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Abstract: Chronic inflammation and cancer stem cells are known risk factors for tumorigenesis.
The aetiology of hepatocellular carcinoma (HCC) involves a multistep pathological process that is
characterised by chronic inflammation and hepatocyte damage, but the correlation between HCC,
inflammation and cancer stem cells remains unclear. In this study, we examined the role of hep-
atic progenitor cells in a mouse model of chemical-induced hepatocarcinogenesis to elucidate the
relationship between inflammation, malignant transformation and cancer stem cells. We used di-
ethylnitrosamine (DEN) to induce liver tumour and scored for H&E and reticulin staining. We also
scored for immunohistochemistry staining for OV-6 expression and analysed the statistical correlation
between them. DEN progressively induced inflammation at week 7 (40%, 2/5); week 27 (75%, 6/8);
week 33 (62.5%, 5/8); and week 50 (100%, 12/12). DEN progressively induced malignant transforma-
tion at week 7 (0%, 0/5); week 27 (87.5%, 7/8); week 33 (100%, 8/8); and week 50 (100%, 12/12).
The obtained data showed that DEN progressively induced high-levels of OV-6 expression at
week 7 (20%, 1/5); week 27 (37.5%, 3/8); week 33 (50%, 4/8); and week 50 (100%, 12/12). DEN-
induced inflammation, malignant transformation and high-level OV-6 expression in hamster liver,
as shown above, as well as applying Spearman’s correlation to the data showed that the expres-
sion of OV-6 was significantly correlated to inflammation (p = 0.001) and malignant transformation
(p < 0.001). There was a significant correlation between the number of cancer stem cells, inflammation
and malignant transformation in a DEN-induced model of hepatic carcinogenesis in the hamster.
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1. Introduction

Hepatocellular carcinoma (HCC) is a common malignancy that affects nearly one
million people globally each year, but treatment options are limited [1]. The aetiology
of HCC involves a multistep pathological process that is characterised by chronic in-
flammation and hepatocyte damage [2]. The dedifferentiation of mature liver cells has
been implicated in HCC [3], based on which it was hypothesised that HCC arises from
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maturation arrest in liver stem cells and hepatic progenitor cells [4]. In light of this evi-
dence, in this study, we examined the role of hepatic progenitor cells in a mouse model of
chemical-induced hepatocarcinogenesis.

Cancer stem cells are tumour cells with the ability to self-replicate and differentiate
into solid tumours, including HCC [3], and express known stem cell markers, such as
CD133 in glioma, CD44 and CD24 in breast cancer and OV-6 in HCC [5–7].

Oval cells are associated with the intrahepatic biliary system and are derived from
hepatoblasts located near hepatic portals. These cells and their progeny have the ability to
proliferate and differentiate into either biliary cells or hepatocytes. In the mature liver, oval
cells induce the replication of hepatocytes and cholangiocytes [8]. Oval cells have been
demonstrated to arise in rat hepatic intraportal regions after treatment with hepatocarcino-
gens or hepatotoxins [8,9]. The cellular protein, OV-6, has been found to be a useful marker
of rat oval cells, thought to be the progeny of hepatic stem cells [10,11]. The intraperitoneal
injection of mice with diethylnitrosamine (DEN) was shown to induce tumours in the liver,
gastrointestinal tract, skin and respiratory tract, as well as haematopoietic cancer [12–14]. In
this study, DEN was used as a carcinogen in an experimental hamster model to induce liver
tumour and determine the relationship between malignant transformation, inflammation
and the role of cancer stem cells in the pathogenesis.

2. Materials and Methods
2.1. Animals

Male hamsters (n = 40) (LASCO; Taipei; Taiwan) were housed in plastic cages with soft
bedding under a 12 h reversed light–dark cycle (light cycle from 6 a.m. to 6 p.m.; dark cycle
from 6 p.m. to 6 a.m.) and access to food and water ad libitum. All experimental procedures
were approved by the Kaohsiung Institutional Animal Care and Use Committee.

2.2. DEN-Induced Liver Cancer Model

The DEN-induced liver tumour model was established as described previously [12–14].
The hamsters were fed DEN (80 µg/g body weight/day) (Sigma-Aldrich; St. Louis; USA).
The animals were sacrificed at various timepoints in the study (weeks 7, 27, 33 and 50), and
the liver was removed and fixed in 4% paraformaldehyde and embedded in paraffin.

2.3. Histology Analysis

Tissue sections (4 µm) were stained with haematoxylin and eosin (H&E). Each pathol-
ogist initially reviewed all the slides and reached an agreement on the scores. Portal
inflammation was scored from 0 to 3 where a score of 0 indicated no portal inflammation
(Figure 1A); a score of 1 indicated ≤2 portal inflammation (Figure 1B); a score of 2 indicated
>2 portal inflammation (Figure 1C); and a score of 3 indicated portal inflammation with
interstitial sinusoidal inflammation (Figure 1D).

2.4. Reticulin Staining

Tissue sections measuring 4 µm that were obtained after deparaffinisation and rehy-
dration from paraffin-embedded samples were rinsed in distilled water and immersed in
1% potassium permanganate (Merck; Darmstadt; Germany) for 2 min, followed by treat-
ment as follows: 2.5% oxalic acid (Merck; Darmstadt; Germany) for 1 min; 2% iron alum
(Merck; Darmstadt; Germany) for 1 min; Gomori’s solution (Merck; Darmstadt; Germany)
for 3 min; 10% formalin (Merck; Darmstadt; Germany) for 2 min; gold chloride (Merck;
Darmstadt; Germany) (1:500) for 3 min; 3% potassium metabisulfite (Merck; Darmstadt;
Germany) for 1 min; and 3% sodium thiosulfate (Merck; Darmstadt; Germany) for 1 min.
Slide sections were rinsed with distilled water before immersion in each solution. Finally,
the issue sections were examined using a light microscope (Nikon) and photographed; the
images were saved as jpg files. For malignant transformation, we applied a score ranging
from 0 to 2, where a score of 0 indicated no regenerated/malignant cell (Figure 2A); a
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score of 1 indicated the presence of liver regenerated nodules (Figure 2B); and a score of
2 denoted definitive liver malignancy (Figure 2C).

Figure 1. H&E staining of hamster liver: Portal inflammation was scored from 0 to 3 in week 7 (n = 5),
27 (n = 8), 33 (n = 8), 50 (n = 12) where a score of 0 indicated no portal inflammation (A); a score of
1 indicated ≤2 portal inflammation (B); a score of 2 indicated >2 portal inflammation (C); and a score
of 3 indicated portal inflammation with interstitial sinusoidal inflammation (D).

Figure 2. The reticulin staining in hamster liver: we applied a score ranging from 0 to 2 in week
7 (n = 5), 27 (n = 8), 33 (n = 8), 50 (n = 12) where a score of 0 indicated no regenerated/malignant
cell (A); a score of 1 indicated the presence of liver regenerated nodules (B); and a score of 2 denoted
definitive liver malignancy (C).

2.5. Immunohistochemistry

We obtained 3 µm tissue sections from paraffin-embedded samples that were subjected
to deparaffinisation and rehydration. Following antigen retrieval by autoclaving for 5 min
in DAKO antigen retrieval solution (DAKO, Carpinteria, CA, USA), the sections were
washed twice in TBS buffer. Endogenous peroxidase was blocked by immersing the slides
in 3% hydrogen peroxide solution for 5 min. After washing with TBS, the slides were
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incubated with primary antibody against OV-6 (mouse anti-OV-6; MAB2020; R&D; State
of Minnesota; USA; 1:200) for 1 h at room temperature, subsequently washed two times
with TBS and incubated with biotinylated secondary antibody for 30 min. After washing
two times with TBS, the sections were treated with DAB for 5 min. Immediately after
staining, the sections were counterstained with haematoxylin for 90 s, immersed in xylene
and mounted using Permount (Fisher Scientific, Pittsburg, PA, USA). The sections were
examined using a light microscope (Nikon) and then photographed; the images were saved
as jpg files. The OV-6-immunostained tissue sections were scored as follows: a score of
0 indicated no positive cells (Figure 3A); a score of 1 indicated ‘≤5 stem cells in one high
power field’ (Figure 3B); a score of 2 indicated ‘≥5 and <10 stems cells in one power field’
(Figure 3C); and a score of 3 indicated ‘>10 stem cells in one power field’ (Figure 3D). Scores
0 and 1 were considered low-level expression, whereas scores 3 and 4 were considered
high-level expression.

Figure 3. The immunohistochemical staining of OV-6 in hamster liver in week 7 (n = 5), 27 (n = 8),
33 (n = 8), 50 (n = 12): a score of 0 indicated no positive cells (A); a score of 1 indicated ≤5 stem cells
in one high power field (B); a score of 2 indicated ≥5 and <10 stems cells in one power field (C); a
score of 3 indicated >10 stem cells in one power field (D). Scores 0 and 1 were considered low-level
expression, whereas scores 3 and 4 were considered high-level expression.

2.6. Data Analyses

SPSS 24.0 (IBM, Armonk, NY, USA) software was used for the statistical analysis. The
relationships between the score of malignant transformation, inflammation and OV-6 were
determined using Spearman’s correlation test. Statistical significance was considered when
p < 0.05.

3. Results
3.1. DEN-Induced Inflammation in Liver

Inflammation was determined by examining the scores that were obtained in the
H&E-stained sections (Figure 1). We found that DEN progressively induced inflammation
at week 7 (40%, 2/5); week 27 (75%, 6/8); week 33 (62.5%, 5/8); and week 50 (100%, 12/12).

3.2. DEN Induces Malignant Transformation in the Liver

Malignant transformation was determined by examining the scores that were obtained
from the reticulin-stained sections (Figure 2). We found that DEN progressively induced
malignant transformation at week 7 (0%, 0/5); week 27 (87.5%, 7/8); week 33 (100%, 8/8);
and week 50 (100%, 12/12).
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3.3. DEN Enhances Cancer Stem Cell Marker in the Liver

The cancer stem cells were identified based on the immunohistochemical expres-
sion of the biomarker, OV-6 (Figure 3). The obtained data showed that DEN progres-
sively induced high-levels of OV-6 expression at week 7 (20%, 1/5); week 27 (37.5%, 3/8);
week 33 (50%, 4/8); and week 50 (100%, 12/12).

3.4. Relationship between Cancer Stem Cell, Inflammation and Malignant Transformation

DEN-induced inflammation, malignant transformation and high-level OV-6 expression
in hamster liver, as shown above, and applying Spearman’s correlation to the data showed
that the expression of OV-6 was significantly correlated to inflammation (p = 0.001) and
malignant transformation (p < 0.001) (Figure 4).

Figure 4. Correlation between malignant transformation, cancer stem cells and inflammation. p value
was calculated by Spearman’s correlation test.

4. Discussion

The goal of this study was to determine the relationship between malignant trans-
formation, inflammation and the role of cancer stem cells in the pathogenesis of HCC. In
order to do so, we used DEN as a carcinogen in an experimental hamster model to induce
liver tumour, and in this study, we showed that the expression of OV-6 was significantly
correlated to inflammation and malignant transformation in the DEN-induced hamster
model of carcinogenesis.

Liver cancer is the third leading cause of cancer death and the fifth most common
cancer worldwide [15]. Because the mechanisms of pathogenesis are not clearly known, the
therapeutic approaches for hepatic malignancies are limited. To elucidate this further, the
possible mechanisms inducing human HCC are classified into four groups: growth factors
and their receptors (TGF-α) [16,17]; the reactivation of developmental pathways (Wnt) [18];
oncogenes (K-ras) [19]; and tumour suppressor gene (p53) [20,21].

Cancer stem cells can self-renew, proliferate, metastasise, cause relapse and induce
resistance to chemotherapy and radiation therapy [22]. Cancer stem cells have been identi-
fied in various human cancers, including that of the breast [23], colon [24], prostate [25],
pancreas [26], as well as in head and neck squamous cell carcinoma [27]. We showed in this
study that DNE-induced HCC expressed more OV-6 positive cells than in control animals,
indicating the increased presence of cancer stem cells in a DEN-induced model of HCC.

Inflammation is associated with an increased risk for various malignant neoplasms,
carcinogenesis, metastasis, angiogenesis, tumour invasion, anti-apoptosis, epigenetic modi-
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fications, genomic instability, enhanced cell proliferation and aggressive tumour neovas-
cularization [28–30]. Immune cells including lymphocytes and macrophages, platelets,
fibroblasts and tumour cells are a major source of angiogenic factors [31–33], which play an
essential role in leukocyte infiltration into the tumour microenvironment, thereby regulat-
ing the tumour size, distribution and composition. Indeed, tumour-associated macrophages
are key regulators of the link between inflammation and carcinogenesis [34,35].

The activation of hepatic progenitor cells in chronic hepatitis C infection is a common
occurrence that depends on the hepatitis stage [36]. Stem cell numbers increase with
sinusoidal or interstitial inflammation, and particularly in HCC, they are located within
liver tumours and scattered as single cells, not in the portal tracts, bile ducts or canals of
Hering. These stem cells assume the morphology of their neighbouring hepatocytes in both
cirrhosis and HCCs [37] and proliferate in fibrous areas and liver tumour parenchyma as
the tumours develop. In the current study, reactive ductules and intermediate hepatocyte-
like cells originated partly from the activation and differentiation of ‘progenitor cells’ in
the hamster liver, whose proliferation is associated with an increase in inflammation or
the damage of hepatocytes and the tumour status. Previous studies showed that the
progression of HCC was found through the Wnt pathway, the loss function of p53, Ras
signalling, and the ROS pathway [38]. Chronic inflammation induced the proliferation of
hepatocytes, the shortening of telomeres and malignant transformation [39]. Moreover, the
occurrence of repeated and continuous liver injury is significantly increased in advanced
cirrhosis, leading to a propensity towards cancer and fibrosis [40]. Therefore, inflammation
leads to fibrosis and malignant transformation.

Oval cells played an important role in the development of HCC [41]. OV-6 is a
biomarker of oval cells and derives from hepatic stem cells [7,8]. In addition, OV-6 has a
well-known association with prognosis in various tumours including HCC [42]. However,
no reports showed that OV-6 was associated with inflammation or malignant transforma-
tion. In our result, DEN-induced inflammation, malignant transformation and high-level
OV-6 expression in hamster liver was significantly correlated to inflammation and malig-
nant transformation (Figure 4).

5. Conclusions

There was a significant correlation between the number of cancer stem cells, inflam-
mation and malignant transformation in a DEN-induced model of hepatic carcinogenesis
in the hamster. It is postulated that the cancer developed through an inflammatory process,
which increased the cancer stem cells within the liver tumours. This study describes that
repeatedly inflammatory responses induce malignant transformation and the development
of cancer stem cells that are resistant to chemotherapy and radiotherapy.
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