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The biological markers of aging used to predict physical health status in older people
are of great interest. Telomere shortening, which occurs during the process of cell
replication, was initially considered a promising biomarker for the prediction of age
and age-related outcomes (e.g., diseases, longevity). However, the high instability
in detection and low correlation with age-related outcomes limit the extension of
telomere length to the field of prediction. Currently, a growing number of studies
have shown that dynamic DNA methylation throughout human lifetime exhibits strong
correlation with age and age-related outcomes. Indeed, many researchers have built age
prediction models with high accuracy based on age-dependent methylation changes
in certain CpG loci. For now, DNA methylation based on epigenetic clocks, namely
epigenetic or DNA methylation age, serves as a new standard to track chronological
age and predict biological age. Measures of age acceleration (1age, DNA methylation
age – chronological age) have been developed to assess the health status of a
person. In addition, there is evidence that an accelerated epigenetic age exists in
patients with certain age-related diseases (e.g., Alzheimer’s disease, cardiovascular
disease). In this review, we provide an overview of the dynamic signatures of DNA
methylation during aging and emphasize its practical utility in the prediction of various
age-related outcomes.

Keywords: DNA methylation, epigenetic clock, age, age-related outcome, prediction

INTRODUCTION

Aging is an inevitable biological process accompanied by progressive decline in physical
function and increased risk of multiple age-related diseases, such as cardiovascular disease,
neurodegenerative disease, and cancer (Sen et al., 2016). Currently, human populations across the
world are rapidly aging (Lutz et al., 2008; Christensen et al., 2009). Age-related chronic diseases
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account for most global diseases as well as morbidity and
mortality (Kennedy et al., 2014). For example, cardiovascular
disease, one of the most common diseases of aging, accounted for
30% of all deaths worldwide per year (Pagidipati and Gaziano,
2013; Nichols et al., 2014). Consequently, the development of
tools to diagnose and predict age-dependent risks has enormous
significance in preventing age-related diseases and improving the
health status of the elderly.

The process of aging results in multiple changes at both
the molecular and cellular level, including cellular senescence,
telomere attrition, and epigenetic alterations (Lopezotin
et al., 2013). Among these hallmarks, telomere length, which
experiences progressive shortening during replication of
somatic cells, is a remarkable characteristic of aging and linked
with age-related health status (Rizvi et al., 2015). However,
recent evidence has revealed that the correlation between
telomere length and age-related outcomes of individuals is low
(Müezzinler et al., 2013; Breitling et al., 2016; Marioni et al.,
2016). Thus, investigators are still searching for other biomarkers
that can be used in the prediction of age-related outcomes with
higher accuracy.

Current studies have indicated that epigenetic changes
comprise a significant component of the aging process (Jones
et al., 2015). Epigenetics refer to the modulation of gene
activity without any change in the genomic sequence. Well-
studied epigenetic modifications include DNA methylation,
histone modification, and non-coding RNA, with changes in
dynamic DNA methylation found to be most associated with
the aging process (Richardson, 2003b; Fraga and Esteller, 2007;
Sen et al., 2016). In general, age-dependent changes in DNA
methylation include global hypomethylation and region-specific
hypermethylation (Xiao et al., 2016). Abundant studies have
demonstrated a close relationship between DNA methylation
and aging and longevity (Feinberg et al., 2002; Robertson, 2005;
Xiao et al., 2016). These findings have impelled researchers
to develop age predictors based on the correlation between
methylation changes and chronological age (Hannum et al.,
2013; Horvath, 2013). DNA methylation age, evaluated by these
predictors, reflects the biological age of a person, which has a close
association with individuals’ health status and can be changed
by multiple risk factors, such as smoking and obesity (Dugué
et al., 2018). Therefore, the difference between DNA methylation
age and chronological age (i.e., 1age) may be a promising tool
in predicting disease risk and longevity potential in early life
(Vaiserman, 2018). Here, we review the dynamics of methylation
in aging and discuss the roles of age-dependent methylation
changes in the prediction of age and age-related outcomes.

DNA METHYLATION

DNA methylation, a well-studied epigenetic modification, refers
to the transfer of a methyl (CH3) group from S-adenosyl
methionine (SAM) to the fifth position of cytosine nucleotides,
forming 5-methylcytosine (5mC) (Hotchkiss, 1948; Chiang et al.,
1996; Moore et al., 2013). This process is catalyzed by at least
three DNA methyltransferases, including Dnmt1, Dnmt3a, and

Dnmt3b (Okano et al., 1999; Vilkaitis et al., 2005). Among
these enzymes, Dnmt1 is responsible for the maintenance
of methylation patterns in the genome by replicating the
hemimethylated CpG sites (Vilkaitis et al., 2005), whereas
Dnmt3a/b are considered de novo methyltransferases (Okano
et al., 1999). Otherwise, evidence has shown that DNA
demethylation can be achieved by either passive or active
mechanism (Chen and Riggs, 2011). The passive demethylation
can be caused by the inhibition of Dnmt1 during cell replication
(Wolffe et al., 1999); while the active demethylation is modulated
by the DNA demethylases. In the past, 5mC DNA glycosylase
(5-MCDG) and methyl-CpG binding domain protein 4 (MBD4)
have been served with the activity of DNA demethylase (Jost et al.,
1999; Hendrich et al., 1999; Zhu, 2009). Recent years, amounting
evidence has shown ten-eleven translocation (TET) dioxygenases
play important roles in DNA demethylation through converting
5-methylcytosine to 5-hydroxymethylcytosine (Jin et al., 2014;
Ichiyama et al., 2015).

In mammalian cells, most 5mC occurs at nucleic sequences in
the context of cytosine-phosphate-guanine (CpG) dinucleotides.
About 70–80% of CpG sites are methylated in human somatic
cells, with most unmethylated CpG sites clustered in the CpG
island located on the promoter region of the genes (Ehrlich
et al., 1982; Lister et al., 2009). Accumulated evidence has
shown that DNA methylation plays essential roles in many
biological processes, including gene regulation, chromosome
stability, genomic imprinting, and X chromosome inactivation
(Robertson, 2005). Many studies have revealed that mammalian
developmental processes cannot depart from modulation of DNA
methylation (Trowbridge et al., 2009). One remarkable case
comes from stem-cell differentiation. All myeloid and lymphoid
blood lineages are differentiated from hematopoietic stem cells
(HSCs) (Chao et al., 2008), during which the activity of genes
(e.g., KCNH2, SUSD3) that control cell fate is highly regulated
by methylation status (Farlik et al., 2016). Conversely, abnormal
DNA methylation is related to the occurrence of several human
diseases (Feinberg et al., 2002; Robertson, 2005), with many
studies showing the role of aberrant DNA methylation in the
activation of tumor promoter genes (e.g., MAGE, S100P) and
silencing of tumor suppressor genes (e.g., VHL, MLH1) in
various cancers (Herman and Baylin, 2003; Sato et al., 2004).
Additionally, there are researches that abnormal methylation
plays an important role in the pathogenesis of autoimmune
diseases (e.g., idiopathic human lupus), metabolic syndromes
(e.g., hyperglycemia), and neurological disorders (e.g., autism
spectrum disorder) (Richardson, 2003a; Côté et al., 2016;
Andrews et al., 2018).

Generally, DNA methylation in regions near the transcription
start site (TSS) is closely associated the suppression of gene
expression (Bird, 1986; Eden and Cedar, 1994). Accumulating
evidence has shown that transcriptional suppression of DNA
methylation involves prevention of transcription activation factor
(e.g., AP-2) or recruitment of transcription inhibiting factor
(e.g., MeCP2) binding to TSS regions (Comb and Goodman,
1990; Jones et al., 1998; Fuks et al., 2003). On the contrary,
there are reports that gene body methylation likely increases
transcriptional activity (Maunakea et al., 2010; Yang et al., 2014).
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Emerging evidence has shown that DNA methylation on gene
body functions can protect the gene body from spurious
transcripts by guaranteeing the fidelity of mRNA transcription
initiation (Neri et al., 2017).

ASSOCIATION BETWEEN DYNAMIC DNA
METHYLATION AND
AGING/AGE-RELATED DISEASES

The association between DNA methylation and aging has been
studied for decades. Thirty-five years ago, Wilson and Jones
(1983) observed a marked decrease in 5mC content in aged
normal diploid fibroblasts of mice, hamsters, and humans.
Since then, age-dependent genome-wide DNA hypomethylation
especially on interspersed repetitive sequence (IRS) has been
detected in a variety of cell types from different tissues and organs
(e.g., blood, brain) (Vanyushin et al., 1973; Bollati et al., 2009;
Jintaridth and Mutirangura, 2010). Over the human lifetime, the
content of 5mC is highest in embryos and decreases gradually
as individuals age (Goel et al., 2017). In addition, region/site-
specific hypermethylation is also broadly observed in the genome
during aging. For example, Rakyan et al. (2010) revealed that
hypermethylated regions in human aging are preferentially
located on bivalent chromatin domains and Oakes et al. (2003)
showed that ribosomal DNA in the genome exhibits increased
methylation in aged rats. For the time being, evidence has shown
that the global reduced methylation content can be caused by
down-regulated expression of Dnmts or insufficient supply of
folic acid in elderly subjects (Figure 1) (Rampersaud et al., 2000;
Ciccarone et al., 2016). Other works revealed that the risk factors
like UV-B light, air pollution, and smoke facilitate the global

hypomethylation (Prins et al., 2013; Puttipanyalears et al., 2013;
Wu et al., 2013). In addition, Fernández et al. (2015) revealed that
the hypomethylated sites preferentially occurs at H3K4me1-rich
regions. However, the studies on the mechanism of site-specific
hypermethylation currently remain very limited. Nevertheless,
one hypothesis indicates that Dnmts can target specific genomic
sequences based on a RNA interference mechanism (Morris et al.,
2004). Moreover, there is report that the genomic regions bound
by the Polycomb complex tend to be hypermethylated during
aging (Jung and Pfeifer, 2015).

The crucial function of DNA methylation in multiple key
processes has driven researchers to focus on the contribution
of dynamic methylation changes to age-related diseases. In
accordance with age-dependent hypomethylation, several
age-related diseases, including neurodegenerative disease,
cardiovascular disease, and cancer, show close association
with marked global methylation decrease (Ehrlich, 2009;
Baccarelli et al., 2010; Chouliaras et al., 2013). In addition, the
examination of abnormal methylation events in certain genes
provides direct evidence to strengthen the close relationship
between DNA methylation and disease expression. For instance,
Ozaki et al. (2017) revealed that the loss of methylation in
three CpG loci in intron 1 of TREM2, an Alzheimer’s disease
susceptibility gene, results in higher expression of TREM2
in the leukocytes of Alzheimer’s disease subjects. Ling et al.
(2008) showed that PPARGC1A, a gene with effects on insulin
secretion, exhibits significantly lower expression in islets from
patients with type 2 diabetes and the down-regulation of
PPARGC1A mRNA is caused by the increase in methylation of
its promoter.

In addition, dynamic epigenetic changes during lifetimes
serve as an important mechanism for organisms to adapt the

FIGURE 1 | Overview of mechanisms of dynamic DNA methylation during aging.
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external and internal environmental changes (D’Aquila et al.,
2013; Schrey et al., 2016). Therefore, some dynamic methylation
events during aging likely function as beneficial adaptive changes
to response the stress exposure throughout the life-course.
For instance, there is case that individuals can retain a high
level of glucose across the famine period through methylation-
based inhibition of IGF2 expression (Heijmans et al., 2008).
Nevertheless, further studies are required to determine the
age-related CpG sites with beneficial effects that are common
across individuals.

DNA METHYLATION-BASED AGE
PREDICTION

Growing evidence has demonstrated the successful utilization of
epigenetic biomarkers in predicting age with high accuracy (Li
et al., 2013; Goel et al., 2017). Researchers have recently developed
multiple age-prediction models with various statistical methods
to determine the age of a person based on the age-dependent
methylation changes in certain CpG loci (Bocklandt et al., 2011;
Hannum et al., 2013; Horvath, 2013; Weidner et al., 2014). The
number of CpG sites used in building these age predication
models ranges from several to 100s. Effort has also been expended
to increase the practicability of age predictors and the use of
as few loci as possible. For example, Bocklandt et al. (2011)
built an age-prediction model using just two CpG sites with a
linear relationship between methylation and age in the saliva of
twins and obtained an average accuracy of 5.2 years. Weidner
et al. (2014) developed an age-prediction model with three CpG
sites that showed age-dependent methylation changes in human
blood cells, with an accuracy of less than 5 years. Others have
focused on improving the stability and accuracy of the tools

and utilized many CpG sites. Two well-known age predictors
(epigenetic clocks) include Hannum’s clock and Horvath’s clock,
which contain 71 and 353 CpG sites, respectively (Hannum et al.,
2013; Horvath, 2013), and show enhanced accuracy of 3–4 years.
Notably, Hannum’s clock is uniquely suitable for human blood,
whereas Horvath’s clock is appropriate for multiple human tissues
and cells.

DNA METHYLATION AGE
ACCELERATION PREDICTS THE RISK
OF AGE-RELATED DISORDERS

Initially, the practicability of DNA methylation-based age
predictors was considered useful in the field of forensic genetics
(Yi et al., 2015). However, researchers have now proposed
that DNA methylation age can also reflect the biological
age, not just the chronological age, of a person (Weidner
et al., 2014; Chen et al., 2016; Zhang et al., 2017a). The
concept of biological age is to explain the variation in the
biological status of individuals with the same chronological age
(Andrews et al., 2017). Indeed, there is increasing evidence that
the difference between biological age (i.e., DNA methylation
age) and chronological age, often symbolized as 1age (DNA
methylation age – chronological age), is closely associated with
age-related disorders. Several research groups have observed an
acceleration in DNA methylation age in some age-associated
diseases, including Alzheimer’s disease, cardiovascular disease,
and cancer (Perna et al., 2016; McCartney et al., 2018). Other
cases also support the association of DNA methylation age
acceleration in the expression of certain disorders. For instance,
Davis et al. (2017) observed a correlation between accelerated
DNA methylation age and elevated diurnal cortisol production,

FIGURE 2 | Schematic diagram of an epigenetic clock across a human lifetime.
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which is closely linked with a reduction in hippocampal volume.
Marioni et al. (2015b) showed that greater DNA methylation
acceleration is correlated with lower cognitive score, weaker grip
strength, and poorer lung function in humans during later life.
Horvath et al. (2015a) found accelerated DNA methylation age in
Down syndrome patients with clinical signatures of “accelerated
aging.” There is also evidence that frailty, a syndrome with
a pronounced association with age-related phenotypes, has a
significant association with DNA methylation age but not with
telomere length (Breitling et al., 2016). Moreover, amounting
evidence has shown that the 1age is able to predict the mortality
in the later life (Marioni et al., 2015a; Zheng et al., 2016). For
example, Marioni et al. (2015a) revealed that a 5-year higher
Hannum and Horvath 1age are associated with a 21 and 11%
of greater mortality, respectively. Zheng et al. (2016) pointed
out that DNA methylation age estimated from blood tissue
can also be used to predict cancer incidence and mortality.
However, another study of Zhang et al. (2017b) analyzed the
CpG sites that are specific to the indicative of disease-related
outcomes and mortality and showed a big difference with those
in tracking natural aging. Accordingly, we suppose that it is
necessary to develop directed prediction models for various
age-related outcomes through integrating the age-related and
disease-specific CpG sites.

The intrinsic and extrinsic factors contributing to the
acceleration of epigenetic age have also attracted attention. One
broadly focused risk factor is cumulative lifetime stress, with its
contribution to accelerated DNA methylation age revealed in
many studies (Zannas et al., 2015; Wolf et al., 2016, 2018a,b). In
addition, the finding that certain CpG loci affected by drinking
and smoking present the same methylation changes as aging
suggests the potential roles of these activities in accelerating
DNA methylation age (Xiao et al., 2018). Other factors include
age at menopause, which is closely associated with epigenetic
age acceleration in women (Levine et al., 2016). A correlation
between obesity and accelerated epigenetic aging has also been
observed in middle-aged individuals (Nevalainen et al., 2017).

RELATIONSHIP BETWEEN DNA
METHYLATION AGE AND LONGEVITY

Longevity, which is a trait of extreme aging, is also associated
with age-related DNA methylation changes (Gravina and Vijg,
2010; Jones et al., 2015; Xiao et al., 2016). A growing body of
research has investigated the methylation signatures of long-
lived people (e.g., centenarians) (Heyn et al., 2012; Gentilini
et al., 2013; Xiao et al., 2015), who exhibit a delayed age of
onset for some age-associated diseases (Hitt et al., 1999; Engberg
et al., 2009; Andersen et al., 2012). Previous studies indicate
that the specific methylation profiles of long-lived people have
potential roles in suppressing the occurrence of age-related
diseases (Xiao et al., 2015). In addition, research has shown
that semi-supercentenarians and their offspring have a relatively
younger biological age as reflected by their decreased DNA
methylation age (Horvath et al., 2015b). What’s more, Lin et al.
(2016) suggested that DNA methylation level of several CpG

sites (e.g., associated with PDE4C and CLCN6) likely has an
association with life-expectancy. Interestingly, there are emerging
reports that the epigenetic clocks tick faster in mice than those
in humans, indicating a potential association between epigenetic
clocks and the maximum life-span of mammals (Stubbs et al.,
2017; Wagner, 2017; Lowe et al., 2018).

CONCLUSION AND PERSPECTIVES

It is becoming evident that epigenetic clocks based on the
dynamic methylation of certain CpG loci during aging are of help
in the prediction of chronological and biological age (Figure 2).
In addition, abundant research indicates that the ticking rate of
an epigenetic clock is associated with age-related diseases and
longevity. Taken together, evidence obtained so far suggests the
great potential of dynamic methylation as a “prophet” of age-
related outcomes, including the pathology and health status of
a person.

However, to further expand the practical application of
epigenetic clocks, researchers should make efforts to address the
following two important issues. First, as current epigenetic clocks
are only correlated with age-related outcomes, the development
of specific epigenetic clocks by combining outcome-specific CpG
sites is necessary. Second, to slow down the rate of epigenetic
aging throughout the lifetime of humans, risk factors accelerating
epigenetic clocks and protective factors slowing epigenetic clocks
should be identified and extensively studied (Figure 2).
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