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The studyforrest (http://studyforrest.org) dataset is likely the largest neuroimaging dataset on natural
language and story processing publicly available today. In this article, along with a companion publication,
we present an update of this dataset that extends its scope to vision and multi-sensory research.
15 participants of the original cohort volunteered for a series of additional studies: a clinical examination of
visual function, a standard retinotopic mapping procedure, and a localization of higher visual areas—such as
the fusiform face area. The combination of this update, the previous data releases for the dataset, and the
companion publication, which includes neuroimaging and eye tracking data from natural stimulation with a
motion picture, form an extremely versatile and comprehensive resource for brain imaging research—with
almost six hours of functional neuroimaging data across five different stimulation paradigms for each
participant. Furthermore, we describe employed paradigms and present results that document the quality
of the data for the purpose of characterising major properties of participants’ visual processing stream.
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Background & Summary
The studyforrest dataset1, with its combination of functional magnetic resonance imaging (fMRI) data
from prolonged natural auditory stimulation and a diverse set of structural brain scans, represents a
versatile resource for brain imaging research with a focus on information processing under real-life like
conditions. The dataset has, so far, been used to study the role of the insula in dynamic emotional
experiences2, modeling of shared blood oxygenation level dependent (BOLD) response patterns across
brains3, and to decode input audio power-spectrum profiles from fMRI4. The dataset has subsequently
been extended twice, first with additional fMRI data from stimulation with music from various genres5

and secondly with a description of the movie stimulus structure with respect to portrayed emotions6.
However, despite providing three hours of functional imaging data per participant, experimental
paradigms exclusively involved auditory stimulation, thereby representing a substantial limitation
regarding the aim to aid the study of real-life cognition—which normally involves multi-sensory input.
With this further extension of the dataset presented here and in a companion publication7, we are now
substantially expanding the scope of research topics that can be addressed with this resource into the
domain of vision and multi-sensory research.

This extension is twofold. While the companion publication7 describes an audio-visual movie dataset
with simultaneously acquired fMRI, cardiac/respiratory traces, and eye gaze trajectories, the present
article focuses on data records and exams related to a basic characterization of the functional architecture
of the visual processing stream of all participants—namely retinotopic organization and the localization
of particular higher-level visual areas. The intended purpose of these data is to perform brain area
segmentation or annotation using common paradigms and procedures in order to study the functional
properties of areas derived from these standard definitions in situations of real-life like complexity.
Moreover, knowledge about the specific spatial organization of visual areas in individual brains aids
studies of the functional coupling between areas, and it also facilitates the formulation and evaluation of
network models of visual information processing in the context of the studyforrest dataset.

The contributions of this study comprise three components: 1) results of a clinical eye examination for
subjective measurements of visual function for all participants to document potential impairments of the
visual system that may impact brain function, even beyond the particular properties relevant to the
employed experimental paradigms; 2) raw data data for a standard retinotopic mapping paradigm and a
six-category block-design localizer paradigm for higher visual areas, such as the fusiform face area (FFA)8,
the parahippocampal place area (PPA)9, the occipital face area10, the extrastriate body area (EBA)11, and
the lateral occipital complex (LOC)12; and 3) validation analyses providing volumetric angle maps for
retinotopy data and ROI masks for visual areas. While the first two components are raw empirical data,
the third component is based on a largely arbitrary selection of analysis tools and procedures. No claim is
made that the chosen methods are superior to any alternative, but the results are shared to document the
plausibility of the results and to facilitate follow-up studies that do not require any particular method to
analyze and interpret these data.

Methods
Participants
Fifteen right-handed participants (mean age 29.4 years, range 21–39, 6 females) volunteered for this
study. All of them had participated in both previous studies of the studyforrest project1,5. The native
language of all participants was German. The integrity of their visual function was assessed at the Visual
Processing Laboratory, Ophthalmic Department, Otto-von-Guericke University, Magdeburg, Germany as
specified below. Participants were fully instructed about the purpose of the study and received monetary
compensation. They signed an informed consent for public sharing of all obtained data in anonymized
form. This study was approved by the Ethics Committee of the Otto-von-Guericke University (approval
refs 13,37).

Subjective measurements of visual function
To test whether the study participants had normal visual function and to detect critical reductions of
visual function, two important measures were determined: (1) visual acuity to identify dysfunction of
high resolution vision and (2) visual field sensitivity to localize visual field defects. For each participant,
these measurements were performed for each eye separately—if necessary with refractive correction.
(1) Normal decimal visual acuity (>= 1.0) was obtained for each eye of each participant. (2) Visual field
sensitivities were determined with static threshold perimetry (standard static white-on-white perimetry,
program: dG2, dynamic strategy; OCTOPUS Perimeter 101, Haag-Streit, Koeniz, Switzerland) at
59 visual field locations in the central visual field (30° radius) i.e., covering the part of the visual field that
was stimulated during the MRI scans. In all, except for two participants, visual field sensitivities were
normal for each eye (MD (mean defect) dBo2.0 & >− 2.0; LV (loss variance) dB2o6)—indicating
the absence of visual field defects. Visual field sensitivities for participant 2 (right eye) and participant 4
(both eyes) were slightly lower than normal but not indicative of a distinct visual field defect.

Functional MRI acquisition setup
For all of the fMRI acquisitions described in the paper, the following parameters were used: T2*-weighted
echo-planar images (gradient-echo, 2 s repetition time (TR), 30 ms echo time, 90° flip angle, 1943 Hz/px
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Figure 1. Retinotopic mapping validation. (a) Ring and wedge stimuli with continuous central letter reading

task to encourage fixation. White numbers indicate the respective phase angle encoding. (b) Histogram of polar

angles for all voxels in the MNI occipital lobe mask for the left and right hemisphere. Error bars indicate s.d.

across all subjects. (c) Inflated occipital cortex surface maps for eccentricity and polar angle for the best,

intermediate, and worst participants: participants 1, 10, and 9 respectively. White lines indicate manually

delineated visual area boundaries; stars mark the center of the visual field; yellow lines depict the outline of the

autogenerated Freesurfer V2 label1 for comparison. All maps are constrained to the MNI occipital lobe mask.
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bandwidth, parallel acquisition with sensitivity encoding (SENSE) reduction factor 2) were acquired
during stimulation using a whole-body 3 Tesla Philips Achieva dStream MRI scanner equipped with a
32 channel head coil. 35 axial slices (thickness 3.0 mm) with 80 × 80 voxels (3.0 × 3.0 mm) of in-plane
resolution, 240 mm field-of-view (FoV), anterior-to-posterior phase encoding direction) with a 10%
inter-slice gap were recorded in ascending order—practically covering the whole brain. Philips’
‘SmartExam’ was used to automatically position slices in AC-PC orientation such that the topmost slice
was located at the superior edge of the brain. This automatic slice positioning procedure was identical to
the one used for scans reported in the companion article7 and yielded a congruent geometry across all
paradigms. Comprehensive meta data on acquisition parameters are available in the data release.

Physiological recordings
Pulse oximetry and recording of the respiratory trace were performed simultaneously with all fMRI data
acquisitions using the built-in equipment of the MR scanner. Although the measurement setup yielded
time series with an apparent sampling rate of 500 Hz, the effective sampling rate was limited to 100 Hz.

Stimulation setup
Visual stimuli were presented on a rear-projection screen inside the bore of the magnet using an LCD
projector (JVC DLA RS66E, JVC Ltd., light transmission reduced to 13.7% with a gray filter) connected to
the stimulus computer via a DVI extender system (Gefen EXT-DVI-142DLN with EXT-DVI-FM1000).
The screen dimensions were 26.5 cm× 21.2 cm at a resolution of 1280 × 1024 px with a 60 Hz video
refresh rate. The binocular stimulation were presented to the participants through a front-reflective
mirror mounted on top of the head coil at a viewing distance of 63 cm. Stimulation was implemented
with PsychoPy v1.79 (with an early version of the MovieStim2 component later to be publicly
released with PsychoPy v1.81)13 on the (Neuro)Debian operating system14. All employed stimulus
implementations are available in the data release (code/stimulus/). Participant responses were
collected by a two-button keypad and was also logged on the stimulus computer.

Retinotopic mapping
Stimulus. Similar to previous studies15,16, traveling wave stimuli were designed to encode visual field
representations in the brain using temporal activation patterns17. This paradigm was selected to allow for
analyses with convential techniques, as well as population receptive field mapping18.

Expanding/contracting rings and clockwise/counter-clockwise wedges (see Fig. 1a) consisting of
flickering radial checkerboards (flickering frequency of 5 Hz) were displayed on a gray background (mean
luminance ≈100 cd m–2) to map eccentricity and polar angle. The total run time for both eccentricity and
polar angle stimuli was 180 s, comprising five seamless stimulus cycles of 32 s duration each along with
4 and 12 s of task-only periods (no checkerboard stimuli) respectively at the start and the end.

The flickering checkerboard stimuli had adjacent patches of pseudo-randomly chosen colors, with
pairwise euclidean distances in the Lab color space (quantifying relative perceptual differences between
any two colors) of at least 40. Each of these colored patches were plaided with a set of radially moving
points. To improve the perceived contrast, the points were either black or white depending on the color of
the patch on which the points were located. The lifetime of these points was set to 0.4 s, a new point at a
random location was initialised after that. With every flicker, the color of the patches changed to its
complementary luminance. Simultaneously, the color changed and the direction of movement of the
plaided points also reversed.

Eccentricity encoding was implemented by a concentric flickering ring expanding and contracting
across the visual field (0.95° of visual angle in width). The ring was not scaled with cortical magnification
factor. The concentric ring traveled across the visual field in 16 equal steps, stimulating every location in
the visual field for 2 s. After each cycle, the expanding or the contracting rings were replaced by new rings
at the center or the periphery respectively.

Polar angle encoding was implemented by a single moving wedge (clockwise and counter-clockwise
direction). The opening angle of the wedge was 22.5 degrees. Similar to the eccentricity stimuli, every
location in the visual field was stimulated for 2 s before the wedge was moved to the next position. Videos
for all four stimuli are provided in the data release (code/stimulus/retinotopic_mapping/
videos).

Center letter reading task. In order to keep the participants’ attention focused and to minimize
eye-movements, they performed a reading task. A black circle (radius 0.4°) was presented as a fixation
point at the center of the screen, superimposed on the main stimulus. Within this circle, a randomly
selected excerpt of song lyrics was shown as a stream of single letters (0.5° height, letter frequency 1.5 Hz,
85% duty cycle) throughout the entire length of a run. Participants had to fixate, as they were unable to
perform the reading task otherwise. After each acquisition run, participants were presented with a
question related to the previously read text. They were given two probable answers, to which they replied
by corresponding button press (index or middle finger of their right hand). These question only served
the purpose of keep participants attentive—and were otherwise irrelevant. The correctness of the
responses was not evaluated.
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Procedure
Participants performed four acquisition runs in a single session with a total duration of 12 min, with short
breaks in-between and without moving out of the scanner. In each run, participants performed the center
reading task while passively watching the contracting, counter-clockwise rotating, expanding, and
clockwise rotating stimuli in exactly this sequential order. For the retinotopic mapping experiment,
90 volumes of fMRI data were acquired for each run.

Localizer for higher visual areas
Stimulus. All the stimuli for this experiment were used in a previous study19. There were 24 unique
grayscale images from each of six stimulus categories: human faces, human bodies without heads, small
objects, houses and outdoor scenes comprising of nature and street scenes, and phase scrambled images
(Fig. 2b). Mirrored views of these 24 × 6 images were also used as stimuli. The original images were
converted to grayscale and scaled to a resolution of 400 × 400 px. Images were matched in luminance
using lumMatch in the SHINE toolbox20 to a mean and standard deviation of 128 and 70 respectively.
The original images of human faces and houses were produced in the Haxby lab at Dartmouth College;
human body images were obtained from Paul Downing’s lab at Bangor University11; images of small
objects were obtained from the Bank of Standardized stimuli (BOSS)21; outdoor natural scenes are a
collection of personal images and public domain resources; and street scenes are taken from the CBCL
Street scene database http://cbcl.mit.edu/software-datasets/streetscenes/. Stimulus images were displayed
at a size of approximately 10° × 10° of visual angle. Stimulus images (original and preprocessed) are
provided in the data release (code/stimulus/visualarea_localizer/img).

Procedures
Participants were presented with four block-design runs, with two 16 s blocks per stimulus category in
each run, while they also performed a one-back matching task to keep them attentive. The order of blocks
was randomized so that all six conditions appeared in random order in both the first and second halves of

Figure 2. Experiment design. (a) In each block, 16 unique images were presented on a medium-gray

background (with a superimposed green fixation cross). Each image was shown for 900 ms and images were

separated in time by 100 ms. The participant’s task was to press a button (index finger, right hand) when any

image was immediately followed by its mirrored equivalent. These events happened randomly either once,

twice, or never in each block. In order to alert the participant, the fixation cross turned green 1.5 s prior to the

start of a block, remained green throughout a block, and was white during the rest period. The start of each

block was synchronized with the MR volume acquisition trigger pulse. Stimulus blocks were separated by 8 s of

fixation. (b) Example images for all six stimulus categories.
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a run. However, due to a coding error, the block-order was identical across all four runs; though the
actual per-block image sequence was a different random sequence for each run. The block configuration
and implementation of the matching task are depicted in Fig. 2a. 156 fMRI volumes were acquired during
each experiment run.

Movie frame localizer
A third stimulation paradigm was implemented to collect BOLD fMRI data for an independent
localization of voxels that show a response to basic visual stimulation in areas of the visual field covered
by the movie stimulus used in the companion article7. The stimulus was highly similar to the one used for
the retinotopic mapping, but instead of isolated rings and wedges, the dynamic stimulus covered either
the full rectangle of the movie frame (without the horizontal bars at the top and bottom) or just the
horizontal bars. The stimulus alternated every 12 s, starting with the movie frame rectangle. Stimulus
movies are provided in the data release (code/stimulus/movie_localizer/videos). A total of
four stimulus alternation cycles were presented—starting synchronized with the acquisition of the first
fMRI volume. A total of 48 volumes were acquired. During stimulation, participants performed the same
reading task as in the retinotopic mapping session, hence a localization of responsive voxels assumes a
central fixation and can only be considered as an approximation of the responsive area of the visual
cortex during the movie session, where eye movements were permitted.

Code availability
All custom source code for data conversion from raw, vendor-specific formats into the de-identified
released form is included in the data release (code/rawdata_conversion). fMRI data conversion
from DICOM to NIfTI format was performed with heudiconv (https://github.com/nipy/heudiconv),
and the de-identification of these images was implemented with mridefacer (https://github.com/
hanke/mridefacer).

The data release also contains the implementations of the stimulation paradigms in code/
stimulus/. Moreover, analysis code for visual area localization and retinotopic mapping is available in
two dedicated repositories at https://github.com/psychoinformatics-de/studyforrest-data-visualrois, and
https://github.com/psychoinformatics-de/studyforrest-data-retinotopy, respectively.

Data Records
This dataset is compliant with the Brain Imaging Data Structure (BIDS) specification22, which is a new
standard to organize and describe neuroimaging and behavioral data in an intuitive and common
manner. Extensive documentation of this standard is available at http://bids.neuroimaging.io.
This section provides information about the released data, but limits its description to aspects
that extends the BIDS specifications. For a general description of the dataset layout and file
naming conventions, the reader is referred to the BIDS documentation. In summary, all files related
to the data acquisitions for a particular participant described in this manuscript can be located in a
sub-oID>/ses-localizer/ directory, where ID is the numeric subject code.

All data records listed in this section are available on the OpenfMRI portal (Data Citation 1) as well as
via Github/ZENODO23.

In order to de-identify data, information on center-specific study and subject codes have been
removed using an automated procedure. All human participants were given sequential integer IDs.
Furthermore, all BOLD images were ‘de-faced’ by applying a mask image that zeroed out all voxels in the
vicinity of the facial surface, teeth, and auricles. For each image modality, this mask was aligned and
re-sliced separately. The resulting tailored mask images are provided as part of the data release to indicate
which parts of the image were modified by the de-facing procedure (de-face masks carry a
_defacemask suffix to the base file name).

In addition to the acquired primary data described in this section, we provide results of validation
analysis described below. These are: 1) manually titrated ROI masks for visual areas localized for
all participants (https://github.com/psychoinformatics-de/studyforrest-data-visualrois); and 2) volu-
metric and surface-projected eccentricity and polar angles maps from retinotopic mapping analysis
(https://github.com/psychoinformatics-de/studyforrest-data-retinotopy).

fMRI data
Each image time series in NIfTI format is accompanied by a JSON sidecar file that contains a dump of the
original DICOM metadata for the respective file. Additional standardized metadata is available in the
task-specific JSON files defined by the BIDS standard.

Retinotopic mapping. fMRI data files for the retinotopic mapping contain a *ses-localizer_-
task-retmap*_bold in their file name. Specifically the retmapclw, retmapccw, retmapcexp,
and retmapcon file name labels respecitvely indicate stimulation runs with clockwise and
counterclockwise rotating wedges, and expanding and contracting rings.

Higher visual area localizers. fMRI data files for the visual area localizers contain a *ses-
localizer_task-objectcategories*_bold in their file name. The stimulation timing for
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each acquisition run is provided in corresponding *_events.tsv files. These three-column text files
describe the onset and duration of stimulus block and identify the associated stimulus category
(trial_type).

Movie frame localizer. fMRI data files for the movie frame localizer contain a *ses-
localizer_task-movielocalizer*_bold in their file name.

Physiological recordings
Time series of pleth pulse and respiratory trace are provided for all BOLD fMRI scans in a compressed
three-column text file: volume acquisition trigger, pleth pulse, and respiratory trace (file name scheme:
_recording-cardresp_physio.tsv.gz). The scanner’s built-in recording equipment does not
log the volume acquisition trigger nor does it record a reliable marker of the acquisition start.
Consequently, the trigger log has been reconstructed based on the temporal position of a scan’s end-
marker, the number of volumes acquired, and under the assumption of an exactly identical acquisition
time for all volumes. The time series have been truncated to start with the first trigger and end after the
last volume has been acquired.

Technical Validation
All image analyses presented in this section were performed on the released data in order to test for
negative effects of the de-identification procedure on subsequent analysis steps.

Modality Paradigm Participant Run Description

F 16 4 Excessive motion (rotation)

F 10 3–4 Excessive motion (translation)

F VL 20 1–4 Excessive motion from coughing

F RM 20 1–4 Reported discomfort during scan

P MV,VL,RM 2 All No data have been acquired

Table 1. Overview of known data anomalies (F, functional data; P, physiological recordings during fMRI
session) for all paradigms (RM, retinotopic mapping; VL, visual localizer; MV, movie localizer).

Figure 3. Average temporal signal-to-noise ratio (tSNR) across all acquisitions, including the fMRI data

described in the companion article7. tSNR was computed independently from motion-corrected and linearly

detrended BOLD fMRI time series for each scan. The resulting statistics were projected into group space for

averaging across scans and participants (n= 255). (a) Spatial distribution of average tSNR across the brain.

In the vicinity of the ventricles, tSNR is reduced due to a suboptimal fat suppression SPIR pulse frequency. This

artifact amplifies the expected U-shape of the spatial SNR profile of a 32 channel head coil. (b) Histograms of

average tSNR scores. The dark shaded histogram shows the tSNR distribution of all voxels in an approximate

brain mask (MNI template brain mask); the lighter shaded histogram shows the tSNR distribution of 20% of

voxels with the largest probability of sampling gray matter, as indicated by FSL’s gray matter prior volume

(avg152T1_gray.nii.gz) for the MNI template image.
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During data acquisition, (technical) problems were noted in a log. All known anomalies and their
impact on the dataset are detailed in Table 1.

Temporal signal-to-noise ratio (tSNR)
Data acquisition was executed using the R5 software version of the scanner vendor. With this version, the
vendor changed the frequency of the Spectral Presaturation by Inversion Recovery (SPIR) pulse from the
previously 135 to 220 Hz in order to increase fat suppression efficiency. After completion of data
acquisition, it was discovered that the new configuration led to undesired interactions with pulsations in
the cerebrospinal fluid in the ventricles, which resulted in a reduced temporal stability of the MR signal
around the ventricles. Figure 3a illustrates the magnitude and spatial extent of this effect. Despite this
issue, the majority of voxels show a tSNR (ratio of mean and standard deviation of the signal across time)
of ≈ 70 or above (Fig. 3b), as can be expected with a voxel volume of about 27 mm3 and with 3 Tesla
acquisition24. Source code for the tSNR calculation is available at https://github.com/psychoinformatics-
de/studyforrest-data-aligned/tree/master/code.

Retinotopic mapping analysis
Many regions of interest (ROI) in the human visual system follow a retinotopic organization15,16,25.
The primary areas like V1 and V2 are also provided as labels with the Freesurfer segmentation using
the recon-all pipeline26. But the higher visual areas (V3, VO, PHC, etc) need to be localized by
retinotopic mapping27–30 or probability maps31,32.

We implemented a standard analysis pipeline for the acquired fMRI data based on standard
algorithms publicly available in the software packages26, FSL33, and AFNI34. All analysis steps were
performed on a computer running the (Neuro)Debian operating system14, and all necessary software
packages (except for Freesurfer) were obtained from system software package repositories.

BOLD images time series for all scans of the retinotopic mapping paradigm were brain-extracted using
FSL’s BET and aligned (rigid-body transformation) to a participant-specific BOLD template image.
Computed transformation are available at https://github.com/psychoinformatics-de/studyforrest-data-
templatetransforms. All volumetric analysis was performed in this image space. An additional rigid-body
transformation was computed to align the BOLD template image to the previously published cortical
surface reconstructions based on T1 and T2-weighted structural images of the respective participants1 for
later delineation of visual areas on the cortical surface. Using AFNI tools, time series images were also
‘deobliqued’ (3dWarp), slice time corrected (3dTshift), and temporally bandpass-filtered (3dBand-
pass cutoff frequencies set to 0.667/32 Hz and 2/32 Hz, where 32 s is the period of both the ring and the
wedge stimulus).

For angle map estimation, AFNI’s waver command was used to create an ideal response time series
waveform based on the design of the stimulus. The bandpass filtered BOLD images were then processed
by the 3dRetinoPhase (DELAY phase estimation method was based on the response time series
model). Expanding and contracting rings, as well as clockwise and counter-clockwise wedge stimuli, were
jointly used to generate average volumetric phase maps representing eccentricity and polar angles for
each participant. Polar angle maps were adjusted for a shift in the starting position of the wedge stimulus

Figure 4. Spatial overlap of individually located regions of interest (ROI). Individual ROI masks were

projected into MNI space and summed. Absolute value are shown for nodes on the reconstructed surface of the

MNI152 brain. The magnitude is affected by both the spatial variability of ROIs across brains and the

localization failures for individual ROIs and participants. See Tables 2–4 for individual results.

www.nature.com/sdata/

SCIENTIFIC DATA | 3:160093 | DOI: 10.1038/sdata.2016.93 8

https://github.com/psychoinformatics-de/studyforrest-data-aligned/tree/master/code
https://github.com/psychoinformatics-de/studyforrest-data-aligned/tree/master/code
https://github.com/psychoinformatics-de/studyforrest-data-templatetransforms
https://github.com/psychoinformatics-de/studyforrest-data-templatetransforms


8–10 11–13
subj. min mean med. max vol. vox.

max location (MNI) center of mass (MNI)
c. type

X Y Z X Y Z

Right fusiform face area (rFFA)

1 2.50 2.83 2.77 3.59 1.08 69 46.3 − 48.1 − 25.6 39.1 − 45.0 − 23.6 Strict

1 2.50 2.97 2.92 3.75 1.23 79 48.8 − 58.0 − 21.6 42.7 − 59.2 − 18.7 Strict

2 2.50 3.03 2.98 3.80 2.02 129 48.8 − 73.1 − 13.1 42.5 − 65.4 − 12.2 Strict

3 2.24 2.52 2.44 3.10 0.95 61 56.0 − 50.5 − 25.8 46.2 − 46.4 − 25.0 Relaxed

4 2.00 2.45 2.38 3.37 1.20 77 46.4 − 78.1 − 11.0 40.2 − 59.4 − 15.1 Simple

5 2.00 2.60 2.57 3.30 1.75 112 43.9 − 53.1 − 23.6 39.4 − 48.4 − 21.7 Strict

9 2.60 2.95 2.91 3.56 1.08 69 41.5 − 67.7 − 22.1 37.2 − 63.1 − 14.7 Strict

9 2.60 3.05 3.03 3.63 0.69 44 46.3 − 45.8 − 23.2 41.7 − 44.6 − 22.9 Strict

10 2.66 3.11 3.15 3.67 1.02 65 53.6 − 48.2 − 23.3 44.4 − 48.8 − 18.0 Strict

14 2.60 2.80 2.76 3.23 1.25 80 53.6 − 40.7 − 27.6 40.0 − 53.1 − 19.8 Simple

15 2.75 3.03 3.01 3.46 1.55 99 56.0 − 68.1 − 15.2 46.1 − 70.2 − 9.7 Strict

16 2.50 3.03 3.00 3.72 1.95 125 46.3 − 53.7 − 14.3 40.4 − 50.7 − 14.5 Simple

17 2.50 2.90 2.88 3.51 1.78 114 43.8 − 36.4 − 20.3 35.5 − 42.5 − 22.5 Simple

19 2.90 3.24 3.20 3.78 1.09 70 46.3 − 60.3 − 24.0 40.2 − 57.7 − 17.5 Simple

20 2.50 2.83 2.82 3.42 1.08 69 48.7 − 48.4 − 21.0 41.6 − 49.8 − 19.5 Strict

Left fusiform face area (lFFA)

1 2.50 2.71 2.70 3.06 0.27 17 − 33.6 − 41.0 − 27.3 − 38.7 − 43.2 − 27.3 Strict

1 2.50 2.72 2.67 3.13 0.31 20 − 36.0 − 58.1 − 23.6 − 42.1 − 59.0 − 23.6 Strict

2 2.50 3.02 3.01 3.70 1.06 68 − 36.0 − 68.4 − 14.9 − 39.6 − 65.4 − 15.3 Strict

5 2.00 2.44 2.44 3.22 0.94 60 − 38.5 − 48.8 − 18.4 − 43.2 − 52.9 − 21.6 Strict

6 2.50 2.79 2.80 3.23 1.06 68 − 33.6 − 68.2 − 17.2 − 39.1 − 61.0 − 15.0 Simple

9 2.60 2.89 2.89 3.58 1.20 77 − 26.3 − 71.1 − 10.4 − 33.0 − 70.8 − 15.1 Strict

10 2.66 3.09 3.09 3.67 0.67 43 − 36.0 − 61.0 − 16.8 − 42.7 − 53.5 − 18.8 Strict

14 2.60 2.98 2.93 3.54 1.06 68 − 38.4 − 60.8 − 19.1 − 43.3 − 53.3 − 22.0 Simple

15 2.25 2.52 2.48 3.06 1.31 84 − 36.0 − 53.2 − 25.6 − 43.7 − 48.3 − 22.9 Simple

16 2.50 2.82 2.80 3.32 1.11 71 − 36.0 − 66.1 − 12.4 − 41.1 − 53.1 − 17.0 Simple

17 2.50 2.79 2.75 3.32 1.06 68 − 33.6 − 51.0 − 20.9 − 37.6 − 42.6 − 17.6 Simple

19 2.72 2.97 2.97 3.28 0.47 30 − 36.0 − 66.0 − 14.7 − 39.2 − 59.0 − 15.0 Relaxed

20 2.50 2.78 2.75 3.25 0.62 40 − 31.2 − 53.9 − 14.1 − 37.6 − 55.6 − 16.4 Strict

Right occipital face area (rOFA)

3 2.50 2.72 2.68 3.17 0.98 63 56.0 − 65.7 − 15.0 47.1 − 72.8 − 13.4 Relaxed

4 2.00 2.14 2.13 2.35 0.70 45 34.3 − 90.4 − 7.0 28.8 − 87.3 − 4.3 Simple

5 2.00 2.23 2.16 2.79 0.48 31 46.4 − 85.3 − 11.4 37.9 − 80.8 − 15.2 Relaxed

9 2.60 3.01 3.02 3.68 1.08 69 48.8 − 75.3 − 15.5 41.6 − 79.9 − 13.5 Strict

10 2.66 3.01 3.02 3.47 0.69 44 46.4 − 73.2 − 10.8 41.3 − 73.3 − 9.4 Strict

14 2.60 2.77 2.75 3.06 1.03 66 56.0 − 71.4 − 1.4 42.7 − 79.3 − 6.4 Simple

15 2.75 3.06 2.99 3.71 1.53 98 46.3 − 48.6 − 18.7 40.7 − 50.1 − 16.4 Strict

16 2.50 2.87 2.85 3.56 2.23 143 53.6 − 78.8 0.6 41.8 − 78.8 − 9.3 Simple

17 2.40 2.68 2.64 3.31 0.86 55 51.2 − 67.9 − 17.5 39.4 − 73.9 − 16.6 Strict

19 2.90 3.18 3.12 3.69 0.92 59 46.4 − 83.3 − 4.3 41.6 − 79.3 − 12.2 Simple

20 2.45 2.82 2.82 3.31 0.53 34 46.4 − 80.9 − 4.2 41.3 − 77.6 − 8.1 Strict

Left occipital face area (lOFA)

10 2.66 3.01 2.97 3.48 0.66 42 − 26.3 − 78.0 − 15.4 − 33.9 − 83.2 − 12.1 Strict

14 2.60 2.83 2.79 3.19 0.48 31 − 31.1 − 89.9 − 18.4 − 37.5 − 85.8 − 15.0 Simple

15 3.00 3.25 3.23 3.55 0.81 52 − 35.9 − 87.9 − 11.3 − 41.9 − 75.6 − 14.8 Simple

17 2.20 2.51 2.46 2.99 0.67 43 − 35.9 − 82.3 − 22.6 − 38.5 − 78.9 − 19.5 Simple

19 3.00 3.24 3.22 3.65 0.64 41 − 35.9 − 85.4 − 13.5 − 39.6 − 75.2 − 15.2 Simple

20 2.45 2.70 2.64 3.23 0.91 58 − 28.7 − 82.0 − 27.3 − 38.4 − 79.5 − 19.8 Strict

Table 2. Individual localization results after manual titration for face-responsive regions. All statistics correspond to
2nd-level Z-scores; all coordinates are in MNI-space millimeters; ROI volume is reported in cm3; the voxel count corresponds
to 2.5 mm isotropic voxels of a participants-specific template image. The last column indicates the underlying contrast type of
the statistics maps an ROI definition was based on. Each row corresponds to a single isolated cluster. Multiple rows per
participants and ROI indicated the presence of multiple isolated clusters.
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8–10 11–13 subj. min mean med. max vol. vox.
max location (MNI) center of mass (MNI)

c. type
X Y Z X Y Z

Right extrastriate body area

1 3.20 3.39 3.35 3.75 1.11 71 53.6 − 78.5 − 4.1 46.5 − 76.1 − 4.3 strict

2 3.30 3.46 3.42 3.83 1.31 84 48.8 − 71.9 5.6 39.7 − 76.1 − 1.0 strict

3 3.00 3.20 3.17 3.59 1.44 92 58.5 − 68.7 − 5.9 48.9 − 73.4 − 4.3 strict

4 3.00 3.22 3.19 3.50 2.00 128 53.6 − 69.2 1.1 45.5 − 68.1 − 3.5 strict

5 2.78 2.97 2.94 3.34 1.25 80 56.0 − 76.4 0.7 48.6 − 71.6 − 3.5 strict

6 3.13 3.36 3.37 3.60 0.84 54 58.4 − 66.9 3.5 49.8 − 75.6 2.1 strict

9 3.50 3.77 3.77 4.14 1.14 73 56.0 − 71.6 1.0 46.2 − 77.3 0.3 strict

10 3.00 3.22 3.22 3.53 1.50 96 56.0 − 74.5 7.8 47.2 − 67.7 − 0.5 strict

14 3.20 3.43 3.42 3.88 1.30 83 63.3 − 61.6 − 3.2 50.2 − 66.1 − 0.1 strict

15 3.00 3.15 3.12 3.52 0.70 45 60.8 − 64.4 1.3 47.8 − 67.5 1.7 strict

16 3.00 3.19 3.16 3.54 1.34 86 56.0 − 73.8 − 1.5 47.6 − 76.2 − 0.4 strict

17 3.00 3.25 3.23 3.71 1.45 93 63.3 − 61.5 − 5.5 53.2 − 60.4 − 4.7 strict

18 3.00 3.27 3.30 3.61 0.48 31 56.0 − 66.3 − 5.7 48.9 − 73.4 0.9 strict

19 3.30 3.47 3.46 3.70 0.77 49 56.0 − 71.9 5.6 51.0 − 70.4 4.2 strict

19 3.30 3.47 3.46 3.80 0.59 38 51.2 − 78.8 0.6 42.7 − 82.1 4.8 strict

20 2.20 2.50 2.48 3.00 0.70 45 60.8 − 65.0 10.6 50.4 − 71.4 5.1 strict

Left extrastriate body area

1 3.00 3.16 3.12 3.43 0.80 51 − 33.5 − 81.6 3.0 − 44.8 − 76.3 7.9 strict

2 3.00 3.13 3.09 3.40 0.66 42 − 36.0 − 89.3 9.6 − 38.6 − 82.6 5.2 strict

3 3.00 3.15 3.12 3.45 0.70 45 − 28.7 − 84.2 5.2 − 45.4 − 80.1 3.2 strict

4 2.50 2.71 2.67 3.32 2.16 138 − 28.7 − 96.4 6.8 − 43.5 − 80.1 0.8 strict

5 2.50 2.76 2.70 3.23 1.08 69 − 31.1 − 88.4 − 4.4 − 39.4 − 81.2 − 7.4 strict

6 2.75 2.92 2.91 3.37 0.77 49 − 40.8 − 88.9 2.6 − 50.6 − 78.0 0.9 strict

9 3.30 3.54 3.48 4.09 0.77 49 − 40.8 − 74.8 8.1 − 49.4 − 75.1 6.4 strict

9 3.30 3.61 3.63 3.97 0.56 36 − 35.9 − 83.3 − 8.7 − 41.1 − 80.7 − 8.3 strict

10 3.00 3.18 3.16 3.58 1.38 88 − 35.9 − 83.3 − 8.7 − 46.1 − 77.3 5.2 strict

14 3.20 3.38 3.36 3.71 0.47 30 − 43.3 − 71.6 − 3.4 − 47.4 − 70.7 0.4 strict

15 3.00 3.29 3.27 3.67 0.50 32 − 38.4 − 70.4 15.3 − 46.4 − 70.5 15.0 strict

16 3.00 3.17 3.14 3.39 0.39 25 − 40.8 − 76.1 − 8.3 − 44.7 − 78.6 − 2.7 strict

17 3.00 3.19 3.12 3.71 0.81 52 − 36.0 − 65.1 8.6 − 46.4 − 70.5 4.0 strict

18 3.00 3.16 3.12 3.55 1.16 74 − 33.5 − 81.8 5.3 − 43.0 − 80.8 5.1 strict

19 3.00 3.27 3.24 3.72 0.95 61 − 43.3 − 77.0 5.6 − 50.0 − 76.0 6.3 strict

Right parahippocampal place area

1 2.50 2.77 2.73 3.35 1.83 117 31.8 − 51.5 − 11.8 23.5 − 51.8 − 11.9 relaxed

2 3.00 3.25 3.24 3.71 1.14 73 34.2 − 41.5 − 15.9 27.6 − 43.7 − 12.1 strict

3 2.22 2.55 2.50 3.25 3.06 196 48.7 − 47.8 − 30.3 27.5 − 50.5 − 14.2 strict

4 2.50 2.80 2.77 3.35 2.70 173 36.6 − 56.7 − 5.1 26.3 − 45.8 − 10.2 strict

5 2.50 2.73 2.71 3.08 1.25 80 34.2 − 51.3 − 14.1 27.6 − 57.6 − 11.3 strict

6 3.00 3.28 3.24 3.76 2.02 129 41.5 − 52.9 − 25.9 29.2 − 45.6 − 12.6 strict

9 2.75 3.10 3.08 3.57 1.72 110 36.6 − 39.0 − 18.1 27.0 − 40.4 − 11.8 strict

10 2.60 2.88 2.84 3.52 2.00 128 36.6 − 41.4 − 18.2 25.0 − 41.9 − 14.4 strict

14 3.25 3.51 3.47 4.03 1.67 107 34.2 − 44.2 − 11.4 23.1 − 50.4 − 10.8 strict

15 2.50 2.85 2.83 3.53 2.36 151 36.6 − 44.4 − 9.1 25.0 − 45.6 − 10.3 strict

16 2.60 2.95 2.88 3.64 2.53 162 34.2 − 58.4 − 16.9 25.5 − 43.9 − 14.7 strict

17 2.50 2.97 2.91 3.79 1.67 107 36.6 − 41.8 − 11.3 24.0 − 41.4 − 10.4 strict

18 2.20 2.59 2.59 3.37 1.64 105 36.6 − 58.2 − 19.2 26.2 − 48.5 − 9.4 relaxed

19 3.00 3.35 3.33 3.84 2.19 140 34.2 − 51.9 − 4.9 24.9 − 48.5 − 9.9 strict

20 2.20 2.43 2.37 3.06 1.45 93 36.6 − 53.1 − 23.6 25.1 − 49.0 − 11.0 strict

Left parahippocampal place area

1 2.50 2.75 2.74 3.10 0.59 38 − 11.8 − 61.4 − 9.9 − 19.3 − 55.0 − 9.2 relaxed

2 3.00 3.29 3.25 3.82 0.77 49 − 19.1 − 46.7 − 13.7 − 24.4 − 47.5 − 8.0 strict

3 2.22 2.47 2.41 2.99 0.97 62 − 16.7 − 51.5 − 14.0 − 25.6 − 53.3 − 14.1 strict

5 2.00 2.44 2.38 3.05 0.62 40 − 16.7 − 46.8 − 11.4 − 23.6 − 51.2 − 8.8 strict

6 3.00 3.33 3.25 3.87 0.78 50 − 19.1 − 46.8 − 11.4 − 25.6 − 48.9 − 8.7 strict

9 2.75 3.04 3.03 3.64 1.52 97 − 14.3 − 44.7 − 6.6 − 23.4 − 42.7 − 11.7 strict

10 2.60 2.97 2.90 3.57 1.92 123 − 11.9 − 39.4 − 13.3 − 25.5 − 44.6 − 12.8 strict

14 3.25 3.53 3.51 3.98 1.58 101 − 14.3 − 49.2 − 11.5 − 26.3 − 52.5 − 13.5 strict

15 2.50 2.92 2.90 3.59 2.00 128 − 14.2 − 58.7 − 14.4 − 24.8 − 46.1 − 11.4 strict

16 2.60 3.06 3.00 3.72 1.92 123 − 14.3 − 37.0 − 13.2 − 25.4 − 41.8 − 13.7 strict

17 2.50 3.03 3.04 3.72 1.69 108 − 16.7 − 39.4 − 13.3 − 24.4 − 45.3 − 11.5 strict

18 2.20 2.53 2.46 3.15 1.27 81 − 14.3 − 42.1 − 8.8 − 24.9 − 50.0 − 9.9 relaxed

19 2.70 2.96 2.94 3.49 1.44 92 − 14.2 − 56.6 − 9.6 − 26.3 − 52.3 − 11.0 strict

Table 3. Individual localization results after manual titration for body- and place-responsive regions
Table semantics are identical to Table 2.
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compared between the two rotation directions. The phase angle representations, relative to the visual
field, are shown in Fig. 1a. As an overall indicator of mapping quality, Fig. 1b shows the distribution of
the polar angle representations across all voxels in the MNI occipital lobe mask combined for all
participants.

For visualization and subsequent delineation, all volumetric angle maps (after correction) were
projected onto the cortical surface mesh of the respective participant using Freesurfer’s mri_vol2surf
command—separately for each hemisphere. In order to illustrate the quality of the angle maps, the
subjectively best, average, and worst participants (respectively: participant 1, 10, and 9) have been selected
on the basis of visual inspection. Figure 1c shows the eccentricity maps on the left panel and the polar
angle maps for both hemispheres on the right panel. A table summarizing the results of the manual
inspections of all surface maps is available at https://github.com/psychoinformatics-de/studyforrest-data-
retinotopy/tree/master/qa. Delineations of the visual areas depicted in Fig. 1c were derived according to
Kaule et al.35 (page 4). Further details on the procedure can be found in refs 28–30.

Localization of higher visual areas
To localize higher visual areas for each participant, we implemented a standard two-level general linear
model (GLM) analysis using the FEAT component in FSL. BOLD image time series were slice-time-
corrected, masked with a conservative brain mask, spatially smoothed (Gaussian kernel, 4 mm FWHM),
and temporally high-pass filtered using a cutoff period of 100 s. For each acquisition run, we defined the
stimulation design using six boxcar functions, one for each condition (bodies, faces, houses, small objects,
landscapes, scrambled images), such that each stimulation block was represented as a single contiguous
16 s segment. The GLM design, comprised of these six regressors, convolved with FSL’s ‘Double-Gamma
HRF’ as a model hemodynamic response function model. Temporal derivatives of those regressors
were also included in the design matrix, and it was subjected to the same temporal filtering as the BOLD
time series.

At the first level, we defined a series of t-contrasts to implement different localization procedures
found in the literature36. The strict set included one contrast per target region of interest and involved
all stimulus conditions (one condition versus all others, except for the PPA contrast, where houses/
landscapes were contrasted with all other conditions). The relaxed set included structurally similar
contrasts as the strict set, but the number of contrast condition was reduced, for example: the FFA
contrast was defined as faces versus small objects and scrambled images. Lastly, the simple set contained
only contrasts of one (e.g., faces) or two related conditions (e.g., houses and landscapes) against responses
to scrambled images.

The GLM analysis was performed for each experiment run individually, and afterwards results were
aggregated in a within-subject second-level analysis by averaging. Statistical evaluation (fixed-effects
analysis) and cluster-level thresholding were performed at the second level using a cluster forming
threshold of Z>1.64 and a corrected cluster probability threshold of Po0.05.

We defined category-selective regions starting with the contrast clusters that survived second-level
analysis for each participant. For each region of interest, we started with the most conservative contrast
(strict set) by using a threshold of t= 2.5 and looked for clusters with at least 20 voxels (using AFNI).
We titrated the threshold in the range of [2, 3] until we found an isolated cluster for the localizer region of
interest. If a cluster was not found or not isolated, we used a contrast from the relaxed set, or finally the
simple set, and repeated the process until we found a cluster that matched the expected anatomical
location based on literature for FFA/OFA37, PPA9, LOC12, and EBA11.

Figure 4 depicts the results of this procedure for all regions of interest by means of localization overlap
across all participants on the cortical surface of the MNI152 brain. Detailed participant-specific
information is provided in Table 2 (face-responsive regions), Table 3 (scene and place responsive
regions), and Table 4 (early visual areas and LOC). Both the spatial localization of regions in the groups
of participants, as well as the frequency of localization success, approximately matches reports in the
literature (for example8).

The source code for this analysis, and the area masks for all participants are available at https://github.
com/psychoinformatics-de/studyforrest-data-retinotopy.

Usage Notes
The procedures we employed in this study resulted in a dataset that is highly suitable for automated
processing. Data files are organized according to the BIDS standard22. Data are shared in documented
standard formats, such as NIfTI or plain text files, to enable further processing in arbitrary analysis
environments with no imposed dependencies on proprietary tools. Conversion from the original raw data
formats is implemented in publicly accessible scripts; the type and version of employed file format
conversion tools are documented. Moreover, all results presented in this section were produced by
open source software on a computational cluster running the (Neuro)Debian operating system14. This
computational environment is freely available to anyone, and it—in conjunction with our analysis
scripts—offers a high level of transparency regarding all aspects of the analyses presented herein.

All data are made available under the terms of the Public Domain Dedication and License (PDDL;
http://opendatacommons.org/licenses/pddl/1.0/). All source code is released under the terms of the MIT
license (http://www.opensource.org/licenses/MIT). In short, this means that anybody is free to download
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8–10 11–13
subj. min mean med. max vol. vox.

max location (MNI) center of mass (MNI)
c. type

X Y Z X Y Z

Right lateral occipital complex

1 2.32 2.53 2.52 2.92 1.61 103 56.0 − 66.3 − 5.7 43.5 − 80.9 − 9.7 simple

2 2.50 2.75 2.73 3.24 3.20 205 53.6 − 71.4 − 1.4 39.1 − 82.0 − 4.8 simple

3 2.50 2.75 2.71 3.24 2.34 150 58.5 − 68.1 − 15.2 49.5 − 67.3 − 14.7 simple

4 2.50 2.65 2.65 2.82 0.83 53 34.3 − 86.1 0.2 29.5 − 84.3 1.6 simple

5 2.40 2.62 2.59 2.94 0.75 48 56.1 − 73.4 − 8.5 46.5 − 73.5 − 10.1 simple

9 2.50 2.74 2.68 3.14 0.77 49 41.6 − 85.1 − 13.7 36.4 − 83.8 − 1.9 simple

10 2.50 2.70 2.66 3.19 0.73 47 53.6 − 73.8 − 1.5 45.8 − 71.8 − 2.8 simple

14 2.50 2.68 2.67 2.99 1.86 119 65.7 − 58.7 − 10.0 47.2 − 72.7 − 5.7 simple

15 2.85 3.12 3.09 3.46 1.53 98 56.0 − 68.1 − 15.2 46.7 − 69.7 − 6.6 simple

16 2.80 3.00 2.98 3.39 2.16 138 56.0 − 66.3 − 5.7 42.9 − 76.4 − 7.8 simple

17 2.65 2.88 2.86 3.34 2.44 156 60.9 − 66.3 − 5.8 47.0 − 67.7 − 7.7 strict

18 2.20 2.49 2.44 2.90 1.77 113 56.1 − 73.4 − 8.5 43.4 − 77.7 − 7.5 strict

19 2.00 2.29 2.29 2.64 1.78 114 58.4 − 71.9 5.6 46.6 − 72.5 7.6 simple

20 2.00 2.24 2.18 2.82 1.08 69 56.0 − 66.9 3.5 45.0 − 76.1 − 4.7 strict

Left lateral occipital complex

1 2.80 2.99 2.96 3.44 2.03 130 − 33.5 − 90.3 − 11.4 − 41.6 − 78.0 − 12.0 simple

2 2.50 2.85 2.80 3.38 2.70 173 − 31.1 − 83.4 − 6.4 − 39.7 − 81.3 − 6.0 simple

3 2.50 2.72 2.67 3.30 2.20 141 − 31.1 − 81.9 7.7 − 45.4 − 77.8 − 2.8 simple

4 2.50 2.66 2.66 2.89 1.50 96 − 31.1 − 91.3 2.5 − 40.3 − 80.3 − 2.7 simple

5 2.40 2.62 2.56 3.05 1.17 75 − 31.1 − 86.3 0.4 − 38.6 − 80.8 − 6.5 simple

9 2.50 2.83 2.78 3.35 2.22 142 − 21.4 − 90.3 − 11.5 − 40.3 − 80.2 − 11.9 simple

10 2.50 2.88 2.87 3.32 2.62 168 − 33.5 − 83.1 − 11.0 − 42.8 − 79.1 1.3 simple

14 2.50 2.69 2.68 3.04 1.19 76 − 23.8 − 88.1 − 9.0 − 41.4 − 77.5 − 0.3 simple

14 2.50 2.75 2.69 3.29 1.64 105 − 38.4 − 70.8 − 15.0 − 50.7 − 65.0 − 8.2 simple

15 2.85 3.05 3.03 3.31 0.72 46 − 36.0 − 78.8 − 3.8 − 48.8 − 74.0 − 1.8 simple

15 2.85 3.13 3.14 3.44 0.83 53 − 36.0 − 76.1 − 8.3 − 41.8 − 73.2 − 12.4 simple

16 2.80 2.95 2.94 3.20 2.12 136 − 31.1 − 80.9 − 8.6 − 43.9 − 73.8 − 8.1 simple

17 2.70 2.98 2.95 3.53 1.97 126 − 35.9 − 77.8 − 17.7 − 47.5 − 70.7 − 9.1 simple

18 2.20 2.39 2.36 2.92 1.55 99 − 35.9 − 85.4 − 13.5 − 43.4 − 78.8 − 9.1 strict

19 2.00 2.37 2.37 3.02 0.55 35 − 43.2 − 76.4 − 3.6 − 48.0 − 76.5 0.9 simple

20 2.00 2.29 2.25 2.65 0.81 52 − 31.1 − 93.8 4.7 − 36.8 − 88.8 4.0 strict

Early visual cortex

1 2.50 2.79 2.75 3.51 3.48 223 12.5 − 88.3 − 4.5 − 0.3 − 88.1 − 6.4 strict

2 3.00 3.21 3.17 3.58 3.22 206 14.9 − 78.5 − 6.3 1.0 − 87.5 − 5.4 strict

4 2.25 2.58 2.53 3.29 6.81 436 19.8 − 90.5 − 7.0 − 1.5 − 92.4 − 4.0 strict

5 2.50 2.89 2.82 3.54 4.62 296 22.2 − 96.5 11.3 11.4 − 88.7 − 4.3 strict

5 2.50 2.90 2.85 3.53 1.50 96 2.9 − 100.3 − 5.1 − 7.7 − 97.4 0.8 strict

9 3.00 3.24 3.23 3.61 4.31 276 17.4 − 90.8 − 2.3 3.0 − 90.5 − 4.2 strict

10 2.80 3.04 3.01 3.51 4.92 315 22.2 − 102.5 − 7.7 1.8 − 92.2 2.1 strict

14 2.50 2.81 2.76 3.29 1.12 72 19.8 − 91.9 13.9 14.8 − 95.8 8.2 strict

14 2.50 2.84 2.79 3.45 3.34 214 7.6 − 83.1 − 8.9 − 5.0 − 92.5 − 1.3 strict

15 2.40 2.67 2.63 3.24 1.67 107 29.4 − 89.8 18.7 15.4 − 93.3 11.9 strict

15 2.40 2.79 2.77 3.38 1.53 98 − 2.0 − 101.0 4.2 − 10.4 − 98.6 6.2 strict

16 2.50 2.78 2.75 3.31 3.81 244 22.2 − 96.5 11.3 4.6 − 91.6 0.6 strict

17 2.50 2.86 2.83 3.50 3.34 214 29.4 − 94.7 20.7 10.3 − 88.5 1.5 strict

17 2.50 2.87 2.89 3.44 1.86 119 − 6.8 − 98.4 2.0 − 12.4 − 97.5 4.2 strict

18 2.00 2.37 2.31 3.25 5.70 365 27.0 − 75.6 − 13.1 2.0 − 88.0 − 5.0 strict

19 3.00 3.22 3.20 3.63 1.39 89 19.8 − 97.7 − 7.4 11.1 − 91.4 − 2.7 strict

19 3.00 3.22 3.21 3.60 1.56 100 0.4 − 100.3 − 5.1 − 8.2 − 99.7 6.6 strict

20 2.00 2.28 2.24 3.06 4.67 299 22.2 − 91.7 11.6 0.1 − 93.6 0.7 strict

Table 4. Individual localization results after manual titration for early visual cortex and lateral occipital
complex Table semantics are identical to Table 2.
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and use this dataset for any purpose as well as to produce and re-share derived data artifacts. While not
legally required, we hope that all users of the data will acknowledge the original authors by citing this
publication and follow good scientific practise as laid out in the ODC Attribution/Share-Alike
Community Norms (http://opendatacommons.org/norms/odc-by-sa/).
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