug has the potential to enable the sustained release
of the drug inside a tumour following the accumulation of micelles
in the tumour tissue (Hamaguchi et al, 2005; Uchino et al, 2005;
Koizumi et al, 2006). Regarding NK105 in particular, this sustained
release may begin at a PTX-equivalent dose of o1 mg ml�1 (data
not shown). Consequently, the released PTX is distributed
throughout the tumour tissue where it kills the cancer cells directly.

In the present study, NK105 appeared to exhibit characteristic
pharmacokinetics different from those of other PTX formulations
including conventional PTX, Abraxane, Genexol-PM, and Xyotax.
For example, previous clinical PK data at each phase II

recommended dose shown that plasma AUC and Cmax were 11.58
and 3.1 in Genexol-PM (Table 4). The antitumour activities seen in
two patients with intractable cancers are encouraging. In addition,
we recently demonstrated in preclinical study that combined
NK105 chemotherapy with radiation exerts a significantly more
potent antitumour activity, compared with combined PTX therapy
and radiation (Negishi et al, 2006). This data on NK105 justifies its
continued clinical evaluation.
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