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Abstract

Pneumococcal meningitis (PM) causes damage to the hippocampus, a brain structure criti-

cally involved in learning and memory. Hippocampal injury–which compromises neurofunc-

tional outcome–occurs as apoptosis of progenitor cells and immature neurons of the

hippocampal dentate granule cell layer thereby impairing the regenerative capacity of the

hippocampal stem cell niche. Repetitive transcranial magnetic stimulation (rTMS) harbours

the potential to modulate the proliferative activity of this neuronal stem cell niche. In this

study, specific rTMS protocols–namely continuous and intermittent theta burst stimulation

(cTBS and iTBS)–were applied on infant rats microbiologically cured from PM by five days

of antibiotic treatment. Following two days of exposure to TBS, differential gene expression

was analysed by whole transcriptome analysis using RNAseq. cTBS provoked a prominent

effect in inducing differential gene expression in the cortex and the hippocampus, whereas

iTBS only affect gene expression in the cortex. TBS induced polarisation of microglia and

astrocytes towards an inflammatory phenotype, while reducing neurogenesis, neuroplastic-

ity and regeneration. cTBS was further found to induce the release of pro-inflammatory cyto-

kines in vitro. We conclude that cTBS intensified neuroinflammation after PM, which

translated into increased release of pro-inflammatory mediators thereby inhibiting

neuroregeneration.

Introduction

During pneumococcal meningitis (PM), bacterial proliferation and autolysis in the cerebrospi-

nal fluid (CSF) causes an excessive inflammatory reaction, which is associated with blood

brain-barrier (BBB) breakdown, increased intracranial pressure, hydrocephalus and cerebral

ischemia [1]. In patients with PM, cerebrovascular complication are frequently observed [2],

with vasculitis and vasospasms being the cause for cerebral infarction and subsequent cortical

damage during meningitis [1–3]. The occurrence of hippocampal apoptosis in the subgranular
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zone of the dentate gyrus is a further hallmark of PM-induced neuronal damage [4–7]. Hippo-

campal apoptosis during PM occurs in recently postmitotic immature neurons in the dentate

gyrus [7], thereby directly affecting the hippocampal stem cell niche and decreasing its capacity

to regenerate [8]. Consequently, human observational studies repeatedly found long-term neu-

rological sequelae after PM including sensorineural hearing loss, sensorimotor deficits, cogni-

tive impairments and behavioural problems in up to 50% of survivors [2, 9, 10].

PM was shown to reduce hippocampal volume and decrease the amount of dentate granule

cells [11]. Increasing damage of the hippocampus and its stem cell niche during PM has been

experimentally shown to be associated with learning and memory deficits [12–14]. A transient

increase in neuroproliferation has been observed after PM, but did not result in a net increase

in dentate granule neurons, indicating that endogenous neurogenesis cannot compensate for

hippocampal damage occurring during acute infection [11]. As PM-induced hippocampal

apoptosis occurs in a region capable of endogenous neural self-renewal and repair, therapeutic

strategies to support endogenous neuroregeneration after PM-induced brain injury represent

a possible approach to improve the outcome of PM. In contrast to the relatively limited thera-

peutic window for effective prevention of brain injury during excessive PM-induced neuroin-

flammation, the potential to induce neuroregeneration by chronically applied substances

might allow more time for therapeutic interventions [15]. Notably, dexamethasone–the only

clinically recommended adjunctive therapy for PM–was repeatedly shown in experimental

models to not only aggravate hippocampal apoptosis during acute infection [12, 16], but also

decrease the neuroregenerative capacity of hippocampal stem cells in vitro and in vivo [17],

thereby eventually causing a worse outcome in neurofunctional tests [12].

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive technique to induce

local electric currents in the brain using the principle of electromagnetic induction [18]. Cur-

rently, rTMS is applied to treat many different neurological disease including addiction, stroke

and depression [19–21], but its molecular effects remain elusive [21]. Recent experimental

studies focusing on the molecular and cellular effects of rTMS found evidence for increased

hippocampal neurogenesis and neuroplasticity upon stimulation [22–27]. This was associated

with increased levels of brain-derived neurotrophic factor (BDNF) and increased activation of

its receptor TrkB [22, 28], which may account for its beneficial effects as an anti-depressive

therapy [26, 28]. Intermittent or continuous theta burst stimulation (iTBS or cTBS) represent

specific and very potent rTMS protocols during which stimulations are applied as bursts of

3–5 pulses at 30–100 Hz repeated at 5 Hz, with iTBS lowering cortical excitability and cTBS

enhancing it [29]. In experimental stroke, iTBS and cTBS were shown to upregulate the

expression of genes involved in neuroplasticity, neuroprotection and cellular repair, eventually

improving functional outcome [23]. As PM is associated with a decrease in hippocampal vol-

ume, a loss of dentate granule cells [11] and reduced neuroregenerative capacity [8], applica-

tion of TBS may be used to induce neuroregeneration and to compensate for neural loss

during PM, eventually improving the outcome after PM.

Methods

Infecting organism

A clinical isolate of Streptococcus pneumoniae (serotype 3) from a patient with bacterial menin-

gitis was cultured overnight in brain heart infusion (BHI) medium, diluted 10-fold in fresh, pre-

warmed BHI medium and grown for 5 h to reach the logarithmic phase. The bacteria were cen-

trifuged for 10 min at 3100 x g at 4˚C, washed twice, resuspended in saline (NaCl 0.85%) and

further diluted in saline to the desired optical density (OD570nm). The inoculum concentration

was determined by serial dilution and culturing on Colombia sheep blood agar (CSBA) plates.
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Infant rat model of pneumococcal meningitis and TBS protocols

All animal studies were approved by the Animal Care and Experimentation Committee of the

Canton of Bern, Switzerland (license no. BE 129/14). A well-established infant rat model of

pneumococcal meningitis was used for this study [30, 31]. Eleven-day old male Wistar rat

pups and their dam were purchased from Charles Rivers (Sulzfeld, Germany). The dam was

provided with tap water and pellet diet at libitum. Litter was kept in a room at a controlled

temperature of 22 ± 2˚C and with natural light.

Infant rats were infected by intracisternal injection of 10 μl bacterial inoculum containing

4.2 x 105 CFU/ml of living S. pneumoniae. Meningitis was confirmed by quantitative analysis

of bacterial titres in the cerebrospinal fluid (CSF) at 18 h post infection (hpi), where 5 μl of

CSF were collected by puncture of the cisterna magna, followed by serial dilution and cultiva-

tion on CSBA plates. A total of 12 infant rats were included in this study. All animals received

antibiotic therapy consisting of ceftriaxone (100mg/kg, i.p. twice daily, Rocephin, Roche)

started at 18 hpi and continued for 5 days. Animals were weighted and clinically scored

according to the following scoring scheme (1 = coma, 2 = does not turn upright, 3 = turns

upright in > 5 s, 4 = turns upright in< 5s, 5 = normal) at 0, 18, 24 and at 42 hpi. Five days

after infection–when the acute phase of infection with associated neuroinflammation is over-

come and animals start to recover from pneumococcal meningitis–animals were randomized

to receive continuous theta burst stimulation (cTBS, n = 4; three 30 Hz pulses repeated at

intervals of 100 ms for 200 times), intermittent theta burst stimulation (iTBS, n = 4, ten 50 Hz

bursts with 3 pulses each repeated 20 times at 5 Hz intervals) or sham stimulation (sham,

n = 4) on two consecutive days with four stimulations à 600 pulses per day (0min, 15min,

60min, 75min), resulting in a total of 4800 pulses. TBS was applied using a Cool-40 rat coil

(MagVenture, Denmark) with 16% output intensity, representing 90% stimulation intensity of

the previously assessed motor threshold of 18%. During stimulation protocols, animals were

un-anesthetized but restrained in a commercially available conic plastic bag, with the nose out-

side the bag to allow breathing. To reduce stress related to restraining, animals were familiar-

ized with the bag and the restraining for two days before stimulation. Twenty-four hours after

the last stimulation, animals were sacrificed with an overdose of pentobarbital (150 mg/kg, i.p.,

Esconarkon, Streuli Pharma AG, Switzerland) and perfused with phosphate-buffered saline

(PBS). Cortical and hippocampal tissue from the left hemisphere was harvested, frozen imme-

diately on dry ice and kept at -80˚C for RNA isolation. The right hemisphere was fixed in 4%

PFA for 4 h and stored in PBS at 4˚C for embedding in paraffin.

RNA isolation

RNA isolation was performed as previously described [32, 33]. In brief, frozen tissue (hippo-

campus or cortex) from the left hemisphere were put into 1 ml QIAzol Lysis reagent (Qiagen,

Hilden, Germany) and immediately homogenized by a rotor-stator homogenizer (TissueRup-

tor, Qiagen, Hilden Germany). RNA was isolated using the RNeasy Lipid Tissue Mini Kit

(Qiagen), following the manufacturers protocol. To remove contaminating DNA, 20 μl iso-

lated RNA was treated with DNase using the DNA-free Kit (Ambion, Carlsbad, CA, USA).

RNA quality and quantity were determined on the Agilent 2100 Bioanalyzer platform (RNA

6000 Nano, Agilent Technologies, Waldbronn, Germany) and validated on the NanoDrop

device (NanoDrop, Wilmington, USA).

Whole transcriptome analysis and RNAseq

Sequencing data were generated by the NGS Platform of the University of Bern. Differential

gene expression analysis was performed by the Interfaculty Bioinformatics Unit (IBU) of the
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University of Bern. Samples were sequences with Illumina (TruSeq1 Stranded mRNA Library

Prep, single reads of 100bp length, Illumina1, San Diego, USA). Between 26 and 48 million

reads were obtained per sample. The quality of the RNA-seq data was assessed using fastqc v.

0.11.5 [34]. Reads were mapped to the reference genome (Rnorvegicus.6.0) using HiSat2 v.

2.1.0 [35]. FeatureCounts v. 1.6.0 was used to count the number of reads overlapping with

each gene as specified in the genome annotation (Rnor_6.0.92) [36]. The Bioconductor pack-

age DESeq2 v. 1.18.1 was used to test for differential gene expression between the experimental

groups [37]. All analyses were run in R v. 3.4.4. Gene set enrichment analysis was performed

with differentially expressed genes comparing TBS stimulated and sham-treated animals using

Gene Ontology enRIchment anaLysis and visuaLizAtion tool (GOrilla). Genes with a Benja-

mini-Hochberg adjusted p-value < 0.1 (representing raw p-values < ~0.005) were included in

the analysis for differentially regulated gene ontologies.

Raw data has been deposited at the European Nucleotide Archive ENA (accession number

PRJEB37769).

Immunofluorescence analysis quantifying CD68+ cells in the cortex and

hippocampal dentate gyrus

Right brain hemispheres embedded in paraffin were cut to 10 μm sections using a microtome

(Microm, Germany). Every 18th section was sampled on Superfrost Plus Menzel glass slides

and air dried. Sections were deparaffinized and submitted to antigen retrieval by incubating

the slides in sodium citrate (Merck KGaA) 10mM pH 6.0 for 1 h in a 95˚C water bath. Sections

were permeabilized for 5 min with 0.1% Triton-X, followed by blocking with blocking solution

(PBS with 2% BSA and 0.01% Triton-X) for 1 h at room temperature (RT). The primary anti-

bodies against CD68 (1:500, mouse-anti-rat, Bio-Rad/Serotec, MCA341R) and Iba1 (1:500,

rabbit polyclonal, FUJIFILM Wako Chemicals, WA3 019–19741) were diluted in blocking

solution, added to the slides and incubated overnight at 4˚C. The slides were washed 3 x 5 min

with PBS and the secondary antibodies–donkey-anti-mouse Cy3 (1:500, Jackson ImmunoRe-

search, 715-165-151) and goat-anti-rabbit Alexa Fluor 488 (1:500, Thermo Fisher Scientific,

A11034)–were added for 2 h at RT. After washing the sections 3 x 5 min in PBS, they were

mounted with Fluoroshield containing DAPI and kept at 4˚C in dark until imaging. CD68+

region of the cortex and the hippocampal dentate gyrus were quantified using a x200 magnifi-

cation on fluorescent microscope. The first 3 sampled sections containing the dentate gyrus

with the upper and lower blades connected–when cutting coronal sections from anterior to

posterior–were quantified. Mosaic pictures of each dentate gyrus were created with Zeiss Axio-

Vision software using individual pictures taken at x200 magnification. Cortical regions focus-

ing on a 3x3 mosaic (x200 magnification) dorsal to the assessed dentate gyrus were

systematically assigned for evaluation. Areas of cortical and hippocampal tissue was evaluated

using ImageJ software. Number of CD68+ cells were calculated and evaluated as number of

CD68+ cells per mm2 cortex or dentate gyrus granule cell layer.

In vitro astroglial cells stimulation and cytokine release

Astroglial cells were isolated from the brains of infant Wistar rats at postnatal day 3 (P3)

received from the Central Animal Facility of the Department for BioMedical Research of the

University of Bern–as previously described [38, 39]. The rats were sacrificed by decapitation

and brains were isolated. The cortices were homogenized mechanically in PBS by pipetting up

and down with a 5mL plastic pipette, centrifuged (500 x g, 7 min, 4˚C) and resuspended in

DMEM (Sigma-Aldrich, Merck, Switzerland) containing 5% FCS (Biochrom, Germany), Glu-

taMAXTM (ThermoFisher, Switzerland) and antibiotic-antimycotic solution (ThermoFisher,
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Switzerland). After resuspension, cells were plated in T75 flask (TPP1, Merck, Switzerland)

previously coated with poly-L-ornithine (PLO, 0.01 mg/ml in PBS, Sigma-Aldrich, Merck,

Switzerland) for 4 h. On day 11 post isolation, cells were seeded on PLO-coated 24 well plates,

at a density of 200’000 cells/well. Astroglial cells were stimulated with 4x cTBS or sham-stimu-

lation on two consecutive days, representing the same stimulation procedure as in vivo. Cyto-

kine release was assessed using magnetic multiplex assay (Rat Magnetic Luminex1 Assay, Rat

Premixed Multi-Analyte Kit, R&D Systems, Bio-Techne, R&D Systems Inc., USA) on a Bio-

Plex 200 station (Bio-Rad Laboratories, Germany) as described previously [39–41], where

50 μl of undiluted cell culture medium was used. For each sample, a minimum of 50 beads was

measured.

Statistical analysis

Statistics used to assess differential gene expression are mentioned above. R scripts used to

assess differential gene expression are deposited as (S1 File). Statistical analyses for assessing

differences in bacterial titres, weight change during acute PM, CD68+ cell quantification and

in vitro cytokine analysis were performed with GraphPad Prism (Prism 7; GraphPad Software

Inc., San Diego, USA). Results are presented as mean values ± standard deviation (SD) if not

stated otherwise. To compare differences between means of two normally distributed groups,

an unpaired Student t test was used. A two-way ANOVA was performed to analyse differences

of weight change over time. For CD68+ cell quantification and bacterial titre evaluation com-

paring multiple different groups, a Tukey’s multiple comparison test was applied to adjust for

multiple testing. A p value of< 0.05 was considered statistically significant with with p<0.05

(�) and p<0.01 (��).

Results

All 12 infant rats enrolled in the in vivo study developed pneumococcal meningitis after intra-

cisternal injection of S. pneumoniae proven by bacterial growth in CSF samples obtained at 18

hpi (>107 CFU/ml), reduced clinical scores and weight loss. Bacterial CSF titres were compa-

rable between the three different groups (S1 Fig panel A). After infection, no statistically signif-

icant difference between sham and iTBS (2-way ANOVA F = 0.2059 and p = 0.6524 with

degree of freedom (df) = 1; interaction of main factors p = 0.9866) or sham and cTBS (2-way

ANOVA F = 0.0004 and p = 0.9847 with df = 1; interaction of main factors p = 0.9999) in

terms of weight development was detectable (S1 Fig panel B). Together, these data indicate

that animals at time of exposure to TBS had experienced PM with a comparable degree of

severity.

Changes in gene expression upon TBS

Cortical and hippocampal whole transcriptome analysis after recovery from pneumococcal

meningitis followed by two consecutive days of TBS revealed significant differences between

cortical and hippocampal tissues with comparably less distinction between the different TBS

protocols as revealed by principle component analysis (PCA, Fig 1).

Nevertheless, cTBS induced differential gene expression in 1308 genes in cortical tissue and

495 genes in hippocampal tissue compared to sham stimulation while iTBS only affected the

expression of 69 genes in the cortex and did not induce any significant gene expression

changes in the hippocampus. PCA of the 500 most variable genes, however, revealed no clear

clustering of cTBS treated infant rats for cortical tissue. In hippocampal samples, PCA showed

a clustering of cTBS treated animals distinctive from iTBS and sham-treated animals (Fig 2).
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Gene ontology (GO) analysis shed insight into differentially expressed biological processes

upon TBS. In the cortex and compared to sham-stimulated animals, cTBS caused an upregula-

tion of genes involved in 1.) metabolic processes with upregulated translation, amide biosyn-

thesis and RNA processing; and 2.) response to stimuli with upregulated immune system

processes, defence response and positive regulation of TNF-α response (S2 Fig). On the other

side, cTBS downregulated gene expression related to 1.) regulation of central nervous system

development with downregulated neurogenesis, axonogenesis and neuron projection

Fig 1. Principal component analysis (PCA) including the 500 most differentially expressed genes comparing cortical and hippocampal tissue and different TBS

protocols. Two dimensional PCA plot revealed that the two different tissues (hippocampus in purple-blues and cortex in green-orange-red) account for the greatest

variance within the samples, whereas the within-tissue difference by TBS protocols was comparably low.

https://doi.org/10.1371/journal.pone.0232863.g001

Fig 2. Differential gene expression in TBS-treated animals compared to sham-treated animals in cortical and hippocampal tissue depicted in volcano plots and

summarised in two dimensional PCA plots. cTBS clearly induced differential up- and downregulation of cortical genes (A), an effect less pronounced in the

hippocampus (B). iTBS only marginally affected cortical gene expression (C) and did not induce any differential expression of hippocampal genes (D). Two dimensional

PCA plots according to the 500 most differential expressed gene did not reveal a clear clustering in cortical samples (E) but shows a cluster of cTBS-treated animals

different from sham- or iTBS-treated animals in hippocampal samples (F). Purple dots in volcano plots represent differentially expressed genes with p-values<0.5 after

Bejamini-Hochberg adjustment for multiple testing.

https://doi.org/10.1371/journal.pone.0232863.g002
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morphogenesis; 2.) regulation of signalling with downregulated modulation of chemical syn-

aptic transmission and downregulated regulation of excitatory postsynaptic potentials; 3.) reg-

ulation of transport with downregulated ion transmembrane transport; and 4.) nervous system

processes with downregulated learning, memory and cognition (S3 Fig).

Similarly, in the hippocampus and compared to mock-stimulated animals, cTBS induced an

upregulation of 1.) metabolic processes with increased translation and ribosomal subunit

assembly; and 2.) response to stimuli with increased cellular response to hydrogen peroxide (S4

Fig). Negatively regulated biological processes in the hippocampus after cTBS involed 1.) nega-

tive regulators of transcription and translation; 2.) cellular response to brain-derived neuro-

trophic factor (BDNF); 3.) regulation of transforming growth factor beta receptor signalling

pathway; and 4.) cellular development processes with decreased neuron differentiation (S5 Fig).

Notably, as less genes were differentially regulated in the hippocampus compared to the

cortex, the p-value for differentially regulated GO after adjustment for multiple testing by the

Benjamini and Hochberg method, were higher with less GO reaching statistical significance.

The 60 downregulated cortical genes after iTBS compared to mock-stimulated animals

were involved in 1.) regulation of trans-synaptic signalling with downregulated synaptic plas-

ticity; 2.) nervous system processes with downregulated cognition, learning and memory; 3.)

cell communication with downregulated chemical synaptic transmission and downmodulated

neurotransmitter transport; and 4.) regulation of developmental processes with downregulated

nervous system development, synapse maturation, neuron projection development and den-

dritic spine development.

Of note, as only 60 genes were differentially downmodulated by iTBS, GOs representing

regulation of developmental processes were not statistically significant after adjustment for

multiple testing. As 3 of the 9 upregulated genes in the cortex upon iTBS are involved in trans-

lation, GOs representing peptide biosynthetic processes and translation were upregulated but

without statistical significance after adjustment for multiple testing. Since iTBS did not induce

any differential gene expression in the hippocampus, no GOs could be analysed. Tables includ-

ing a complete list of down- and upregulated GO, are found in the appendix (S1–S6 Tables).

Upregulation of glia markers

Focussed analysis on differentially expressed glial marker revealed a significant upregulation

of typical microglial activation markers upon cTBS compared to sham-stimulation (Table 1).

Considering raw p-values of differentially expressed gene, the classical microglia activation

marker Iba1, Cd14, Cd45, Cd68, Cd86 and F4/80 were found to be upregulated. In addition,

markers for immune response such as toll-like receptors (Tlr2, -3, -4 and -7), complement

components (C1qa) and cytokine receptors (Il-1r1) were upregulated. Markers of astrocyte

activation, namely Gfap, S100b and S100a4 were significantly upregulated or showed trends

towards increased expression. After adjusting for multiple testing, Iba1, Tlr7, C1qa, Cd84 and

S100a4 kept statistical significance for increased expression after cTBS. On the other hand, a

marker associated with alternative (M2) microglial activation (CD163) showed a trend for

decreased expression, and other specific M2 markers (Arg1, Cd206, Ym1, Fizz1) were not dif-

ferentially expressed. Suppressor of cytokine signalling 7 (Socs7) was downregulated, but with-

out statistical significance after adjustment for multiple testing.

In general, the changes in expression levels remained relatively small comparing the differ-

ent stimulation protocols (max. log2 fold change range from -0.6 to +0.5). However, the whole

cortical or hippocampal tissue was analysed here. The signal due to genes specifically expressed

by a given cell population (i.e. microglia) may have therefore been decisively diluted.
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cTBS increases abundance of CD68+ cells in cerebral cortex and

hippocampal dentate gyrus

Immunofluorescence analysis of CD68+ cells in the cortex and hippocampal dentate gyrus

revealed that cTBS–but not iTBS–increased the abundance of CD68+ cells in both assessed tis-

sues (Fig 3). After adjustment for multiple testing, exposure to cTBS on two consecutive days

resulted in a significant higher number of CD68+ cells in the cortex compared to iTBS (76.61

vs. 13.79 cells/mm2 tissue, p = 0.0299) and compared to sham stimulation (76.61 vs. 13.68

cells/mm2 tissue, p = 0.0205, Fig 3D). In the granular cell layer of the hippocampal dentate

gyrus, cTBS increased the abundance of CD68+ cells compared to iTBS (134.6 vs. 63.02 cells/

mm2 tissue, p = 0.0165) and compared to sham stimulation (134.6 vs. 33.39 cells/mm2 tissue,

p = 0.0014, Fig 3C).

Astroglial cell activation in vitro
Neonatal rat astroglial cells–containing astrocytes, microglia and oligodendrocytes–kept in cul-

ture for two weeks after isolation were exposed to 4 trains of cTBS or sham-stimulation on two

consecutive days. Stimulation with cTBS only marginally affected the release of inflammatory

cytokines in the cell culture supernatant (S6 Fig). Nevertheless, cTBS significantly increased the

release of IL-1β (p = 0.0163), IL-10 (p = 0.0327) and TNF-α (p = 0.0119) compared to sham-

stimulation. cTBS also increased levels of IL-6, but only with a statistical trend (p = 0.1036).

Table 1. Differential regulation of cortical genes involved in microglia and astrocyte activation upon cTBS com-

pared to sham-stimulation.

Gene Log2 fold change Raw p-value Adjusted p-value

Iba1 0.346 0.00012 0.00853

Cd68 0.358 0.00008 n/a

Cd14 0.252 0.00565 n/a

Ptprc (CD45) 0,272 0.00863 0.08576

Adgre1 (F4/80) 0,295 0.00469 0.06291

Tlr2 0.276 0.00302 0.05001

Tlr3 0,299 0.00405 0.05962

Tlr4 0.220 0.03398 n/a

Tlr7 0,317 0.00121 0.03053

C1qa 0,320 0.00199 0.04056

Il1r1 0.189 0.03875 0.19240

Cd84 0.361 0.00050 0.01810

Cd86 0.202 0.03679 n/a

Cd163 -0.179 0.05255 n/a

Socs7 -0.246 0.00737 0.07917

Gfap 0.178 0.06044 0.24493

S100b 0.206 0.00849 0.08497

S100a4 0.434 0.00003 0.00445

Many genes generally associated with microglial activation (Iba1, Cd68, Cd14, CD45, F4/80) were upregulated after

cTBS with low p-values (p<0.01). Genes associated with anti-inflammatory effects of microglia (Cd163, Socs7)

showed trends for negative regulation. Genes classically linked to astrocyte activation (Gfap, S100b, S100a4) were

either upregulated or showed trends for increased expression. Adjusted p-values with the value “n/a” may arise after

automatic independent filtering for low mean normalised counts during differential gene expression analysis with

DESeq2.

https://doi.org/10.1371/journal.pone.0232863.t001
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Discussion

In the present study, we studied the impact of TBS in infant rats microbiologically cured from

PM after five days of antibiotic therapy. To ensure that magnetic stimulation does not interfere

with neuroinflammatory processes during acute infection, stimulation was initiated at day five

after infection. Previous studies revealed that at this time animals successfully survived PM

and start to recover with neuroinflammatory markers and clinical scores being back at baseline

and animals starting to gain weight again [38, 39, 41–44]. Our data suggest that, at the level of

gene expression, TBS inhibited processes related to cortical and hippocampal neurogenesis,

neurodifferentiation and neuroplasticity assessed 24 hours after the last stimulation trains.

This effect was stronger after the cTBS protocol and more prominently affected gene expres-

sion in the cortex than in the hippocampus, where cTBS induced a downregulation of neuro-

genesis processes, synaptic transmission and plasticity as well as processes involved in

cognition, learning and memory. Stimulation with the iTBS induced a less pronounced effect

which was only detectable in the cortex. iTBS repressed gene expression pathways related to

neuroplasticity and cognition, learning and memory. Both stimulation protocols induced an

upregulation of translational processes, while cTBS specifically upregulated processes partici-

pating in immune system regulation and defence response. As both TBS protocols showed

higher numbers of differentially expressed genes in the cortex compared to the hippocampus,

we propose that the strength of magnetic fields might be attenuated in deeper structures, thus

inducing a less pronounced effect in the hippocampus.

The upregulation of inflammatory gene ontologies suggested an involvement of microglia

and astrocyte activation. Focussed analysis revealed that markers of pro-inflammatory micro-

glia (M1 phenotype) [45–47] (Iba1, Cd14, Cd45, Cd68, Cd84, F4/80, Tlr2, -4, -7, Il1r1 and

Cd86) were upregulated, whereas markers for the microglial M2 phenotype (Cd163, Arg1,

Cd206, Ym1 and Fizz1) showed a trend for downregulation or were not affected in cTBS

Fig 3. cTBS increases abundance of CD68+ cells in cerebral cortex and hippocampal dentate gyrus. Exposure to cTBS–but not to iTBS–increased the number of

CD68+ cells in the granular cell layer of the hippocampal dentate gyrus (DG) compared to sham-stimulated and iTBS-stimulated animals (A,C). Similarly, cTBS

increased the abundance of CD68+ cells in the cerebral cortex (B,D). Statistical differences were assessed using one-way ANOVA with Tukey’s multiple comparison test

to adjust for multiple testing.

https://doi.org/10.1371/journal.pone.0232863.g003
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treated cortices compared to mock-stimulation. Gene expression in the hippocampus was less

prominently altered. Nevertheless, Iba1, Tlr2 and Cd68 were also significantly upregulated in

the hippocampus after cTBS, pointing towards a classical M1 polarisation of microglia. On the

other hand, M2 markers in the hippocampus were unaffected. Immunofluorescence analysis

validated findings from gene expression data. Quantification of CD68+ signals–a marker for

microglial activation with phagocytic activity [48, 49]–revealed an increased abundance of

activated microglia in the cerebral cortex and the subgranular cell layer in the hippocampal

dentate gyrus (Fig 3A–3C). The universal astrocyte marker Gfap and S100b showed a trend to

be upregulated in cortices of cTBS stimulated rats, without reaching statistical significance.

S100a4, which is associated with astrocyte migration and astrocyte activation upon neuronal

damage [50, 51], was significantly upregulated.

Together these data indicate a M1 polarisation of microglia and an activation of astrocytes

upon TBS after PM. This is in line with previous studies, where rTMS was shown to induce

glia cell activation (reviewed by Cullen and Young, 2016 [52]). Magnetic stimulation of cul-

tured astrocytes was shown to transiently increase protein levels GFAP [53]. High-frequency

rTMS dramatically increased Gfap mRNA levels in the hippocampus and cortex in healthy

mice [54]. In a rat model of demyelinating spinal cord injury, rTMS increased Gfap expression

with increasing magnetic stimulation frequency [55], and increased astrocyte migration to

lesion area [55, 56]. Furthermore, rTMS is reported to induce a upregulation of GFAP and

IBA1 immunoreactivity in a gerbil model of ischemia, when magnetic stimulation was initi-

ated immediately after ischemic injury [57]. This model of experimental ischemia in gerbils

with early TMS treatment [57] resembles our pneumococcal meningitis model characterized

by an intense neuroinflammation upon infection and focal ischemia. We found increased Iba1
and Gfap (without reaching statistical significance after adjustment for multiple testing)

expression levels pointing toward increased glia activation after exposure to cTBS. Based on

whole tissue transcriptomic analysis, our data cannot discriminate between activated microglia

and recruited macrophages/monocytes. However, as cTBS treatment was started five days

after infection–when peripheral inflammatory cells should have been cleared from the CNS

and inflammatory mediators are reported to be reduced to baseline [58]–we suggest that

increased immune response markers and M1 polarisation markers derive from activated

microglia and not from recruited macrophages. Generally, the effect of rTMS on astrocytes

and microglia is reported to be context-dependent and therefore relies on the cellular environ-

ment [52]. This may explain our in vitro data showing rather small effects of rTMS on non-

activated, healthy astroglial cell cultures, as reported for healthy animals [59]. Yet another

explanation for increased neuroinflammation in vivo might arise from rTMS-induced changes

in BBB permeability. High-intensity magnetic stimulation harbours the potential to increase

BBB permeability most likely via increased release of glutamate [60]. Increased brain endothe-

lial permeability to serum proteins was found to be associated with neuroinflammatory mark-

ers such as astrocyte transformation showing increased GFAP levels [61–64]. Changes in BBB

permeability upon TBS and direct activation of glial cells might both contribute to the

observed neuroinflammatory reaction upon magnetic stimulation. More experiments are

needed to confirm these hypotheses.

Our observed data from an experimental model of pneumococcal meningitis suggest that

glial activation during neuroinflammation is further intensified by TBS protocols leading to

increased expression of astrocyte and microglia M1 markers, thereby aggravating or prolonging

neuroinflammation with a negative impact on neuroregenerative mechanisms. This is in con-

trast to recent studies, where rTMS was associated with increased levels of BDNF and activation

of its receptor TrkB [22–28] and increased hippocampal neurogenesis and neuroplasticity,

resulting in beneficial effects during anti-depressive therapy [26, 28]. In an experimental stroke
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model, iTBS and cTBS were neuroprotective and increased neuroplasticity and cellular repair,

eventually leading to improved functional outcome [23]. There are, however, crucial differences

between our study setting and previously reported studies reporting increased neurogenesis.

We applied a comparably short stimulation protocol with four stimulation trains per day on 2

consecutive days, which represents a setup that showed beneficial effect in treatment of human

neglect patients after stroke [65–67]. This is in contrast to stimulation for up to 60 days in stud-

ies with reported positive effect on neurogenesis [23, 68, 69]. In addition, we isolated brain tis-

sues 24 hours after the last stimulation train to assess short-term effects of TBS, compared to

some studies with significant longer poststimulation assessment [56]. Timing and duration of

the stimulation protocol is critical and may reverse an improved outcome with increased neuro-

genesis to reduced neuroregenerative capacity. Furthermonre, studies reporting increased neu-

rogenesis with increased neural stem cell progenitor proliferation, were often performed in

healthy rodent models in the absence of neuroinflammation [25, 26, 70]. Additionally, induced

neuroregeneration upon rTMS therapy was mostly found in adult rodent models [23, 25, 70].

These results might therefore differ from our infant model, where the rate of endogenous neu-

rogenesis is already considerably high [11]. In line with our findings, rTMS treatment did not

reverse the suppressed proliferation and survival of newly generated hippocampal granule cells

observed in rats submitted to chronic psychosocial stress induced by social defeat but even fur-

ther suppressed the survival rate of hippocampal neural stem cells [71].

Activated microglia were repeatedly reported to inhibit neurogenesis. In experimental

pneumococcal meningitis, M1-polarised microglia (expressing inducible nitric oxide synthase,

iNOS) were prominently found in the neurogenic niche of the hippocampal [11]. Treatment

with a specific iNOS inhibitor restored neurogenesis, demonstrating the link between activated

microglia, secreted nitric oxide and reduced neurogenesis [11]. In experimental LPS-induced

neuroinflammation in rats, a negative correlation between activated microglia and the number

of surviving hippocampal progenitor cells was found, indicating that activated microglia

strongly impair hippocampal neurogenesis [72, 73]. In this model, selective microglia inhibi-

tion by minocycline was shown to restore neurogenesis [72]. Inflammatory mediators like IL-

1β, TNF-α, IL-6 and nitric oxide are reported to be responsible for the negative effects of acti-

vated microglia on newly generated neurons [72]. Based on the results generated within the

present study, where we found increased microglia and astrocyte activation and reduced neu-

rogenesis and neuroplasticity upon TBS therapy, we suggest that neuroinflammation after PM

is further intensified by TBS (especially cTBS), leading to increased release of microglial

inflammatory mediators with deleterious effects on newly proliferated neurons, eventually

reducing neurogenesis and neuroregeneration.

Our study has some limitations, including small numbers of animals in the in vivo experi-

ments and the lack of an uninfected control group receiving the same stimulation procedures.

As we were primarily interested in investigating the effects of TBS after PM and did not intent

to focus on differences in gene expression between infected and non-infected animals, this

control group was omitted. The effect of TBS on differential gene expression in healthy ani-

mals would represent another story. Furthermore, it would have been interesting to also ana-

lyse the effect of long-term TBS exposure on neurogenesis and neuroinflammation. However,

this would have been beyond the scope of this study focussed on differential gene expression

induced by TBS after acute PM.

Conclusion

In the recovery phase of PM (i.e. 5 days after infection), cTBS stimulation for two consecutive

days induced microglial M1-polarisation and astrocyte activation in the cortex and
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hippocampus of infant rats. TBS induced a downregulation of genes related to neurogenesis,

neuroplasticity and nervous system processes associated with cognition, learning and memory,

most likely as a consequence of accentuated neuroinflammation. We conclude that TBS–espe-

cially cTBS–after PM is detrimental for the disease outcome as it increases neuroinflammation

and reduces neuroregeneration.

Supporting information

S1 Fig. Bacterial CSF titres and weight development during pneumococcal meningitis. Bac-

terial CSF titers were comparable between the three different groups cTBS, iTBS and sham and

indicated a comparable severity of infection (A). Development of relative weight after infection

further proved comparability between different groups, as PM-induced weight loss and recov-

ery was non-different within all analysed animals analysed by 2-way ANOVA (B). Statistical

differences for bacterial titres were assessed using one-way ANOVA with Tukey’s multiple

comparison test to adjust for multiple testing.

(PDF)

S2 Fig. Overrepresented gene ontologies in upregulated genes upon cTBS in the cortex.

Significantly overrepresented gene ontologies are highlighted in grey, with darker colour rep-

resenting more significant p-values (see scale). In the cortex, cTBS induced a significant upre-

gulation of processes involved 1.) translation, 2.) RNA processing, 3.) ribonucleoprotein

complex assembly, 4.) response to stimuli, 5.) immune system regulation and 6.) regulation of

TNF production.

(PDF)

S3 Fig. Overrepresented gene ontologies in downregulated genes upon cTBS in the cortex.

Significantly overrepresented gene ontologies are highlighted in grey, with darker colour rep-

resenting more significant p-values (see scale). In the cortex, cTBS induced a significant down-

regulation of processes involved 1.) regulation of transmembrane transport, 2.) regulation of

developmental processes including neurogenesis and axonogenesis, 3.) regulation of synaptic

plasticity and excitatory postsynaptic potentials, 4.) neuron projection morphogenesis, 5.)

transmembrane ion transport and 6.) nervous system processes such as cognition, learning

and memory.

(PDF)

S4 Fig. Overrepresented gene ontologies in upregulated genes upon cTBS in the hippocam-

pus. Significantly overrepresented gene ontologies are highlighted in grey, with darker colour

representing more significant p-values (see scale). In the cortex, cTBS induced a significant

upregulation of processes involved 1.) metabolic processes with increased translation and ribo-

somal subunit assembly; and 2.) response to stimuli with increased cellular response to hydro-

gen peroxide.

(PDF)

S5 Fig. Overrepresented gene ontologies in downregualted genes upon cTBS in the hippo-

campus. Significantly overrepresented gene ontologies are in grey, with darker colour repre-

senting more significant p-values (see scale). In the cortex, cTBS induced a significant

downregulation of processes involved 1.) negative regulators of transcription and translation;

2.) cellular response to brain-derived neurotrophic factor (BDNF); 3.) regulation of transform-

ing growth factor beta receptor signalling pathway; and 4.) cellular development processes

with decreased neuron differentiation.
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S6 Fig. In vitro stimulation of rat astroglial cell cultures by cTBS. (A) Astroglial cells–con-

taining astrocytes (GFAP), microglia and oligodendrocytes (not shown)–isolated from neona-

tal rat brains were kept in culture for 2 weeks before stimulation. (B) Stimulation with 4 trains

of cTBS on two consecutive days increased cytokine release. Significantly increased release of

IL-1β, IL-10 and TNF-α was found after stimulation with cTBS, which also increased levels of

IL-6 but only with a statistical trend (p = 0.104). An unpaired Student t test was used to assess

statistical differences between cTBS-stimulated and control cell cultures.
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phen L. Leib.

Data curation: Lukas Muri, Simone Oberhänsli, Michelle Buri, Ngoc Dung Le, Denis
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pal Apoptosis and Learning Deficiency in Pneumococcal Meningitis in Infant Rats. Pediatr Res 2003;

54:353–357.

13. Wellmer A, Noeske C, Gerber J, Munzel U, Nau R. Spatial memory and learning deficits after experi-

mental pneumococcal meningitis in mice. Neurosci Lett 2000; 296:137–40.
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30. Leib SL, Leppert D, Clements J, Täuber MG. Matrix metalloproteinases contribute to brain damage in

experimental pneumococcal meningitis. Infect Immun 2000; 68:615–20.

31. Liechti FD, Grandgirard D, Leppert D, Leib SL. Matrix metalloproteinase inhibition lowers mortality and

brain injury in experimental pneumococcal meningitis. Infect Immun 2014; 82:1710–8.

32. Zysset-Burri DC, Bellac CL, Leib SL, Wittwer M. Vitamin B6 reduces hippocampal apoptosis in experi-

mental pneumococcal meningitis. BMC Infect Dis 2013; 13:393.

33. Liechti FD, Studle N, Theurillat R, Grandgirard D, Thormann W, Leib SL. The mood-stabilizer lithium

prevents hippocampal apoptosis and improves spatial memory in experimental meningitis. PLoS One

2014; 9:17–19.

34. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 2012;

28:2184–2185.

35. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat

Methods 2015; 12:357–360.

36. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence

reads to genomic features. Bioinformatics 2014; 30:923–930.

37. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data

with DESeq2. Genome Biol 2014; 15:550.

38. Muri L, Perny M, Zemp J, Grandgirard D, Leib SL. Combining Ceftriaxone with Doxycycline and Dapto-

mycin Reduces Mortality, Neuroinflammation, Brain Damage and Hearing Loss in Infant Rat

PLOS ONE rTMS intensifies neuroinflammation after meningitis

PLOS ONE | https://doi.org/10.1371/journal.pone.0232863 September 11, 2020 15 / 17

https://doi.org/10.1146/annurev.bioeng.9.061206.133100
https://doi.org/10.3389/fnhum.2015.00586
https://doi.org/10.1371/journal.pone.0232863


Pneumococcal Meningitis. Antimicrob Agents Chemother Published Online First: 6 May 2019. https://

doi.org/10.1128/AAC.00220-19

39. Muri L, Le ND, Zemp J, Grandgirard D, Leib SL. Metformin mediates neuroprotection and attenuates

hearing loss in experimental pneumococcal meningitis. J Neuroinflammation 2019; 16:156.

40. Perny M, Roccio M, Grandgirard D, Solyga M, Senn P, Leib SL. The Severity of Infection Determines

the Localization of Damage and Extent of Sensorineural Hearing Loss in Experimental Pneumococcal

Meningitis. J Neurosci 2016; 36:7740–9.

41. Muri L, Grandgirard D, Buri M, Perny M, Leib SL. Combined effect of non-bacteriolytic antibiotic and

inhibition of matrix metalloproteinases prevents brain injury and preserves learning, memory and hear-

ing function in experimental paediatric pneumococcal meningitis. J Neuroinflammation 2018; 15:233.

42. Erni ST, Fernandes G, Buri M, Perny M, Rutten RJ, van Noort JM, et al. Anti-inflammatory and Oto-Pro-

tective Effect of the Small Heat Shock Protein Alpha B-Crystallin (HspB5) in Experimental Pneumococ-

cal Meningitis. Front Neurol 2019; 10:570.
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