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Villains or heroes? The raison d’être of viruses
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Abstract

The relationship between humans and viruses has a long history.
Since the first identification of viruses in the 19th century, we
have considered them to be ‘pathogens’ and have studied their
mechanisms of replication and pathogenicity to combat the
diseases that they cause. However, the relationships between hosts
and viruses are various and virus infections do not necessarily
cause diseases in their hosts. Rather, recent studies have shown
that viral infections sometimes have beneficial effects on the
biological functions and/or evolution of hosts. Here, we provide
some insight into the positive side of viruses.
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INTRODUCTION

Viruses, which consist of nucleic acid encased in a
protein shell, are parasites of host organisms. The
term ‘virus’ comes from the Latin word ‘venom’,
which means poison, because a virus is generally
considered to be a causative agent like a poison
that causes infectious diseases. These tiny, living
entities have considerable import, because they
can cause substantial damage to humans and
non-human animals and other living organisms.
The relationship between humankind and viruses
has a long history. For example, the earliest
evidence of smallpox was found in 3000-year-old
Egyptian mummies, who had smallpox-like
eruptions on their skins.1 The overall mortality
rate of smallpox was around 30%,2 making it one
of the most feared infectious diseases. In 1918–
1919, during World War I, influenza A virus
caused the Spanish flu pandemic, resulting in
infection of approximately 500 million people and
more than 20–40 million death worldwide.3

Since the initial isolation of viruses in the 19th
century, scientists have identified and
characterised a wide variety of viruses, and the
field of virology has progressed remarkably since
then, enabling us to combat the frequently
deadly effects of these viruses. One of the
greatest achievements is the complete eradication
of smallpox. Although smallpox was once
rampant in the world, vaccination of the entire
population has eradicated this disease.1 Similarly,
the poliovirus vaccine has significantly reduced
the incidence of poliomyelitis.4 Despite the
progress of virology, we still have many
unconquered viral diseases and we are confronted
with the problem of emerging infectious diseases,
which are caused by newly identified species or
strains. For example, Ebola virus disease and
acquired immunodeficiency syndrome emerged in
1976 and 1981, respectively,5–9 and more recently,
severe acute respiratory syndrome (SARS), highly
pathogenic avian influenza viruses and Middle
East respiratory syndrome (MERS) have appeared
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in human society.10–15 Therefore, it is important to
continue studying the mechanisms of viral
replication and pathogenicity.

Yet, these negative aspects of viruses do not tell
the whole story since the relationships between
hosts and viruses are multitudinous, and virus
infections do not necessarily lead to disease
symptoms in hosts. Rather, recent studies suggest
that there are viruses that are beneficial to the
biological functions and/or evolution of their
hosts. Recently, we established a research
consortium, designated as ‘Neo-virology’, which is
supported by Grants-in-Aid for Scientific Research
on Innovative Areas from the Ministry of
Education, Culture, Science, Sports, and
Technology (MEXT) of Japan. In this consortium,
we define a virus as a component of the global
ecosystem. Our aim was to elucidate the roles of
viruses in host organisms and the global
ecosystem, in contrast to traditional virology
research, which tends to focus on pathogenic
viruses that cause diseases in their hosts. This
research project is expected to develop into an
important scientific field that examines the
interactions between the global ecosystem and
viruses. In this brief review, we give some insights
into the positive side of viruses.

BENEFICIAL EFFECTS OF VIRAL
INFECTION ON MAMMALIAN HOSTS

In traditional virology, most viruses found in
humans are considered to be pathogenic to their
hosts; however, recent studies have shown that
there are some viruses that have symbiotic
relationships with their hosts and do not cause
disease. Infection with one virus may protect the
host from a superinfection with another
pathogen. Barton et al.16 demonstrated that
latent infection with the herpesviruses murine
gammaherpesvirus 68 or murine cytomegalovirus,
which are genetically related to the human
pathogens Epstein-Barr virus and human
cytomegalovirus, respectively, led to cross-
protection in mice. Infection with these viruses
induced prolonged production of the antiviral
cytokine interferon-gamma and systemic
activation of macrophages that protected the
mice from subsequent bacterial infections with
either Listeria monocytogenes or Yersinia pestis.16

Moreover, it has been reported that
superinfection with hepatitis A virus suppressed

hepatitis C virus replication in patients with
chronic hepatitis C in at least two cases,17 and
infection with human cytomegalovirus (HCMV)
suppressed superinfection with HIV-1 in vitro as a
result of the downregulation of the expression of
CCR5, a co-receptor for HIV-1, induced by the
HCMV infection.18

Some viruses also have beneficial effects with
respect to non-infectious diseases. Epidemiologic
studies suggest that virus infections in childhood
might confer protection against some cancers
later in life. For example, the risk of chronic
lymphoid leukaemia in subjects who had measles
in childhood is relatively low,19 and mumps
infection in childhood might protect against the
development of ovarian cancer in adults.20

However, infection with oncoviruses is known to
increase the risk of development of some cancers
(e.g. cervical cancer and liver cancer induced by
the human papillomavirus and hepatitis B virus/
hepatitis C virus infection, respectively).21 Such
information is important when considering
strategies for cancer immunotherapy and/or
vaccination campaigns. In addition, the infection
of non-obese diabetic mice with lymphocytic
choriomeningitis virus prevented the infected
mice from developing autoimmune disease and
subsequent type I diabetes (insulin-dependent
diabetes mellitus).22,23 Chronic viral infection of
mice with murine cytomegalovirus (CMV)
increased epithelial turnover and wound repair
via antiviral cytokine type I interferons (IFNs),24

but CMV infection can promote cancer
malignancy; this phenomenon is known as
‘oncomodulation’.25,26

Recent metagenomic studies have revealed that
virus infection sometimes confers benefits
including the regulation of microbiota in the gut.
Bacteriophages are abundant in the gut and are
thought to modulate the gut microbiota by
infecting specific bacterial populations.
Accordingly, potential therapeutic applications of
bacteriophages in humans (e.g. control of
antibiotic-resistant bacteria, stabilisation of
healthy gut microbes) have been considered.27,28

Therefore, the elucidation of the symbiotic
effects of viruses on the physiological functions
and immune responses of their hosts, as well as
clarification of the functional mechanisms
involved, will lead to an understanding of the
essential roles of viruses in regulating the
biological processes of their hosts.
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ENDOGENOUS VIRAL ELEMENTS IN
MAMMALIAN GENOMES

Retroviruses are found in almost all mammals and
other vertebrates, and approximately 8% of the
human genome is composed of retroviruses in the
form of endogenised proviruses.29,30 Given that
only about 1% of genomic DNA is made up of
protein-coding genes, the abundance of retrovirus
sequences in the human genome is remarkable.
Retrovirus sequences are conserved in humans and
other primates, and therefore, the endogenisation
of retroviruses is thought to have occurred
millions of years ago.31 Some endogenous
retroviruses have been shown to play beneficial
roles in their hosts, including host evolution. For
example, envelope genes from endogenous
retroviruses contribute to the formation of the
placenta during the fusion of syncytiotrophoblast
cells in mammals.32,33 In addition, endogenous
retroviral elements are known to protect host cells
from infection with exogenous retroviruses in
some mammals.33–35

In addition to retroviruses, recent studies have
shown that non-retroviral viruses have also
endogenised in many mammalian species.36–38 For
example, Tomonaga’s group, which is one of the
research groups in our Neo-virology research
consortium, discovered that bornaviruses, a genus
of non-segmented, negative-strand RNA virus, have
been endogenised in the genomes of many
mammals, including humans.36 Since bornaviruses
do not encode reverse transcriptase and integrase
genes, integration of bornavirus segments is
believed to be mediated by long interspersed
nuclear element-1 (LINE-1), which is a
retrotransposon widely distributed in mammalian
genomes.39 Tomonaga’s group also showed that an
endogenous bornavirus-like element in the ground
squirrel genome blocks infection and replication of
extant endogenous bornavirus.40 Together, these
findings indicate a potential role for endogenous
non-retroviral elements in antiviral defence. This
group also performed an evolutionary phylogenetic
analysis to elucidate the functions of endogenous
bornavirus in mammalian genomes.41

Thus, it has become apparent that a large
number of endogenous viral elements have
accumulated in host genomes, more than
previously expected. Therefore, it is important
that we understand the significance of
endogenous viral elements to the biological
function and evolution of hosts.

DIVERSITY OF VIRUSES: DISCOVERY
OF NOVEL VIRUSES IN NATURE

The first virus to be identified in humans was the
yellow fever virus in 1901 after the discovery of
tobacco mosaic virus in 1892 in plants and foot-
and-mouth disease virus in 1898 in animals.42

Since then, new virus species that infect humans
have been identified almost every year.
Woolhouse et al.43 reviewed human viruses that
had been described in the literature and
recognised by the International Committee on
Taxonomy of Viruses (ICTV), and drew a discovery
curve for human viruses by plotting the
cumulative number of species reported to infect
humans; they showed that new species of human
viruses have been discovered at a rate of three or
four per year. Currently, there are approximately
263 viruses from 25 viral families that are known
to be able to infect humans according to the
latest ICTV report.44

In the last a few decades, emerging infectious
diseases caused by newly identified viruses, such as
Ebola virus,5–8 SARS and MERS coronaviruses,10–12

human immunodeficiency virus (HIV),9 Nipah virus
and Hendra virus,45–48 have appeared in human
society. Most emerging infectious diseases are
zoonotic, caused by viruses that originate in wild
animals, such as primates, rodents and bats49–51; in
particular, bats have drawn attention because a
recent comprehensive analysis of mammalian host–
virus relationships indicated that bats have a
significantly higher proportion of zoonotic viruses
than all other mammalian orders.52 This analysis was
part of a study supported by the United States
Agency for International Development (USAID)
Emerging Pandemic Threats PREDICT programme
(https://ohi.vetmed.ucdavis.edu/programs-projects/
predict-project), which was initiated in 2009,
working with partners in over 30 countries on
global surveillance of viruses to identify and
monitor zoonotic pathogens. To date, the PREDICT
programme has found over 1100 viruses in animals
and humans, including a new Ebola virus and MERS-
and SARS-like coronaviruses. In 2018, the Global
Virome Project (http://www.globalviromeproject.
org) was launched, which aims to conduct viral
surveillance on an even larger scale than the
PREDICT programme. Those involved in this project
estimate that ~1.67 million yet-to-be-discovered
viral species from key zoonotic viral families exist in
mammal and avian hosts, and expect that 631 000–
827 000 of these unknown viruses have zoonotic
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potential.44 In addition to viral surveillance in
mammals and avian hosts, Zhang and Holmes’s
group recently conducted a screen for RNA viruses
in diverse host species (more than 186 species other
than mammalian and avian hosts) and identified
about 200 vertebrate-associated RNA viruses in
fishes, reptiles and amphibians.53 They also found
that vertebrate-specific viral families or genera
known to infect mammals and birds, including
influenza viruses, filoviruses and hantaviruses, are
also present in amphibians, reptiles and fish.53

In addition to the identification of new virus
species in diverse hosts, new virus lifestyles have
also been found in nature. Suzuki’s group, which
is one of the groups in our Neo-virology research
consortium, recently reported a new virus lifestyle
exhibited by two RNA viruses: a double-stranded
(ds) RNA virus (yado-nushi virus 1, YnV1) and a
positive-sense, single-stranded [(+)ss] RNA virus
(yado-kari virus 1, YkV1) in a phytopathogenic
fungus, Rosellinia necatrix.54 They found that the
(+)ssRNA virus (YkV1), which does not have its
own capsid protein, hijacks the capsid protein of
the dsRNA virus (YnV1) to replicate.55

CONCLUSION

Our world is made up of vastly different physical
environments and the various organisms that have
adapted to live in those environments. The
complex interactions between the living and non-
living components of these environments are the
basis of the global ecosystem. Various schemes
have been proposed to classify living organisms:
the one most often used currently defines all
living organisms as archaea, bacteria or
eukaryotes. Therefore, viruses are not considered
living components of the global ecosystem. Given
that approximately 1031 virus particles exist on
Earth56,57 and all of them are parasitic in living
organisms, it is not hard to imagine how virus
infection might affect the physiological functions
of both hosts and the ecosystem. Although
‘traditional’ virology research tends to focus on
pathogenic viruses that cause diseases in their
hosts, the recent progress in next-generation
sequencing (NGS) technologies and data analyses
has enabled us to discover a wide variety of new
viruses, some of which do not cause diseases in
their hosts. Some obstacles to comprehensive
virome analyses remain, such as viral dark matter,
which are sequences that originate during virus
metagenomics but cannot be aligned to any

reference sequences of viruses.58 Nonetheless,
recent viral metagenomic studies using NGS
technologies and bioinformatic analyses have
identified a large number of viruses in
environmental samples, including plants and
oceans.59,60 Characterisation of these newly
identified viruses may provide new insight into
the significance of viruses and virus-mediated
processes within global ecosystems.
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