
RESEARCH ARTICLE

Dynamic measures for transportation

networks

Oriol Lordan, Jose M. SallanID*

Department of Management, Universitat Politècnica de Catalunya, Terrassa, Catalunya, Spain

* jose.maria.sallan@upc.edu

Abstract

Most complex network analyses of transportation systems use simplified static representa-

tions obtained from existing connections in a time horizon. In static representations, travel

times, waiting times and compatibility of schedules are neglected, thus losing relevant infor-

mation. To obtain a more accurate description of transportation networks, we use a dynamic

representation that considers synced paths and that includes waiting times to compute

shortest paths. We use the shortest paths to define dynamic network, node and edge mea-

sures to analyse the topology of transportation networks, comparable with measures

obtained from static representations. We illustrate the application of these measures with a

toy model and a real transportation network built from schedules of a low-cost carrier.

Results show remarkable differences between measures of static and dynamic representa-

tions, demonstrating the limitations of the static representation to obtain accurate informa-

tion of transportation networks.

Introduction

Complex networks theory studies global properties of systems composed by a large quantity of

interconnected elements. Modelling those systems as complex networks, where the elements

are the nodes and the links the connections among them, we are able to gain insight into sys-

tem’s structural properties, and to learn how those systems grow and evolve. Global structural

properties are described using network measures: for instance, we can say that a network has

the small world property if it has a large average clustering coefficient and a small average path

length [1]. On the other hand, real-world complex networks are heterogeneous, meaning that

not all nodes and edges are equally relevant or central [2, 3]. To account for this, we define

parameters as degree for nodes (the number of connections to the node) and betweenness for

nodes and edges (nodes and edges of high betweenness are frequently present in shortest

paths) as centrality measures of network elements. Node and betweenness are the most fre-

quent measures of centrality, although other measures have been defined in the literature [4,

5].

A relevant family of complex networks are transportation systems such as roads, rail and

marine or air transport. In those systems, nodes are geographical locations, and links represent

connections between these locations. Application of complex networks theory to
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transportation systems allows to identify relevant locations and connections of the system, and

to gain insight on properties like network robustness [6–9], jamming transitions [10, 11] or

epidemic spreading [12, 13].

When studying a transportation system, the predictions and insights obtained will be as

good or accurate as the model we have used to analyse them. The most usual way to construct

a transportation network is to collect information about existing connections on a time hori-

zon, and consider a pair of nodes linked by an edge if there is at least a direct connection

between them. In this static representation, two nodes are connected if there is at least a path

between them. In spite of its extensive use in modelling complex transportation networks [7,

14–16], static representations can be too simplistic for some purposes, specially when comput-

ing and interpreting measures obtained from shortest paths among nodes, or evaluating con-

nectivity between two nodes (i.e., assessing which pairs of nodes are connected by a path in the

network). First, static representations are frequently unweighted. Unweighted connections use

topological distance, meaning that distance between to nodes is equal to the smallest number

of edges required to connect them, irrespective of time or distance. When using topological

distance, two paths connecting a pair of nodes with the same number of edges are considered

of equal length, although reaching the destination may take longer for one of the paths. Sec-

ond, most collective means of transportation use scheduled connections to aggregate travel

demand. Every schedule is defined by departure and arrival times, and offers possibilities of

indirect connectivity, as travellers take two or more connections to get to their destination.

When building the static representation, information about schedules is lost: as a consequence,

some of the possibilities of connection of static representations may not exist, as connecting

schedules are not synced. This might mean that two nodes that appear connected in the static

representation are not really connected. Third, time travel of a connection between two nodes

may not be constant, due to traffic congestion or unexpected incidents.

The shortcomings of the static, unweighted representation of transportation systems can be

overcome with more precise representations. We can achieve this by relying on temporal net-

works theory, which adds the moment when interactions take place to the set of elements and

interactions to model complex systems [17]. Temporal networks theory allows a more precise

modelling of human communications [18], human and animal proximity networks, distrib-

uted computing, citation networks and brain networks, among others (see [19] for a review).

Many of these systems are contact networks, where indirect connections are carried along

time-respecting paths. A path A-B-C exists if A and B contact prior to B and C. Temporal net-

works theory may help to build a more precise representation of transportation networks, but

differences between contact and transportation networks must be taken into account. First, we

can define shortest paths using temporal distance: the shortest path between two nodes will be

the one that connects them in the shortest time, irrespective of the number of intermediate

connections needed [20]. Temporal distance allows a definition of weighted transportation

networks where the edge weight is the amount of time needed to make the connection. Note

that in these weighted networks we are assigning time travel to edges, rather than intensity or

frequency of connections, like in [21]. Second, when defining shortest paths in transportation

networks we must take into account travel times and waiting times, unlike in contact net-

works. In transportation networks, shortest paths depend on schedules available at a specific

time, so that temporal distance and the shortest path itself may vary along the time horizon

considered, so that for any pair of nodes a temporal distance profile is considered [22]. Finally,

contact networks can be much more dynamic than transportation networks, in the sense that

in contact networks topology can change rapidly [23], and new nodes and edges can be added

along the time horizon. [24]. This dynamic behaviour is unlikely to happen in transportation

networks, as long as there are no incidents affecting the infrastructure (for instance, removal
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of a link because an accident). It is more frequent, though, that time travel of specific connec-

tions experiences variations along the time horizon because of accidents or traffic congestion.

The calculation of shortest paths in that situation is more complex [25], leading also to a tem-

poral distance profile, even if there are no scheduled connections.

The inclusion of information about the time of interaction, and the computation of time-

respecting paths between network nodes has allowed the definition of measures for temporal

networks, although most of them have been developed for contact networks [23, 26, 27]. The

aim of our paper is to define a set of dynamic measures that take into account the specificities

of transportation networks. By doing this, we contribute to complex networks theory and

transportation science: we enrich temporal networks theory by considering specificities of

transportation networks, and transportation science by allowing a more precise evaluation of

importance and centrality of nodes and edges, and of overall performance of the transporta-

tion system. The rest of the paper is organised as follows: first, we define the static and dynamic

representations of transportation networks, which in turn can be weighted and unweighted,

and define dynamic shortest paths. In the next section, we use the definition of shortest paths

to define network, node and edge measures for dynamic representations of transportation net-

works. In the materials and methods section, we describe how do we compute dynamic short-

est paths, and the characteristics of our case study, a transportation network defined from a

sample of schedules of a low cost airline. In the applications section, we introduce the measures

for each representation with a toy model, and then we compare the static and dynamic mea-

sures our case study, which allows us to illustrate how dynamic measures provide a more pre-

cise evaluation of the transportation network. The results are summarised in the conclusions

section.

Static and dynamic representations of transportation networks

The most usual representation of transportation networks is static. In a static representation, a

connection i! j exists if there is a direct connection between i and j during a time horizon.

Indirect connections are considered if a path can be established between a pair of nodes. This

representation can be unrealistic, as some of the paths defining indirect connections may be

constructed with non-synced schedules. A way to avoid this pitfall is to build a dynamic repre-

sentation considering all existing connections with compatible schedules in the time horizon.

In this representation, an indirect connections between two nodes exists if there is a temporal

path of synced schedules connecting them. In unweighted graphs, the path length of an indirect

connection is equal to its number of connections. For instance, a route of two intercontinental

flights has the same distance as a route of two regional flights. As effectiveness of transporta-

tion networks is associated with fast connections, it can be useful to determine the time spent

to reach node j from node i. This can be achieved defining weighted graphs, assigning weights

to edges equal to time travel. In weighted graphs, the path length of a indirect connection is

equal to the sum of edge weights of the path, that is, the total travel time of the connections.

When we consider edge weights, we define dynamic weightedmeasures, and dynamic
unweightedmeasures otherwise. The definition of distances for static representations is

straightforward. Static unweighted distance is equal to the smallest number of edges connect-

ing nodes i and j, and static weighted distance is the minimum value of sum of weights of

edges connecting a pair of nodes.

For dynamic representations, distances can be defined through dynamic shortest paths

[25]. The temporal distance τij(t) is the minimum time to reach j from i along temporal paths

at time t. As temporal distance depends on available schedules at time t, we have a temporal

distance profile for the time horizon, defined by the value of temporal distances for each t [22].
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If we can choose the moment we depart from an interval [ts, tf], with ts, tf 2 [0, T] we can define

the dynamic weighted distance between i and j as:

t�ij ¼ min
t2½ts ;tf �

tijðtÞ

To obtain the number of dynamic shortest paths sDij , we retain only the paths that connect i
and j with time t�ij using the minimal number of steps. Making this choice, we take into

account user’s preferences for routes of shorter travel time, shorter connection times and

fewer connections [28]. This value of minimum schedules s�ij is the dynamic unweighted dis-
tance between i and j. So in a dynamic representation of a transportation network we can

obtain for each pair of nodes (i, j):

1. The dynamic weighted distance t�ij

2. The dynamic unweighted distance s�ij

3. The number of dynamic shortest paths sDij

Dynamic measures of transportation networks

Network measures

There are three widely used network measures based on shortest paths: characteristic path

length, diameter and efficiency. Characteristic path length L is equal to the average value of

non-divergent (non-infinite) distances. Two dynamic measures of L can be obtained for

unweighted U and weightedW graphs:

LDU¼
1

PD
X

i6¼j;s�ij<1

s�ij LDW¼
1

PD
X

i6¼j;t�ij<1

t�ij

where PD is the number of non-divergent dynamic paths. Accordingly, we have also two values

for network diameter, the maximum value of non-divergent topological and temporal dis-

tances, respectively.

Network efficiency is equal to the harmonic mean of distances between nodes [29]. As this

measure sets contributions of all non-divergent paths equal to zero, does not diverge for

unconnected graphs as characteristic path length does. Efficiency measures of a network with

N nodes can be computed as follows:

EDU¼
1

NðN � 1Þ

X

i6¼j

1

s�ij
EDW¼

1

NðN � 1Þ

X

i6¼j

1

t�ij

Node measures

There are two relevant node measures based on shortest paths in dynamic representations:

betweenness and closenness [5]. Other measures of node centrality not based on shortest

paths, such as node degree, make sense only on static representations [17]. Node betweenness is

an important measure in transportation networks. Nodes with high betweenness represent

central nodes, as they are in the middle of many scheduled connections [30], and therefore are

topologically important nodes in the network. Betweenness is defined using the number of

shortest paths σjk between j and k, and the number of shortest paths between j and k that pass

through node i σjk(i). In the dynamic representation only the existing paths that connect every
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pair of nodes in minimum time, taking the minimal number of steps are considered. There-

fore, dynamic node betweenness can be defined as:

bDi ¼
X

j;k2N ;j6¼k

sDjkðiÞ
sDjk

Closeness of node i is defined as the inverse of the sum of distances from i to all other k
nodes. We can define two dynamic closeness measures, unweighted and weighted,:

cDUi ¼
1

X

j2N

s�ij
cDWi ¼

1
X

j2N

t�ij

If any of the elements of the distance matrix is divergent (i.e., the corresponding pair of

nodes is not connected) the definition of closeness is problematic. This can be solved using

harmonic centrality, defined as:

hDUi ¼
X

j2N

1

s�ij
hDWi ¼

X

j2N

1

t�ij

Harmonic centrality is strongly correlated with closeness [5], but naturally accounts for

nodes that cannot reach i, so it is more suitable for graphs that are not strongly connected [31].

Edge measures

For dynamic representations, a dynamic edge betweenness for a direct connection ℓ between a

pair of nodes can be defined as:

bD
‘
¼

X

j;k2N ;j6¼k

sDjkð‘Þ

sDjk

where sDjkð‘Þ is the number of dynamic shortest paths between j and k that use edge ℓ.

Materials and methods

Computation of dynamic shortest paths

For computing dynamic measures, we use a set of scheduled connections to build a time-node

network. In this temporal network representation, there is a node for each combinations of

arrivals and departures destinations and times. This node has one node for each departure or

arrival, defined by a the location of each event and its timestamp. To account for available con-

nections in a location (e.g., connecting flights in an airport), we have considered a minimum

connecting time. To compute the dynamic measures, we have obtained the paths of minimal

duration for the resulting network. Then, we have collapsed these paths for each location to

obtain the shortest paths between locations. We have retained the quickest paths that connect

each pair of locations with minimal steps.

Application to a low-cost airline

We illustrate the computation of dynamic measures in real transportation networks with the

flights scheduled by Ryanair departing from local times 06:00 AM of August 1st, 2015 to 05:59

AM of August 2nd, 2015. In this time horizon, the airline has scheduled 1,746 flights, of which

20 are non-returning flights, probably because of missing data. To obtain an undirected static
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representation, we have not considered the later, so the resulting network includes 1,726 legs,

leading to a static representation with 695 bidirectional connections between 158 airports. Defin-

ing the dynamic representation for a transportation network requires defining some constraints

for considering shortest paths. First, we need to consider that passengers have constraints to

transfer between flights. Although low-cost carriers operate on a point-to-point basis, it is fre-

quent that passengers arrange self-hubbing connections purchasing one ticket for each flight

[32]. Similarly to previous research on self-hubbing [33], we decided to allow transfer times

equal or larger than 60 minutes. For this example, no maximum transfer time was considered.

Applications

We apply the above definitions to a toy model, and to the real air transport network of a low-

cost carrier.

Toy model

In order to explain the above definitions, we propose a toy model with four nodes, with the

connections defined in Table 1. The static representations, unweighted and weighted, of the

toy model can be seen in Fig 1.

For this model, unweighted distances are equal in dynamic and static representations, but

weighted distances are not. In Table 2 are presented the static and dynamic measures of close-

ness. In this case, we can compare closeness measures, as there is either a direct or indirect

connection between any pair of nodes in both representations. Matrices DSU, DSW, DDU and

DDW show the unweighted (U) and weighted (W) distances between nodes for the static (S)

and dynamic (D) representation (note that the dynamic weighted distance matrix DDW is not

symmetric). Table 3 presents the values of network measures for each representation.

DSU ¼

� 1 1 2

1 � 2 1

1 2 � 1

2 1 1 �

0

B
B
B
B
B
@

1

C
C
C
C
C
A

DSW ¼

� 1 2 2

1 � 2 1

2 2 � 1

2 1 1 �

0

B
B
B
B
B
@

1

C
C
C
C
C
A

DDU ¼

� 1 1 2

1 � 2 1

1 2 � 1

2 1 1 �

0

B
B
B
B
B
@

1

C
C
C
C
C
A

DDW ¼

� 1 2 3

1 � 2 1

2 3 � 1

3 1 1 �

0

B
B
B
B
B
@

1

C
C
C
C
C
A

Table 1. A set of schedules between four nodes.

Departure Arrival Departure time Arrival time

A B 7 8

A C 0 2

B A 3 4

B D 3 4

C A 5 7

C D 2 3

D B 0 1

D C 4 5

https://doi.org/10.1371/journal.pone.0242875.t001
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A sample of a low-cost airline

We illustrate the computation of the defined dynamic transportation measures with a sample

of flights of a low-cost airline (see Methods for the details). The picture of the connectivity

using dynamic shortest paths is quite different than in the static representation. While in the

later all connections between airports were available, in the former existed only 49.86% of pos-

sible (direct or indirect) connections. Then, the dynamic representation is directed and not

strongly connected. Table 4 shows the values of network metrics for the static and dynamic

representations of the network. The unweighted value of L is slightly smaller in the dynamic

representation, as many of the long connections in the static representation are not present in

the dynamic representation. If we exclude the connections not present in the dynamic repre-

sentation to compute L in the static representation we obtain a value of L = 2.0135, smaller

than the dynamic value for the same collection of routes. As for the rest of values, the dynamic

values show equal or less connectivity than the static. Therefore, for this network the static

representation overestimates efficiency, and underestimates weighted average shortest path

length and diameter, as it only considers synced connections and takes into account waiting

times between connections.

In Fig 2 the values of dynamic betweenness are compared to static unweighted (left) and

static weighted (rigth) betweenness. Two effects can explain differences between static and

dynamic measures of betweenness. On the one hand, not all unweighted shortest paths take

the same time, then some paths considered in static betweenness are not included in the

dynamic betweenness. This effect can lead to higher or lower values of weighted and dynamic

Fig 1. Toy model: Unweighted (left) and weighted (right) graphs for the static representations.

https://doi.org/10.1371/journal.pone.0242875.g001

Table 2. Toy model: Node closeness and betweenness.

Closeness Betweenness

cSU cSW cDU cDW bSU bSW bD

A 1
4=

1
5=

1
4=

1
6= 1 0 1

B 1
4=

1
4=

1
4=

1
4= 1 2 0

C 1
4=

1
5=

1
4=

1
6= 1 0 2

D 1
4=

1
4=

1
4=

1
5= 1 2 1

https://doi.org/10.1371/journal.pone.0242875.t002
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betweenness, compared with static betweenness. On the other hand, discarding unsynced con-

nections makes many dynamic shortest paths between two nodes take more steps, so more

nodes are intermediary in dynamic shortest paths. This effect increases the dynamic between-

ness of the new intermediary nodes.

Fig 3 compares static and dynamic harmonic closeness with distances measured in steps

(number of edges) and time. We have used harmonic closeness, as roughly a half of dynamic

shortest paths are divergent. The airports with highest values of closeness are London-Stansted

(STN), Dublin (DUB), Bergamo-Orio al Serio (BGY), Brussels South Charleroi (CRL) and Bar-

celona-El Prat (BCN). The five first airport of the ranking are the same for the edges-static har-

monic closeness, and for the time static the fourth and fifth airports are Madrid-Barajas

(MAD) and Roma-Ciampino (CIA). Airports with high values of harmonic closeness are the

central airports of the network (e.g., STN, DUB) or airports with a central geographic position

(CRL).

Finally, in Table 5 are listed the ten routes with highest values of unweighted, weighted and

dynamic edge betweenness. We can observe that routes with high edge betweenness are

Table 3. Toy model: Network measures.

Unweighted Weighted

L D E L D E
Static 1.33 2 0.83 1.5 2 0.75

Dynamic 1.33 2 0.83 1.66 3 0.72

https://doi.org/10.1371/journal.pone.0242875.t003

Table 4. Network measures for the low-cost carrier network (weighted measures in minutes).

Unweighted Weighted

L D E L D E
Static 2.341 5 0.465 286 705 3.922e−3

Dynamic 2.295 5 0.246 518 1080 1.386e−3

https://doi.org/10.1371/journal.pone.0242875.t004

Fig 2. Values of betweenness obtained through dynamic representation vs. betweenness obtained through unweighted

(left) and weighted (right) distances for the low-cost airline network (the most central airports STN and DUB have

been omitted). The values of SU, SW and D for STN are 5163, 5646 and 4561. The values for DUB are 2212, 1644 and

1990.

https://doi.org/10.1371/journal.pone.0242875.g002
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between central airports, with the exception of the unweighted static representation, where the

route with highest betweenness is between London-Stansted (STN) and Paphos International

Airport (PFO). We can conclude that the high betweenness of this route in the static represen-

tation comes from considering connections between Greek airports that are unsynced with the

existing scheduled connections.

Conclusions

The most common way of modelling transportation networks in the literature is with a static
representation: two nodes are connected by an edge if there is at least a direct connection

between them in a specific time horizon. Time can be introduced in these models assigning

weights to edges equal to the (minimal or average) time spent in a direct connection. The

resulting weighted and unweighted static representations do not eliminate unsynced schedules

or consider waiting times, so they are simplified representations of a transportation system.

A more realistic modelling of transportation networks can be implemented using dynamic
representations, which include waiting times between connections and considers only

Fig 3. Comparison of static and dynamic values of harmonic closeness measured in steps or edges (left) and in time

(right) for the low-cost airline network.

https://doi.org/10.1371/journal.pone.0242875.g003

Table 5. Routes of highest value of dynamic edge betweenness for the low-cost airline network.

unweighted weighted dynamic

route value route value route value

STN-PFO 254.552 DUB-STN 529.500 STN-DUB 590.667

DUB-STN 236.195 DUB-LTN 284 DUB-STN 337.667

STN-OPO 225.414 DUB-LPL 236.500 DUB-LPL 149.667

BGY-STN 203.034 DUB-MAN 212 BCN-STN 128

AGP-STN 174.980 ATH-CIA 202.667 STN-PMI 128

STN-MRS 174.360 DUB-CRL 191 STN-OPO 123.500

STN-PMO 161.429 ATH-PFO 186.333 LPL-DUB 122

PFO-GPA 157 STN-OPO 182 DUB-CRL 117.417

AGP-NUE 157 MAD-OPO 177.833 PSA-STN 116

DUB-BSL 157 DUB-BVA 170 STN-LEJ 116

https://doi.org/10.1371/journal.pone.0242875.t005
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temporal paths with synced connections. Dynamic representations allow the calculation of

dynamic shortest paths. These are obtained retaining the temporal paths that link each pair of

airports in minimum time, with the minimal number of steps.

Dynamic shortest paths allow the definition of more realistic versions of network measures,

based on characteristic path length, diameter and efficiency measures defined for static,

unweighted complex networks. Similarly, node betweenness- and closeness-based measures

are defined. There is a single measure of dynamic betweenness, based on dynamic shortest

paths. This definition can also be extended to edge betweenness.

After illustrating these measures with a toy model, in the Applications section we have

applied the defined measures to a sample of scheduled connections of a low-cost airline, con-

sidering a 24 hour time horizon. Dynamic measures depict a more realistic description of net-

work behaviour. Additionally, the comparison of results obtained for different graphs and

representations allow us to gain insight into network properties. The dynamic representation

is a realistic definition of transportation networks as, and therefore can help to better under-

stand the behaviour of these networks facing phenomena such as delay propagation, node vul-

nerability or cascading failures, among others.
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