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A B S T R A C T   

Purpose: This study compares performance of Timika Score to standardized, detailed radiologist observations of 
Chest X rays (CXR) for predicting early infectiousness and subsequent treatment outcome in drug sensitive (DS) 
or multi-drug resistant (MDR) tuberculosis cases. It seeks improvement in prediction of these clinical events 
through these additional observations. 
Method: This is a retrospective study analyzing cases from the NIH/NIAID supported TB Portals database, a large, 
trans-national, multi-site cohort of primarily drug-resistant tuberculosis patients. We analyzed patient records 
with sputum microscopy readings, radiologist annotated CXR, and treatment outcome including a matching step 
on important covariates of age, gender, HIV status, case definition, Body Mass Index (BMI), smoking, drug use, 
and Timika Score across resistance type for comparison. 
Results: 2142 patients with tuberculosis infection (374 with poor outcome and 1768 with good treatment 
outcome) were retrospectively reviewed. Bayesian ANOVA demonstrates radiologist observations did not show 
greater predictive ability for baseline infectiousness (0.77 and 0.74 probability in DS and MDR respectively); 
however, the observations provided superior prediction of treatment outcome (0.84 and 0.63 probability in DS 
and MDR respectively). Estimated lung abnormal area and cavity were identified as important predictors un
derlying the Timika Score’s performance. 
Conclusions: Timika Score simplifies the usage of baseline CXR for prediction of early infectiousness of the case 
and shows comparable performance to using detailed, standardized radiologist observations. The score’s utility 
diminishes for treatment outcome prediction and is exceeded by the usage of the detailed observations although 
prediction performance on treatment outcome decreases especially in MDR TB cases.   

1. Introduction 

The World Health Organization (WHO) estimates 10 million new 
cases of tuberculosis in 2020 with 1.5 million deaths, which is, unfor
tunately, the first increase in deaths since 2005 [1]. The COVID-19 
pandemic has resulted in decreased reporting of cases and treatment 
for drug-resistant tuberculosis due to pandemic-related strains on 
healthcare systems globally [2]. The pandemic is viewed as one of the 
primary reasons for these recent setbacks with TB disease management. 
Recovery from the lingering effects of the pandemic necessitates 
decreasing the burden of poor outcomes from sensitive (DS) and drug 
resistant (DR) tuberculosis cases. Bacteriologically-confirmed pulmo
nary tuberculosis cases represent a significant risk of TB transmission to 

other persons in close proximity when the TB infected person generates 
airborne particles known as droplet nuclei created by common activities 
such as sneezing, coughing, singing, laughing, or even breathing [3]. 

Routine monitoring by microscopy or culture for the absence of 
detectable M.tuberculosis in sputum, sputum conversion, is performed 
throughout TB treatment when mycobacteria is detected at the start of 
treatment. Nevertheless, culture-negative M. tuberculosis has been re
ported in up to 15–25% of TB cases [4] representing a gap that could be 
filled by radiological monitoring for screening and detection of 
M. tuberculosis. Moreover, monitoring efforts via microscopy or culture 
are challenged by the difficulty of obtaining sputum from certain pa
tients (children and those individuals with HIV infection) [5,6]. Genetic 
molecular diagnostic testing is filling the gap without necessarily 
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providing a quantitative assessment of the level of bacterial burden that 
microscopy or culture can provide. Without confirming the absence of 
mycobacteria during treatment, bacteriologically-confirmed TB patients 
remain infectious and pose a risk of transmission as well as opportunity 
for the spread of drug resistance. Radiology imaging is an alternative 
method that can help fill the gaps identified above by assessing the 
pathophysiology of the lung in response to the TB infection. The path
ophysiological responses can help to diagnose TB and understand a 
patient’s initial disease burden and transmission risk to others [7]. 

Clinicians have a need for radiologically-derived clinical scores that 
could serve as a useful adjunct to identify high-risk patients having a 
greater disease severity, transmission risk potential, as well as longer- 
term potential for detrimental treatment outcome. This is especially 
important in the growing number of DR cases endemic in certain parts of 
the world where early diagnosis, risk management, and treatment are 
key to containing the spread. The Timika Score was first reported in 
2010 and has showed strong association with sputum smear grade and 
early disease burden [8–10]; however, its reported performance for 
treatment outcome has not been as strong [11]. Since earlier studies 
often focused on DS, it is imperative to reassess Timika Score especially 
in the context of endemic DR TB in many areas of the world. The 
question is whether improvements in Timika Score’s reported perfor
mance for early disease burden and treatment outcome are possible and 
in what context, DS only, DR only, or both DS and DR? 

The ability to study the relationship between radiologically-derived 
clinical scores and treatment outcome over time in both DS and DR TB 
cases requires a detailed dataset spanning these distinct domains of data 
and containing a sufficient number of cases. We leverage the TB Portals 
database [12–14], a publicly-accessible, patient-centric resource on 
both DS and DR TB that capture treatment outcomes, radiological 
findings (both by professional radiologists and artificial intelligence), 
bacteriology, and other important aspects of the patient’s case. Using 
this unique combination of data, we assess the utility of baseline radi
ologist findings of CXRs (including Timika Score) to predict early disease 
burden as well as longer-term treatment outcome in DS and DR TB cases. 
The study is important because it investigates whether improvements in 
Timika Score are possible using a standardized, detailed set of radiolo
gist observations beyond those that were originally used to derive the 
score. To our knowledge, this is the first study to assess baseline radio
logical findings by TB resistance profile to compare predictive ability for 
early and late clinical outcomes of interest during a TB patient’s routine 
clinical care. 

2. Materials and methods 

This study adheres to the transparent reporting of a multivariate 
prediction model for individual prognosis or diagnosis (TRIPOD) 
guidelines [15]. 

2.1. Data source and access 

2.1.1. Data source 
All data was obtained from TB Portals, a trans-national collaboration 

led by the NIAID, covering forty sites from sixteen countries in Eastern 
Europe, Asia, and sub-Saharan African. The data warehouse currently 
contains over 8000 patients registered between the years of 2008–2022. 
Only publicly-available, de-identified data was used. Each participating 
clinical research institution (https://tbportals.niaid.nih.gov/where-do- 
our-cases-come-from) receives approval from the participating in
stitution’s IRB for public-sharing and follows strict adherence to ethics 
rules requirements of CRDF Global and the International Science and 
Technology Center who are the grant-issuing institutions [12]. 

2.1.2. Data access 
The data was accessed using an available API service (https://data

sharing.tbportals.niaid.nih.gov/#/data-api) through an R package 

wrapper (https://niaid.github.io/tbportals.depot.api/). 

2.2. Study Population 

2.2.1. Inclusion and exclusion criteria 
Registered patients diagnosed with DS or multidrug-resistant (MDR) 

TB having an outcome of treatment success (“completed” or “cured”) or 
treatment failure (“died” or “failure”), an age of onset greater than 18 
years old, available sputum microscopy testing before treatment initia
tion, a radiologist-annotated CXR within 90 days of treatment start and 
30 days of sputum microscopy testing were included. 

2.2.2. Matched population 
To mitigate potential impacts of certain demographic or radiological 

factors that could bias comparison of predictive accuracy between 
resistance status, matching was performed on similar patient charac
teristics in the sensitive and MDR subgroups. Age, gender, HIV status, 
case definition, Timika Score, BMI, smoking use, and drug use were 
matched using the coarsened exact match algorithm [16]. 

2.3. Clinical outcomes 

Two distinct clinical outcomes at the beginning and end of the pa
tient’s clinical history were considered. Sputum positivity prior to 
treatment was considered as the early outcome and treatment outcome 
was considered as the later outcome. Sputum positivity was defined as 
positive, if results were one of the following, “1–9 in 100 (1–9/100)”, 
“10–99 in 100 (1 +)”, “1–9 in 1 (2 +)”, “10–99 in 1 (3 +)”, “More than 
99 in 1 (4 +)”; and negative (if results were “Negative”) from the mi
croscopy examination counting the amount of M. tuberculosis bacteria 
present in sputum. In situations where multiple microscopy results were 
available, the last available result was used. In situations where multiple 
microscopy results were available on the same day, the result with 
largest count of M. tuberculosis was used. Treatment response of the 
patient was defined as either treatment success (“completed” or “cured”) 
or failure (“died” or “failure”). 

2.4. Predictors 

2.4.1. Matching predictors 
For the matching procedure, several attributes were used. A binary 

indicator of reported HIV status (1 for reported HIV, 0 for no reported 
HIV or missing) was derived from reported comorbidity. A binary in
dicator for smoking or drug use respectively (1 for reported use, 0 for no 
reported use or missing) was derived from the social risk factors attri
bute. BMI was categorized into “underweight” (<18.5), “healthy” (be
tween 18.5 and 25), “overweight/obese” (> 25), or missing. Age, 
gender, case definition were used as described by the TB portals data 
model (https://datasharing.tbportals.niaid.nih.gov/#/about-the-data). 
Timika score was derived from the estimated overall volume of the lungs 
with any reported abnormality (0–100%) by adding 40 to this value in 
presence of a reported cavity [7,8]. 

2.4.2. Predictive modeling predictors 
Predictors for modeling were derived from the radiologist findings of 

CXR. The TB portals describes the data model used for the manually 
annotated CXR (https://datasharing.tbportals.niaid.nih.gov/#/about- 
the-data). Some attributes are described at the whole lungs level (overall 
percent of abnormal volume, percent of hemithorax involvement, etc.) 
whereas other attributes are described at the sextant level (presence and 
size of cavity, presence and size of nodules, etc.). Timika score was 
derived as described in the matching procedure. Lung location was 
generated from location of reported sextant level findings (“upper” if 
occurring in either left or right upper sextant, “middle” if occurring in 
either left or right middle sextant, and “lower” if occurring in either left 
or right lower sextant). A binary indicator of cavity or nodule was 
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derived using the sextant level reporting for cavity or nodules 
respectively. 

2.5. Missing data 

2.5.1. Intention to treat analysis 
The TB Portals database contains patient’s treatment history 

including the final outcome of treatment. For the purpose of this study, 
only treatment success or failure were modeled excluding other avail
able treatment outcomes (e.g. loss to follow up, Still on treatment, etc.). 
There is a risk of bias in the generalization of the predictive performance 
of the resulting models due to exclusion of patients with these alterna
tive outcome. An intention to treat analysis was performed to assess the 
likelihood that bias would impact the conclusions from the modeling. 
The 262 patients removed during treatment outcome selection step were 
included and outcomes imputed as treatment success to assess impact on 
model predictive performance. 

2.5.2. Chest X ray findings 
An expert radiologist reviews the CXR image and provides findings in 

a standardized format required by the TB Portals program. Radiological 
findings were imputed as 0 for numerical attributes or “No” for binary 
“Yes/No” attributes if abnormalities were not identified by the radiol
ogist. This is important since certain sextants of the lungs may not have 
any identifiable findings (e.g. upper left or lower right). 

2.6. Modeling 

2.6.1. Calculation of model performance within each patient subgroup 
A nested cross validation (CV) stratified by outcome was performed 

within each subgroup (resistance type, matching, or intention to treat) 
to assess model predictive performance on clinical outcome of interest. 
Initially, the data is split into 10 equal sets termed outer folds, which are 
then split into a train and test set comprising 90% and 10% of the outer 
folder respectively. A model workflow was trained on the inner fold 90% 
training data and then tested on the 10% testing data using the tidy
models R package [17]. The workflow incorporated feature selection 
and class balancing via upsampling to ensure that the ROC metric 
accounted for these upstream processing steps during training; there
fore, data leakage or unfair estimation were mitigated. The seed to select 
each fold was kept constant when modeling each event to identify 
identical groups of patients for fold1, fold2, etc. to facilitate subsequent 
use of the fold ROC data for Bayesian ANOVA analysis. 

We trained a logistic regression model and random forest model 
using distinct workflows that leveraged all available features excluding 
Timika Score, only the Timika Score, or a domain-expert informed set of 
features [e.g., Timika Score, lung location (upper, middle, lower), and 
presence of nodules]. In the logistic model workflows, we included a 
near zero variance exclusion step (https://recipes.tidymodels.org/ 
reference/step_nzv.html) to remove sparse variables and a Minimum 
Redundacy Maximum Relevancy (https://stevenpawley.github.io/rec
ipeselectors/reference/step_select_mrmr.html) step to include only the 
features showing the most correlation with outcome but least correla
tion with each other. For the Random Forest workflows, we include all 
variables as the algorithm selects the most important variables during 
modeling. All analyses were done as a targets workflow [18] for 
enhanced reproducibility using R version 4.2.1. The code for the analysis 
can be found at https://github.com/niaid/tbportals.timika.comparison. 

2.6.2. Bayesian ANOVA 
With the tidyposterior R package [19], we calculate the probability 

density of the model ROC by Bayesian analysis (https://tidyposterior. 
tidymodels.org/reference/perf_mod.html) using the observed perfor
mance for the best models. In doing so, we could posit questions such as 
“what is the probability that Timika Score can more reliably predict 
early versus late outcomes within DS cases” or “what is the probability 

that additional radiologist findings can more reliably predict treatment 
outcome versus Timika Score in MDR TB cases”. To address these 
probabilistic questions, we defined a region of practical equivalence 
(ROPE) as 0.02 ROC meaning that any resulting probability describes 
boundaries of this threshold in the posterior distributions (e.g., 0.02 
lower, 0.03 equivalent, and 0.95 higher probabilities corresponding to a 
comparison of Model A versus Model B indicates that the most probable 
result is that Model A’s ROC exceeds Model B’s by at least 0.02 ROC at 
0.95 probability and we can reject null hypothesis of both falling within 
the ROPE). 

3. Results 

3.1. Study population and outcomes 

2142 patients were included in the study population to model early 
and late clinical outcomes. Table 1 shows the loss of patients at each step 
of the inclusion criteria with 1325 matched patients identified for the 
matched analyses. After matching for age, gender, HIV, case definition, 
Timika Score, BMI, smoking, and drug use, matched covariates show a 
negligible absolute standardized mean difference between the sensitive 
and MDR cases of less than 0.1 (Supplementary Figure 1). The patient 
characteristics of the unmatched (Table 2) and matched (Table 3) study 
populations demonstrate observed relationships between the events of 
interest by resistance type. These observations are consistent with the 
matching procedure balancing the matched covariates between the DS 
and MDR TB subgroups. 

The unmatched MDR subgroup in Table 2 shows a lower percentage 
of sputum negative microscopy results (29.8% of MDR versus 36.8% of 
DS) and treatment success (76.3% of MDR versus 89% of DS). Moreover, 
there is a greater percentage of relapse cases or other case definitions 
suggesting previous history of TB infection (33.7% of MDR versus 12% 
of DS). Certain comorbidities and risk factors such as reported HIV 
infection, smoking, alcohol and drug use were higher in the unmatched 
MDR population. In the matched population, these differences between 
MDR and DS patients in Table 3 are reduced. For example, reported HIV 
was reduced from 15.3% of MDR versus 3.3% of DS in the unmatched to 
5.1% of MDR versus 1.8% of DS in the matched. Case definition sug
gesting previous history of TB was reduced from 33.7% of MDR versus 
12% of DS in the unmatched to 13.1% of MDR versus 6.4% of DS after 
matching and mean BMI was equivalent at 20.5. Demonstrating suc
cessful matching is important: if predictions are consistent in both un
matched and matched populations, this supports that findings are 
generalizable to new cohorts of DS and MDR TB patients. 

Table 1 
Inclusion criteria.  

Case Criteria Number of Cases 
Meeting Criteria 

Number of 
Excluded Cases 

All public TB Portals cases  8779 0 
Age greater than 18 years  8643 -136 
Has sputum microscopy result prior to 

treatment  
6981 -1662 

Has annotated CXR within 90 days of 
treatment start  

4089 -2892 

Has annotated CXR within 30 days 
prior to sputum microscopy  

3109 -980 

Clinically reported type of resistance is 
DS or MDR  

2404 -705 

Treatment outcome is one of 
Completed, Cured, Died, or Failure  

2142 -262 

Matched clinical resistance on key 
covariates such as age, gender, etc.  

1325 -817 

Overview of stepwise cohort selection strategy used to select the final study 
population. The inclusion criteria is shown in the case criteria column along with 
the identified number of cases included and excluded at each step which occurs 
consecutively. 
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Table 2 
Unmatched study population.  

covariate MDR (N = 1067) Sensitive (N = 1075) Total (N = 2142) 

* *microscopyresults* *   
Negative 318 (29.8%) 396 (36.8%) 714 (33.3%) 
1–9 in 100 (1–9/100) 157 (14.7%) 96 (8.9%) 253 (11.8%) 
10–99 in 100 (1 +) 251 (23.5%) 276 (25.7%) 527 (24.6%) 
1–9 in 1 (2 +) 136 (12.7%) 146 (13.6%) 282 (13.2%) 
10–99 in 1 (3 +) 199 (18.7%) 130 (12.1%) 329 (15.4%) 
More than 99 in 1 (4 +) 6 (0.6%) 31 (2.9%) 37 (1.7%) 
* *outcome* *   
Completed 137 (12.8%) 75 (7.0%) 212 (9.9%) 
Cured 677 (63.4%) 879 (81.8%) 1556 (72.6%) 
Died 190 (17.8%) 35 (3.3%) 225 (10.5%) 
Failure 63 (5.9%) 86 (8.0%) 149 (7.0%) 
* *timika_score* *   
Mean (SD) 46.492 (35.805) 49.222 (31.406) 47.862 (33.689) 
Range 0.000–140.000 0.000–140.000 0.000–140.000 
* *upper* *    
FALSE 99 (9.3%) 127 (11.8%) 226 (10.6%) 
TRUE 968 (90.7%) 948 (88.2%) 1916 (89.4%) 
* *middle* *    
FALSE 396 (37.1%) 337 (31.3%) 733 (34.2%) 
TRUE 671 (62.9%) 738 (68.7%) 1409 (65.8%) 
* *lower* *    
FALSE 684 (64.1%) 636 (59.2%) 1320 (61.6%) 
TRUE 383 (35.9%) 439 (40.8%) 822 (38.4%) 
* *cavity* *    
FALSE 570 (53.4%) 567 (52.7%) 1137 (53.1%) 
TRUE 497 (46.6%) 508 (47.3%) 1005 (46.9%) 
* *nodule* *    
FALSE 154 (14.4%) 297 (27.6%) 451 (21.1%) 
TRUE 913 (85.6%) 778 (72.4%) 1691 (78.9%) 
* *registration_date* *   
Mean (SD) 2019.870 (1.600) 2019.638 (1.518) 2019.754 (1.564) 
Range 2011.000–2022.000 2010.000–2022.000 2010.000–2022.000 
* *age_of_onset* *   
Mean (SD) 43.420 (12.367) 44.477 (14.989) 43.951 (13.752) 
Range 18.000–85.000 18.000–88.000 18.000–88.000 
* *gender* *    
Female 254 (23.8%) 285 (26.5%) 539 (25.2%) 
Male 813 (76.2%) 790 (73.5%) 1603 (74.8%) 
* *country* *    
Azerbaijan 1 (0.1%) 0 (0.0%) 1 (0.0%) 
Belarus 56 (5.2%) 15 (1.4%) 71 (3.3%) 
Georgia 139 (13.0%) 621 (57.8%) 760 (35.5%) 
Kazakhstan 82 (7.7%) 4 (0.4%) 86 (4.0%) 
Moldova 75 (7.0%) 165 (15.3%) 240 (11.2%) 
Romania 21 (2.0%) 8 (0.7%) 29 (1.4%) 
Ukraine 693 (64.9%) 262 (24.4%) 955 (44.6%) 
* *education* *   
Basic school (incl. primary) 280 (26.2%) 149 (13.9%) 429 (20.0%) 
College (bachelor) 161 (15.1%) 51 (4.7%) 212 (9.9%) 
Complete school (a-level, gymnasium) 255 (23.9%) 219 (20.4%) 474 (22.1%) 
Higher (university) 60 (5.6%) 12 (1.1%) 72 (3.4%) 
No education 7 (0.7%) 1 (0.1%) 8 (0.4%) 
Not Reported 304 (28.5%) 643 (59.8%) 947 (44.2%) 
* *employment* *   
Disabled 55 (5.2%) 18 (1.7%) 73 (3.4%) 
Employed 222 (20.8%) 195 (18.1%) 417 (19.5%) 
Homemaker 8 (0.7%) 3 (0.3%) 11 (0.5%) 
Not Reported 15 (1.4%) 11 (1.0%) 26 (1.2%) 
Retired 76 (7.1%) 71 (6.6%) 147 (6.9%) 
Self-employed 9 (0.8%) 5 (0.5%) 14 (0.7%) 
Student 9 (0.8%) 5 (0.5%) 14 (0.7%) 
Unemployed 654 (61.3%) 766 (71.3%) 1420 (66.3%) 
Unofficially employed 19 (1.8%) 1 (0.1%) 20 (0.9%) 
* *case_definition* *   
Chronic TB 25 (2.3%) 4 (0.4%) 29 (1.4%) 
Failure 40 (3.7%) 7 (0.7%) 47 (2.2%) 
Lost to follow up 24 (2.2%) 13 (1.2%) 37 (1.7%) 
New 707 (66.3%) 946 (88.0%) 1653 (77.2%) 
Other 16 (1.5%) 11 (1.0%) 27 (1.3%) 
Relapse 253 (23.7%) 93 (8.7%) 346 (16.2%) 
Unknown 2 (0.2%) 1 (0.1%) 3 (0.1%) 
* *bmi* *    
N-Miss 66 627 693 

(continued on next page) 
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3.2. Modeling 

3.2.1. Identifying the best performing models 
We use the median ROC from the CV results to identify the best 

performing models across DS and MDR TB patients. Identifying these 
models permitted us to formally test them later on by Bayesian analysis. 
CV results quickly established general trends in prediction performance 
across different models and prediction tasks. Interestingly, we noted 
better performance for predicting baseline sputum positivity in MDR TB 
compared to DS while the opposite was observed for treatment outcome. 
We compared the CV results from the unmatched populations since 
these correspond to the real-world characteristics of the selected cases in 
TB Portals. Most models within each prediction task and TB patient 
cohort perform similarly as evidenced by the range of ROC values. ROC 
between 0.6 and 0.63 and 0.66–0.71 were observed for baseline sputum 
positivity prediction in DS and MDR cases respectively. For treatment 
outcome, observed ROC values fell between the ranges of 0.58–0.69 and 
0.58–0.64 in DS and MDR cases respectively. Model predictive perfor
mance for the two clinical outcomes is shown in Supplementary Table 1. 
Besides median, we report a number of other statistics on the perfor
mance of the CV ROC and also show performance on matched data. 
Model performance results demonstrate that matching had a modest 
effect if any at all on model performance. 

3.2.1.1. Identifying the best models for DS. The regression model 
including Timika Score, nodule, and lung location performed the best 
when predicting treatment outcome with a median ROC of 0.69. For 
predicting baseline sputum positivity, the logistic regression model 
using Timika Score performed the best with a median ROC of 0.63. Most 
models performed equivalently with matching having minimal impact. 
The best performing model using matched data had 0.72 and 0.66 ROC 
for treatment outcome and baseline sputum positivity respectively. 

3.2.1.2. Identifying the best models for MDR TB. Median ROC was lower 
for prediction of treatment outcome in general in the MDR TB cohort. 
Logistic regression using detailed radiologist findings performed the best 
with an ROC of 0.64. Matching had a modest impact on model perfor
mance for the logistic regression models as the median ROC decreased 
by ~0.05. Logistic regression using Timika Score demonstrated the best 
performance for predicting baseline sputum positivity with a ROC of 
0.71. Predictive performance for baseline positivity was generally better 
than for sensitive TB patients. Matching showed a modest impact: ROC 
improved in the matched cohort for certain algorithms. The random 
forest model using detailed radiologist observations improved from 0.67 
to 0.72 ROC for instance. This impact was smaller for other algorithms 
such as the logistic regression model using Timika Score which 
improved from 0.71 to 0.72 ROC. 

3.2.2. Comparing the best performing models 
We next identified whether the best performing models using Timika 

Score exceeded the performance of those including detailed radiologist 
observations. Comparisons of the best performing models with proba
bilities of each conclusion is shown in Supplementary Table 2. These 
comparisons identified with high likelihood that Timika Score performs 
equivalently or better than using detailed radiologist findings in TB 
Portals in both DS (0.77 probability) and MDR (0.74 probability) pa
tients for baseline sputum positivity. We observed that this was not the 
case for treatment outcome. The detailed radiologist findings could 
improve prediction performance over Timika Score with 0.84 and 0.63 
probability for DS and MDR respectively. Moreover, we noted a decrease 
in performance of Timika Score when predicting treatment outcome 
compared to its stronger performance for baseline positivity especially 
in MDR TB (0.96 probability). To make the above comparisons, we 
calculated the probability that the observed CV model performance 
exceeded a ROPE of 0.02 by Bayesian ANOVA analysis. A representative 
example of the Bayesian ANOVA results is shown in Fig. 1. By comparing 
these densities using the ROPE threshold, conclusions on the above 
differences could be made with associated probabilities for each. 

3.2.2.1. Findings from comparison of the best models in DS. When pre
dicting baseline positivity, Timika Score is equivalent to or exceeds 
modeling using detailed radiologist observations with a probability of 
0.77. For predicting treatment outcome, including detailed radiologist 
findings exceeded Timika Score with a probability of 0.84. Timika 
Score’s predictive performance for baseline positivity compared to 
treatment outcome did not differ significantly with 0.47 probability. 
There is a higher degree of uncertainty in the previous assessment. 
Matching did not have a substantial effect on the conclusions. As an 
example, we assessed if Timika Score is equivalent to detailed radiolo
gist observations for predicting baseline positivity. We calculated a 
probability of 0.54 versus 0.46 in unmatched and matched DS patients 
respectively noting that the probabilities are similar. Importantly, the 
intention to treat (IIT) analysis indicated that conclusions are not 
significantly impacted by drop-out prior to treatment completion 
(Supplementary Table 3). For instance, we analyzed the probability of 
Timika score performing equivalently to detailed radiologist observa
tions for baseline positivity in the IIT analysis. We noted a probability of 
0.54 in unmatched analysis as compared to 0.53 in the IIT results. 

3.2.2.2. Findings from comparison of the best models in MDR TB. Timika 
Score demonstrated equivalent or better prediction of baseline positivity 
compared to detailed radiologist observations (0.74 probability) as 
shown in supplementary table 2. For treatment outcome, detailed 
radiologist findings outperformed Timika Score with 0.63 probability. 
We also compared predictive performance of Timika Score for baseline 

Table 2 (continued ) 

covariate MDR (N = 1067) Sensitive (N = 1075) Total (N = 2142) 

Mean (SD) 20.310 (3.567) 20.517 (3.789) 20.374 (3.637) 
Range 11.100–44.900 12.300–37.400 11.100–44.900 
* *hiv* *    
FALSE 904 (84.7%) 1040 (96.7%) 1944 (90.8%) 
TRUE 163 (15.3%) 35 (3.3%) 198 (9.2%) 
* *risk_smoker* *   
Mean (SD) 0.601 (0.490) 0.158 (0.365) 0.379 (0.485) 
Range 0.000–1.000 0.000–1.000 0.000–1.000 
* *risk_alcohol* *   
Mean (SD) 0.278 (0.448) 0.097 (0.296) 0.187 (0.390) 
Range 0.000–1.000 0.000–1.000 0.000–1.000 
* *risk_drug* *   
Mean (SD) 0.059 (0.236) 0.003 (0.053) 0.031 (0.173) 
Range 0.000–1.000 0.000–1.000 0.000–1.000 

Overview of the unmatched study population prior to final matching step. Values indicate the count of patients with parenthesis indicating percentage unless otherwise 
indicated by a Mean (SD) or Range for numerical data. 
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Table 3 
Matched study population.  

covariate MDR (N = 604) Sensitive (N = 721) Total (N = 1325) 

* *microscopyresults* *   
Negative 176 (29.1%) 265 (36.8%) 441 (33.3%) 
1–9 in 100 (1–9/100) 90 (14.9%) 66 (9.2%) 156 (11.8%) 
10–99 in 100 (1 +) 157 (26.0%) 183 (25.4%) 340 (25.7%) 
1–9 in 1 (2 +) 78 (12.9%) 99 (13.7%) 177 (13.4%) 
10–99 in 1 (3 +) 99 (16.4%) 93 (12.9%) 192 (14.5%) 
More than 99 in 1 (4 +) 4 (0.7%) 15 (2.1%) 19 (1.4%) 
* *outcome* *   
Completed 81 (13.4%) 60 (8.3%) 141 (10.6%) 
Cured 420 (69.5%) 583 (80.9%) 1003 (75.7%) 
Died 82 (13.6%) 17 (2.4%) 99 (7.5%) 
Failure 21 (3.5%) 61 (8.5%) 82 (6.2%) 
* *timika_score* *   
Mean (SD) 41.518 (32.867) 44.345 (31.363) 43.057 (32.076) 
Range 0.000–130.000 0.000–140.000 0.000–140.000 
* *upper* *    
FALSE 59 (9.8%) 103 (14.3%) 162 (12.2%) 
TRUE 545 (90.2%) 618 (85.7%) 1163 (87.8%) 
* *middle* *    
FALSE 245 (40.6%) 244 (33.8%) 489 (36.9%) 
TRUE 359 (59.4%) 477 (66.2%) 836 (63.1%) 
* *lower* *    
FALSE 419 (69.4%) 431 (59.8%) 850 (64.2%) 
TRUE 185 (30.6%) 290 (40.2%) 475 (35.8%) 
* *cavity* *    
FALSE 345 (57.1%) 416 (57.7%) 761 (57.4%) 
TRUE 259 (42.9%) 305 (42.3%) 564 (42.6%) 
* *nodule* *    
FALSE 95 (15.7%) 197 (27.3%) 292 (22.0%) 
TRUE 509 (84.3%) 524 (72.7%) 1033 (78.0%) 
* *registration_date* *   
Mean (SD) 2019.821 (1.629) 2019.671 (1.535) 2019.740 (1.580) 
Range 2011.000–2022.000 2010.000–2022.000 2010.000–2022.000 
* *age_of_onset* *   
Mean (SD) 43.043 (11.994) 41.480 (13.776) 42.192 (13.013) 
Range 18.000–83.000 18.000–86.000 18.000–86.000 
* *gender* *    
Female 134 (22.2%) 180 (25.0%) 314 (23.7%) 
Male 470 (77.8%) 541 (75.0%) 1011 (76.3%) 
* *country* *    
Belarus 35 (5.8%) 13 (1.8%) 48 (3.6%) 
Georgia 85 (14.1%) 357 (49.5%) 442 (33.4%) 
Kazakhstan 43 (7.1%) 3 (0.4%) 46 (3.5%) 
Moldova 50 (8.3%) 126 (17.5%) 176 (13.3%) 
Romania 11 (1.8%) 8 (1.1%) 19 (1.4%) 
Ukraine 380 (62.9%) 214 (29.7%) 594 (44.8%) 
* *education* *   
Basic school (incl. primary) 148 (24.5%) 118 (16.4%) 266 (20.1%) 
College (bachelor) 98 (16.2%) 41 (5.7%) 139 (10.5%) 
Complete school (a-level, gymnasium) 146 (24.2%) 170 (23.6%) 316 (23.8%) 
Higher (university) 39 (6.5%) 11 (1.5%) 50 (3.8%) 
No education 2 (0.3%) 1 (0.1%) 3 (0.2%) 
Not Reported 171 (28.3%) 380 (52.7%) 551 (41.6%) 
* *employment* *   
Disabled 25 (4.1%) 12 (1.7%) 37 (2.8%) 
Employed 144 (23.8%) 143 (19.8%) 287 (21.7%) 
Homemaker 4 (0.7%) 3 (0.4%) 7 (0.5%) 
Not Reported 10 (1.7%) 10 (1.4%) 20 (1.5%) 
Retired 35 (5.8%) 41 (5.7%) 76 (5.7%) 
Self-employed 8 (1.3%) 3 (0.4%) 11 (0.8%) 
Student 6 (1.0%) 4 (0.6%) 10 (0.8%) 
Unemployed 369 (61.1%) 504 (69.9%) 873 (65.9%) 
Unofficially employed 3 (0.5%) 1 (0.1%) 4 (0.3%) 
* *case_definition* *   
Chronic TB 4 (0.7%) 3 (0.4%) 7 (0.5%) 
Lost to follow up 1 (0.2%) 1 (0.1%) 2 (0.2%) 
New 525 (86.9%) 675 (93.6%) 1200 (90.6%) 
Relapse 74 (12.3%) 42 (5.8%) 116 (8.8%) 
* *bmi* *    
N-Miss 31 359 390 
Mean (SD) 20.508 (3.367) 20.530 (3.580) 20.516 (3.449) 
Range 11.100–44.900 12.900–37.400 11.100–44.900 
* *hiv* *    
FALSE 573 (94.9%) 708 (98.2%) 1281 (96.7%) 

(continued on next page) 
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positivity versus treatment outcome. Timika Score could more reliably 
predict baseline positivity with 0.96 probability. Matching did not have 
a substantial effect on predictions except for a modest effect on treat
ment outcome. It enhanced the likelihood that Timika Score perfor
mance was equivalent or exceeded detailed radiologist findings. We 
noted this increase from a calculation of 0.37 versus 0.71 probability in 
unmatched and matched MDR TB patients respectively. The IIT analysis 
revealed that conclusions regarding the predictive comparisons were not 
influenced by drop-out prior to treatment completion (Supplementary 
Table 3). Like in DS, we calculated the probability of Timika score 
performing equivalently to detailed radiologist observations for baseline 
positivity by IIT analysis. We calculated a probability of 0.55 in un
matched analysis as compared to 0.8 in the IIT analysis. In both com
parisons, these were the most likely conclusions. The results from both 
DS and MDR modeling demonstrate the value of Timika Score for pre
dicting baseline positivity and the potential for additional radiologist 
findings to enhance prediction of treatment outcome. The additional 
efforts to explore these comparisons with matching and IIT analyses 
indicate that the results are robust and likely to generalize well. 

3.2.3. Interpretable machine learning 
After observing comparable performance of Timika Score with 

detailed radiologist observations for baseline positivity but not for 
treatment outcome, we endeavored to understand why through inter
pretable machine learning (IML) approaches of predictor importance 
and partial dependence plots. The most important predictor across DS 
(Figs. 2A and 3A) and MDR (Figs. 2C and 3C) groups was estimated 
overall percent of abnormal volume of the lung. Presence of cavity was 
also identified as important for prediction of baseline sputum positivity; 
however, it was not found among the top predictors of treatment 
outcome. We also support this finding by comparing its effect on pre
diction using partial dependence plots. Presence of cavity strongly in
fluences the model to predict baseline positivity across different 
estimates of overall abnormal lung volume (Fig. 2B and D); however, its 
influence wanes for prediction of treatment outcome (Fig. 3B and D). 
Presence of nodules of various sizes and opacity were among the top 
predictors for baseline positivity and treatment outcome across both DS 
and MDR patients. Interestingly, percent of pleural effusion of hemi
thorax was identified as a top predictor for treatment outcome in MDR 
patients (Fig. 3C). 

These observations are consistent with the difference in Timika 
Score’s predictive performance for baseline sputum microscopy posi
tivity and treatment outcome that we observed by Bayesian ANOVA. 
They suggest that other baseline radiological factors provide additional 
predictive capability for treatment outcome. One example previously 
mentioned in MDR patients is the percent of pleural effusion of hemi
thorax whereas another are the nodules of various size and opacity. 
Nonetheless, Timika Score demonstrated some predictive capacity to
wards treatment outcome since overall abnormal lung volume is the 
most important factor identified in both predictive tasks. Moreover, the 
above results suggest that for treatment outcome prediction, extent of 

severity (e.g., greater than 50% lung abnormal) is important especially 
in MDR patients. This is consistent with other studies showing extent of 
infection or delay to treatment having an important impact on treatment 
outcome [13,20]. 

3.2.3.1. Findings in baseline sputum positivity. We first examined pre
dictions of machine learning for baseline sputum microscopy positivity. 
The most important features for the random forest model workflow 
using all radiological findings are shown in Fig. 2. Given the comparable 
performance of Timika Score with all other predictors for this prediction 
task, we hypothesized that overall abnormal lung volume and presence 
of cavity would be among the top features. The feature importance 
analysis in Fig. 2A and C confirmed this hypothesis demonstrating that 
overall abnormal lung volume was the top predictive feature and pres
ence of cavity was also among the top 10 important features. To explore 
how overall abnormal lung volume and cavity interaction impacted the 
model’s predictions, we generated partial dependence plots for these 
two predictors in Fig. 2B and D. Presence of cavity increased the mar
ginal probability of the model to predict an outcome of baseline sputum 
microscopy positive by ~0.15–0.2 across the range of overall abnormal 
volume reported indicating that presence of a cavity strongly influenced 
the model to predict a positive baseline sputum microscopy. Moreover, 
overall abnormal lung volume increase led to a higher marginal prob
ability of predicting a positive baseline microscopy up to ~ 25% 
abnormal volume of the lungs where it plateaued; therefore, prediction 
of positive baseline sputum microscopy increases sharply for the first 
reported 25% of overall lung abnormal area and further reported in
creases beyond this area does not have much of an added effect. 

3.2.3.2. Findings in treatment outcome. We next examined the machine 
learning predictions for the subsequent treatment outcome. The most 
important features for the random forest model workflow using all 
radiological findings are shown in Fig. 3. Timika Score did not show 
comparable performance for this task so we hypothesized that other 
features might be identified among the most important features as 
shown in Fig. 3A and C. Interestingly, overall abnormal lung volume was 
still identified as the most important feature but presence of cavity was 
no longer among the top 10 important features. Presence of cavity still 
increased the marginal probability of treatment failure in the Partial 
Dependence Plots; however, the increases across the range of reported 
overall abnormal volume values were less than what were observed 
when predicting baseline microscopy positivity and varied by reported 
abnormal lung volume (from a difference of ~0.02 to ~0.05 increase in 
probability). Moreover, the reported overall abnormal volume of the 
lung showed a more modest increase in marginal probability of poor 
outcome in Sensitive (increase of ~0.02 probability from 0% to 100% 
reported overall abnormal lung volume). In MDR, the probability of 
predicting poor outcome increased linearly by ~0.1 probability after the 
reported overall abnormal lung volume exceeded 50%. 

Table 3 (continued ) 

covariate MDR (N = 604) Sensitive (N = 721) Total (N = 1325) 

TRUE 31 (5.1%) 13 (1.8%) 44 (3.3%) 
* *risk_smoker* *   
Mean (SD) 0.550 (0.498) 0.205 (0.404) 0.362 (0.481) 
Range 0.000–1.000 0.000–1.000 0.000–1.000 
* *risk_alcohol* *   
Mean (SD) 0.260 (0.439) 0.128 (0.334) 0.188 (0.391) 
Range 0.000–1.000 0.000–1.000 0.000–1.000 
* *risk_drug* *   
Mean (SD) 0.012 (0.107) 0.003 (0.053) 0.007 (0.082) 
Range 0.000–1.000 0.000–1.000 0.000–1.000 

Overview of the matched study population after final matching step. Values indicate the count of patients with parenthesis indicating percentage unless otherwise 
indicated by a Mean (SD) or Range for numerical data. 

G. Rosenfeld et al.                                                                                                                                                                                                                              



European Journal of Radiology Open 11 (2023) 100518

8

Fig. 1. Bayesian ANOVA estimation of model performance in unmatched cohort. The posterior distributions of the ROC metric calculated from the Bayesian ANOVA 
modeling of the different modeling workflows. Above example is shown for the unmatched subgroups and is representative of what can be generated for the other 
subgroups of interest. Different colors represent the posterior distributions of distinct workflows. Red: Logistic Regression using all variables, Yellow: Random Forest 
using all variables, Green: Logistic Regression using only Timika Score, Light Blue: Logistic Regression using Timika plus lung location and nodule present (Timika 
Plus), Dark Blue: Random Forest using Timika Plus, Pink: Random Forest using Timika Score. A) Prediction of the baseline sputum microscopy positivity in Sensitive 
TB patients. B) Prediction of the treatment outcome in Sensitive TB patients. C) Prediction of the baseline sputum microscopy positivity in MDR TB patients. D) 
Prediction of the treatment outcome in MDR TB patients. 
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Fig. 2. Important radiological predictors from the Random Forest model to predict baseline microscopy positivity in matched Sensitive TB and MDR TB patients. The 
most important features from the random forest workflow trained on the matched population of Sensitive and MDR TB patients is shown for A) Sensitive TB Patients 
and C) MDR TB Patients. Partial Dependence Plot showing the predictive relationship between overall abnormal volume of lung and cavity status is shown for the 
same random forest workflow for B) Sensitive TB Patients and D) MDR TB Patients. Presence of cavity (blue) modify the model’s predictive probability of baseline 
microscopy positivity by increasing this probability compared to absence of cavity (red). 
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Fig. 3. Important radiological predictors from the Random Forest model to predict treatment success in matched Sensitive TB and MDR TB patients. The most 
important features from the random forest workflow trained on the matched population of Sensitive and MDR TB patients is shown for A) Sensitive TB Patients and C) 
MDR TB Patients. Partial Dependence Plot showing the predictive relationship between overall abnormal volume of lung and cavity status is shown for the same 
random forest workflow for B) Sensitive TB Patients and D) MDR TB Patients. Presence of cavity (blue) modify the model’s predictive probability of baseline mi
croscopy positivity by increasing this probability compared to absence of cavity (red). 
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4. Discussion 

This study is unique in that it assesses detailed, baseline radiological 
findings’ and Timika Score’s predictive performance across two distinct 
clinical outcomes at the beginning and end of DS and MDR TB clinical 
care. To the best of our knowledge, this is the first study to use machine 
learning to compare the predictive performance of Timika Score with 
detailed radiologist findings within DS and MDR TB patients from a 
large, trans-national, multi-site cohort containing a wide variety of 
routinely collected radiological features and distinct clinical outcomes 
over time. Previous studies examined the performance of the Timika 
Score in one clinical site or prediction of a single clinical event [8,21,10, 
9,22–24,7]. Moreover, this study utilized IML approaches to explain 
how the models arrive at each prediction. Estimated overall abnormal 
percent of lung volume was the most important predictor identified 
across clinical outcomes for both DS and MDR whereas presence of 
cavity was only identified during baseline positivity prediction. Pres
ence of nodules in the upper and middle sextants of the lungs were also 
consistently among the top predictors for each outcome. These obser
vations are consistent with a previous study analyzing CT images that 
showed association of disease extent and presence of cavity with sputum 
smear grade [25]. Nevertheless, other features were unique to predic
tion of a specific outcome. For example, percent of pleural effusion of 
hemithorax was only identified in the top predictors for treatment 
outcome in MDR. Interestingly, pleural effusion has been suggested to be 
an indicator of TB reactivation in adults [26] with potential of reac
tivation in previously healed TB cases [27] and its remission has been 
associated with treatment response by CT data [28]. The IML results 
demonstrate why Timika Score performs equivalently or even better 
than detailed radiologist observations for baseline positivity but not for 
treatment outcome. The additional radiologist findings improved pre
diction with high likelihood. 

To address the most frequent concerns related to real world studies of 
tuberculosis such as biases arising from cohort selection or missing 
treatment outcome, we performed a variety of additional, careful tests. 
Certain patient characteristics such as HIV or age may influence treat
ment outcome [29,30] or baseline positivity [31]. Furthermore, 
measuring predictive performance across multiple clinical outcomes 
necessitating co-occurring information (e.g., baseline radiology and 
sputum microscopy) during specific periods of time within patient 
clinical care may result in selection bias. To compare model perfor
mance we include an analysis on matched DS and MDR patients on 
several covariates that had significant differences such as age, reported 
HIV, smoking, drug use, etc. We demonstrate that these covariates did 
not significantly impact the generalization of the findings in the 
matched analysis. The matched analysis showed consistent results with 
the unmatched analysis. Our IIT analysis also demonstrates that 
censoring or drop-out due to exclusion of certain treatment outcomes 
does not impact our findings. By verifying that the results are consistent 
across these additional cross-checks, we provide stronger evidence in 
support of the main findings. 

Previous machine learning studies may not consider how biases in 
study population or clinical events (such as patient drop-out prior to 
treatment completion) might impact model performance. Moreover, 
such studies may not consider model performance in a way to assess the 
clinical relevance. We employed state of the art Bayesian methods to 
compare model performance from the best model workflows [19]. If 
machine learning studies compare only CV results, comparisons can 
results in statistically significant differences that are not clinically 
meaningful (e.g. a negligible difference in AUC). The Bayesian ANOVA 
approach assesses model predictive performance in a probabilistic 
manner to overcome these limitations [32]. For example, we clearly 
demonstrate with a defined ROPE the likelihood of improvements of 
models incorporating standardized, detailed radiologist findings 
compared to Timika Score. These comparisons show where improve
ments with clinical impact are likely versus unlikely to be achieved. 

In our study, Timika Score performed equivalently or even exceeded 
using all other radiological features for prediction of baseline sputum 
microscopy. This is a useful finding for radiologists as it is an easy to 
implement score and valuable clinical tool. Our results for prediction of 
sputum microscopy are consistent with prior findings showing the utility 
of Timika Score for baseline disease severity and infectiousness [9,7,8]. 
With regards to treatment outcome, our results fall into the range of 
previously reported ROC metrics showing a modest predictive ability for 
Timika Score between 0.6 and 0.7 ROC [11,21]. We show that Timika 
Score performs equivalently in DS patients for baseline sputum posi
tivity and treatment outcome but not in MDR patients where it has less 
reliability to predict treatment outcome. The difference we observed in 
performance for early and late clinical outcomes may be due to the 
differing treatment lengths of DS and MDR patients[33,34]. The 
extended time associated with MDR treatment may diminish the capa
bility of baseline radiology to reliably predict treatment outcomes. The 
comparisons showing that use of detailed radiologist findings out
performs Timika Score suggest opportunity for baseline, 
radiology-informed clinical score development for treatment outcome 
especially in DS patients with shorter treatments. While CXR serves as a 
useful tool for TB diagnosis and monitoring, they are two dimensional 
making some of the clinical parameter estimates difficult. As CT tech
nology becomes more accessible, future research could examine Timika 
Score and other radiology-informed scores in three dimensional CT 
images permitting greater confidence in the estimates of salient radio
logical findings. 

5. Conclusion 

Timika Score performed equivalently to using all other radiological 
findings for prediction of baseline sputum microscopy positivity in both 
sensitive and MDR patients; however, prediction of treatment outcome 
using Timika Score was less reliable compared to using all other radi
ologist findings especially in sensitive patients. We also demonstrate 
that Timika Score predictive performance for baseline microscopy 
sputum positivity exceeds that of its performance for treatment outcome 
in MDR patients but not sensitive patients. These findings may aid in the 
appropriate usage of Timika Score for the identification of high-risk 
patients at the beginning and end of TB clinical care, research prioriti
zation on automated features for deep learning, and opportunities for 
the development of novel radiology-informed clinical scores. Timika 
Score makes it easier to use baseline chest X-rays for predicting early 
infectiousness of the case and exhibits performance that is comparable 
to that of using more comprehensive, standardized information from the 
radiologist. Although the score’s usefulness for predicting treatment 
outcomes declines, it is still surpassed by the use of the detailed radi
ologist observations, particularly in cases of MDR TB. 
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