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Elucidating temporal resource 
allocation and diurnal dynamics 
in phototrophic metabolism using 
conditional FBA
Marco Rügen1,2, Alexander Bockmayr2 & Ralf Steuer1

The computational analysis of phototrophic growth using constraint-based optimization requires 
to go beyond current time-invariant implementations of flux-balance analysis (FBA). Phototrophic 
organisms, such as cyanobacteria, rely on harvesting the sun’s energy for the conversion of 
atmospheric CO2 into organic carbon, hence their metabolism follows a strongly diurnal lifestyle. 
We describe the growth of cyanobacteria in a periodic environment using a new method called 
conditional FBA. Our approach enables us to incorporate the temporal organization and conditional 
dependencies into a constraint-based description of phototrophic metabolism. Specifically, we take 
into account that cellular processes require resources that are themselves products of metabolism. 
Phototrophic growth can therefore be formulated as a time-dependent linear optimization problem, 
such that optimal growth requires a differential allocation of resources during different times of 
the day. Conditional FBA then allows us to simulate phototrophic growth of an average cell in an 
environment with varying light intensity, resulting in dynamic time-courses for all involved reaction 
fluxes, as well as changes in biomass composition over a diurnal cycle. Our results are in good 
agreement with several known facts about the temporal organization of phototrophic growth and 
have implications for further analysis of resource allocation problems in phototrophic metabolism.

Constraint-based modeling of cellular metabolism, most notably flux-balance analysis (FBA), has become 
a versatile tool to study the functioning and optimality of large-scale metabolic networks1,2. A major pre-
requisite for the application of FBA, however, is the assumption of a time-invariant metabolism: For each 
internal compound within the reconstructed network, the sum of producing fluxes must equal the sum 
of consuming fluxes, thereby ensuring mass-conservation of the respective compounds. The assumption 
of a time-invariant mass balance imposes significant constraints on the feasible flux space, and is one of 
the pillars for the explanatory and predictive success of FBA.

The assumption of a time-invariant metabolism, however, does not always hold. Almost all organisms 
are known to exhibit temporal variations in their metabolism, for example in response to environmental 
conditions, such as nutrient availability or diurnal rhythms, or imposed by different cellular requirements 
during cellular growth and division.

In particular phototrophic organisms, whose metabolism is based on harvesting the sun’s energy, 
typically exhibit a diurnal lifestyle. Phototrophic metabolism involves at least two distinct phases: a light 
phase that includes synthesis of cellular precursors as well as storage compounds, and a subsequent 
dark phase where storage compounds are mobilized to ensure survival in the absence of light. Typically, 
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the transition between these two states is not abrupt and phototrophic metabolism is characterized by 
continuous temporal change.

As yet, such temporal transitions are difficult to describe using conventional FBA. While there have 
been a number of recent metabolic reconstructions for phototrophic organisms, including reconstruc-
tions for cyanobacteria3–7, algae8–12 and higher plants13–16, constraint-based modeling of the respective 
metabolic networks is often either confined to a constant light environment or heterotrophic growth 
on extracellular carbon sources. Only a few recent studies take different phases of light availability into 
account, such as Knoop et al.7, who simulated fluxes over a full diurnal cycle, Muthuraj et al.17, who 
use dynamic FBA (dFBA) to capture light-dark metabolism over discretized time intervals, and Cheung  
et al.18 who describe a flux balance model that captures interactions between light and dark metabo-
lism in C3 and CAM leaves. In this work, we seek to investigate the temporal changes in phototrophic 
metabolism over a full diurnal cycle using a new method called conditional FBA (cFBA). Our com-
putational approach is based on the notion that metabolism is inherently autocatalytic. For example, 
to synthesize cellular building blocks, such as amino acids, requires the action of enzymes, which are 
themselves translated from amino acids by ribosomes. Ribosomes are synthesized from RNA and amino 
acids. Likewise, phototrophic CO2 fixation requires energy and redox equivalents in the form of ATP 
and NADPH, derived from the photosynthetic light reactions. Light harvesting makes use of pigments 
that are products of metabolism. Clearly, such autocatalytic cycles give rise to multiple interdependencies 
within cellular metabolism. The temporal order in which the cellular building blocks are synthesized 
itself influences the metabolic capacity at subsequent timepoints. It can be assumed, therefore, that the 
cellular machinery has evolved a suitable regulatory structure to ensure an appropriate, if not optimal, 
temporal allocation of its resources. We note that the assumption of such optimally adapted allocation of 
cellular resources is commonly employed in conventional FBA. Furthermore, the fact that cellular growth 
and resource allocation, at least to a certain extent, can be understood based on the assumption of opti-
mal resource allocation, has been demonstrated experimentally19,20. At the core of our constraint-based 
metabolic optimization problem is therefore the objective to maximize biomass synthesis over a full 
diurnal cycle, constrained by the conditional interdependencies of cellular metabolism. From a compu-
tational perspective, our approach is a synthesis of dynamic FBA21 that allows to incorporate temporal 
changes in substrate concentrations, and Resource Balance Analysis (RBA) that incorporates the con-
straints on resource allocation into FBA22. Conditional FBA can also be related to ME (metabolism and 
macromolecular expression) models23, as well as to dynamic enzyme-cost FBA (deFBA)24, which pro-
vides a dynamic programming framework for metabolic networks coupled to gene expression. Our focus, 
however, is phototrophic growth of the cyanobacterium Synechocystis sp. PCC 6803 over a full diurnal 
cycle. Our ultimate aim is to understand the principles of temporal resource allocation for phototrophic 
growth in a periodic environment.

Results
Conditional dependencies in metabolism. Our approach is based on the fact that cellular growth 
is inherently autocatalytic. We implement the corresponding constraint-based optimization problem by 
constraining each flux by the amount or activity of the compound that facilitates the respective flux. In 
particular, we assume that the flux through any metabolic reaction is constrained by the amount of the 
respective enzyme, the total synthesis rate of enzymes is constrained by the amount of ribosomes, and 
light harvesting is constrained by the amount of pigments. Importantly, each of these compounds is a 
product of metabolism itself. To simulate time-dependent metabolism, time is subdivided into discrete 
intervals, such that fluxes at different time intervals are distinct entities. Intracellular compounds are 
allowed to accumulate and the difference between synthesis and consumption rates over time corre-
sponds to an increase or decrease of the respective amounts. The total amount of accumulated com-
pounds can itself be subject to minimization to reflect cellular size constraints. The network can adopt 
any flux distribution that is consistent with the specified constraints. A flux distribution is obtained by 
maximizing a given objective function. Suitable objective functions are the accumulated concentration of 
a target compound over the entire simulation period, or, in our case, maximal growth of the compound 
amount vector over a full diurnal period.

A simple example. Our approach is illustrated in Fig. 1. As a simple example, we consider a model 
that consists of only three cellular compounds X, Y, and Z. We assume that the compound X can be taken 
up with a rate ν1 and its conversion into the final product Z is catalyzed by the enzyme Y. Hence the 
respective conversion flux ν3 is bounded by the availability of Y. The enzyme Y is itself synthesized from 
X, the respective reaction ν2 is again catalyzed by Y. Synthesis of Z can then be cast as an optimization 
problem, such that the compound X is balanced whereas the compounds Y and Z are allowed to accumu-
late. The corresponding global optimization problem can be described by a set of linear constraints, given 
in Fig. 1b. We then consider the periodic optimization problem, such that the final vector of compound 
amounts M(tend) is a multiple of the initial compound amounts M(tstart),

α( ) = ( ) ( )M t M t 1end start
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where T =  tend −  tstart denotes the time interval, typically a full diurnal period. The optimization objec-
tive is to maximize the factor α. Importantly, we do not aim to pre-assign the detailed composition of 
the compound amount vector M. Rather, the cellular composition emerges as a result of the optimiza-
tion problem. Only for compounds without immediate catalytic activity, the optimization problem must 
be supplemented with additional constraints on minimal compound quotas to ensure their production 
within the simulation period. In the example shown in Fig.  1, the minimal quota of the compound Z 
is 0.5. The quota is enforced only at a single timepoint (simulation start) and the relative amount may 
change during the simulation.

The results of the time-dependent optimization problem are shown in Fig. 1c. At the start of the simu-
lation, only the compound Y is synthesized. At a time t ≈  6.2 h, the system undergoes a metabolic switch. 
At this point, the system starts to synthesize the target compound Z which is subsequently accumulated 
linearly during the remaining simulation period. In the following, we employ this approach to simulate 
cyanobacterial growth in a periodic environment. Definitions and computational implementations are 
detailed in the section “Methods”. Time courses of compound synthesis are reported in absolute amounts, 
unless otherwise noted, not in concentrations relative to total biomass. We note that, at this point, we 
neglect potential influences of cell division and only consider diurnal cellular growth. The computational 
results can therefore be interpreted to represent an average cell in a growing culture under diurnal 
illumination.

A minimal model of phototrophic growth. To study phototrophic growth over a full diurnal cycle, we 
implement a simplified metabolic network model of the cyanobacterium Synechocystis sp. PCC 6803, based 
on an available genome-scale reconstruction of the organism7. The model incorporates the photosynthetic 
light reactions, linear and cyclic electron transport, CO2 uptake, carbon fixation by the Calvin-Benson 

Figure 1. Conditional FBA illustrated using a simple example. The network consists of only three 
reactions, such that the compound X is taken up and either converted into a target compound Z, or into an 
enzyme Y that facilitates the formation of Z as well as of itself. (a) The model and its associated reactions. 
(b) The discretization of time and the corresponding optimization problem. vk is the flux distribution in k-th 
time interval, MY

k and MZ
k are the compound amounts of Y and Z at time point tk. (c) The output of the 

constraint optimization problem. Shown are the synthesis rates (blue) (Y_S, Z_S) and the accumulated 
amounts (red) of the compounds Y and Z. The objective is to maximize growth, that is, to increase the 
compound amount vector M0 by a factor α, with the additional constraint that the relative quota of Z must 
be at least 0.5 at simulation start. The displayed solution is unique.
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(CB) cycle, accumulation of glycogen as a storage compound, uptake of inorganic ions, the synthesis of 
precursors for cellular growth, as well as a TCA cycle and respiration to account for storage-based metab-
olism in the absence of light. The model, depicted in Fig. 2, consists of 52 reactions and 50 compounds. 
In brief, photons are harvested in the antenna complexes associated to photosystem II, resulting in water 
splitting, the release of O2 and reduction of plastoquinone (QH2). Transport of the electron down the elec-
tron transport chain (ETC) results in an accumulation of protons in the thylakoid lumen and generation 
of NADPH via photosystem I (PSI) and the FNR complex. Cyclic electron transfer is encoded as a distinct 
process mediated by PSI. We note that the molecular details of cyclic electron transport are as yet not fully 
understood. ATP is regenerated by the ATPase complex. The ETC also incorporates the enzyme complex 
NDH and cytochrome C oxidase to allow for respiratory activity in the absence of light.

In the cytosol, inorganic carbon is taken up and incorporated into organic compounds. With respect 
to carbon uptake, no distinction is made between CO2 and bicarbonate ( )−HCO3 . The CB cycle is repre-
sented by a single reaction that yields two molecules of the 3-carbon molecule 3-phosphoglycerate (C3). 
The molecule C3 represents the central metabolic precursor for all subsequent biosynthesis reactions. 
Biosynthesis is described by overall reactions for pigments, amino acids, RNA, DNA, lipids, soluble 
metabolites, and cell wall. The respective stoichiometries, including consumption of ATP and NADPH, 
are derived from the available genome-scale reconstruction7. Amino acids and RNA are further con-
verted into ribosomes and proteins. In addition to biosynthesis, the central precursor molecule C3 can 
be converted into the storage compound glycogen, or channeled into the TCA cycle to derive NADPH 
that is fed into the respiratory ETC. For simplicity, no distinction is made between NADH and NADPH. 
A full list of reactions is given in Table 1. Details of model construction are given in the section “Methods”.

Figure 2. A model of Synechocystis sp. PCC 6803. Underlined labels indicate reactions, framed oval 
elements specify cellular compounds. Compounds in bold frame can accumulate during the simulation 
period. The compound Protein represents the full set of enzymes required to catalyze the metabolic 
reactions in the system. See Table 1 for a full list of reactions.
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Implementing conditional dependencies. Growth of the system is constrained by multiple inter-
dependencies. The respective constraints are incorporated as inequalities of the form

ν ( ) ≤ ⋅ ( ), ( ),t M tkcat 2i i j j

where Mj(t) denotes the amount of the cellular component j that constrains flux νi(t) through the reac-
tion i at time t. The factors kcati,j denote catalytic efficiencies. The key constraints incorporated within the 
model are: (i) light harvesting in photosystem I (PSI) and II (PSII) is constrained by the amount of avail-
able pigments; (ii) the total enzyme synthesis rate is constrained by the amount of available ribosomes; 
(iii) each metabolic reaction is associated with a dedicated enzyme, whose amount limits the flux through 
the respective reaction. In addition, the model incorporates several constraints on relative compound 
quotas. In particular, cellular components that do not fulfill an immediate catalytic role, such as cell 
wall, inorganic ions, soluble metabolites, and lipids must be present in minimal quotas relative to cellular 
biomass, where biomass is a weighted sum of all cellular components. The quotas ensure that compounds 
without catalytic activity are synthesized. For simplicity, a subset of metabolites in central metabolism is 
assumed to be mass-balanced, i.e., these metabolic intermediates are not required to accumulate prior to 
cell division. We note that this approximation is also employed in conventional FBA, where dilution of 
internal metabolites is commonly neglected despite the synthesis of biomass (cell growth). The approxi-
mation can be straightforwardly eliminated, such that all cellular compounds are part of the compound 
amount vector M, at the expense of additional computational effort. Here, the approximation is moti-
vated by the fact that the metabolic burden due to dilution of internal metabolites is small compared to 
the turnover of metabolic flux for the synthesis of main cellular components.

A full list of dependencies is provided in Table  2. The catalytic efficiencies of compounds are esti-
mated based on average cellular composition, as reported in the genome-scale reconstruction, assuming 
self-consistency of the FBA flux solution. That is, the known cellular fraction of compounds in the 
reported biomass function is assumed to be sufficient to replicate the cell given a light intensity for which 
doubling time is approximately 24 h. See section “Methods” for details.

A day in the life of Synechocystis 6803. Using the model of Synechocystis sp. PCC 6803 shown in 
Fig. 2, phototrophic growth is simulated over a full diurnal cycle. The objective is to maximize the factor 
α in Equation (1) over a period of T =  24 h, corresponding to maximal overall growth of an average 
cell. To this end, the day is subdivided into two distinct phases, a light phase of TL =  12 h and a subse-
quent dark phase of TD =  12 h. During the light phase, light utilization is only limited by the amount of 
pigments. Time is discretized into n =  48 uniform intervals. See section “Methods” for the choice and 
impact of different discretization intervals.

Figure 3 shows the temporal changes in all 52 resulting reaction fluxes over the entire diurnal period. 
The compound composition vector M at dawn is itself part of the optimization problem. That is, the 
relative quotas of enzymes, ribosomes, pigments and glycogen are not constrained and emerge as a result 
of the optimization. Minimal relative quotas are set for the compounds cell wall, lipids, RNA, inorganic 
ions, and soluble metabolites, as described above. The compound DNA must fulfill a minimal quota only 
at the beginning and, implicitly, at the end of the simulation period. Solving the constrained optimization 
problem over a full diurnal cycle, we obtain the time-evolution of each flux within the system, such that 
the solution ensures an optimal resource allocation for cellular growth. That is, at each time point the 
local fluxes are organized such that the factor α in Equation (1) is maximal over the full time interval 
T =  24 h. We note that the solution is not necessarily unique and flux variability analysis is performed 
at each time point. To this end, the maximal factor α is fixed and all fluxes and compound amounts are 
subsequently minimized and maximized in each time step, corresponding to two optimization runs per 
compound and flux per time step. The resulting flux variability is indicated in all subsequent figures. 
Overall growth and relative biomass composition over the full diurnal cycle is shown in Fig. 4. Detailed 
time courses of all cellular compounds are provided in the Supplementary Information.

The simulation results recover several known features of cyanobacterial growth. As expected, most 
compounds, as well as total biomass, exhibit exponential growth during the light period. Carbon fixation 
and flux through the CB cycle is exponentially increasing during the day. Also other synthesis fluxes, such 
as for cell wall and RNA exhibit exponential increase during the day. The storage compound glycogen is 
synthesized during late afternoon (Glycogen_S). Reactions associated with cellular respiration (TCA, 
CytC) are not active during the light period, only CytC exhibits a brief activity in the early morning. The 
synthesis reactions of enzymes (denoted with the suffix _S) only show activities during the light phase. 
Most enzyme synthesis reactions exhibit more pronounced temporal patterns and peak before sundown.

Several reactions that synthesize catalyzing compounds (enzymes) are confined to brief periods, most 
notably the production of the enzymes responsible for the synthesis of ribosomes, DNA, glycogen usage, 
and import of inorganic ions. Intermittent behaviour is also observed for several reactions fluxes, most 
notably E_Pigment_S_S. To ensure that the observed patterns indeed reflect the optimized behaviour 
for these synthesis rates, the solution has been tested for possible numerical instabilities (see section 
“Methods” for details). Overall, flux variability analysis reveals only minor variability in the reaction 
rates. We note that highly intermittent synthesis rates mostly correspond to the synthesis of enzymes. 
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These rates are not directly dependent on environmental parameters, such as light, and are only con-
strained by the global ribosomal capacity and availability of precursors.

Night metabolism and utilization of storage compounds. At dusk, the system undergoes a pro-
nounced metabolic shift. Night metabolism is dominated by utilization of glycogen that is metabolized 
via the TCA cycle. The respiratory reactions provide ATP to meet the requirements for maintenance 
metabolism. A small number of other synthesis reactions remain active in the absence of light, such 
as the production of DNA, ribosomes, lipids, as well as uptake of inorganic ions. We note, however, 
that the total night synthesis of lipids makes up less than 2% of the total lipid production over the full 
simulation period. The time courses for all cellular compounds and synthesis fluxes are provided in the 
Supplementary Information. We observe that, during the light period, all cellular compounds operate 
at maximal capacity as long as light is available. That is, the observed flux corresponds to the constraint 
implemented in Equation (2). See Supplementary Information for a detailed account of capacity usage.

Growth under varying light. As yet, light availability was considered to be a binary variable and 
light absorption was only limited by the amount of available pigments. However, in most natural envi-
ronments the intensity of sunlight follows an approximately bell-shaped curve and light harvesting is 
a function of both, light availability and the amount of pigments. Extending the optimization problem 
considered above, we therefore implement a bell-shaped light intensity. Simulations were carried out as 

ATPase: 14 Hx +  3 ADP →  3 ATP

Calvin: 5 NADPH +  5 C3 +  8 ATP →  5 NADP +  3 C5 +  8 ADP

Cyt6bf: QH2 +  2 oxPC →  Q +  4 Hx +  2 redPC

CytC: O2 +  4 redPC →  4 Hx +  4 oxPC

FNR: 2 redFd +  NADP →  2 oxFd +  NADPH

Maintenance: ATP →  ADP

NDH: Q +  NADPH →  QH2 +  4 Hx +  NADP

PSI: photon +  redPC +  oxFd →  oxPC +  redFd

PSII: 4 photon +  2 Q →  2 QH2 +  4 Hx +  O2

PSIcyc: Q +  2 redFd →  QH2 +  4 Hx +  2 oxFd

Rubisco: C5 +  CO2 →  2 C3

TCA: 4 NADP +  C3 +  ADP →  4 NADPH +  ATP +  3 CO2

AA_S: 66.41 NADPH +  15.48 C3 +  19.89 ATP →  0.321 O2 +  66.41 NADP +  19.89 ADP +  1.483 CO2 +  AA

Inorganic_Ion_S: 4.544 NADPH +  9.62 ATP →  4.544 NADP +  9.62 ADP +  Inorganic_Ion

Cell_Wall_S: 49.46 NADPH +  14.82 C3 +  31.07 ATP +  0.4276 CO2 →  49.46 NADP +  31.07 ADP +  Cell_Wall

DNA_S: 52.89 NADPH +  9.912 C3 +  40.27 ATP +  2.014 CO2 →  52.89 NADP +  40.27 ADP +  DNA

Lipid_S: 61.82 NADPH +  18.48 C3 +  38.84 ATP →  2.678 O2 +  61.82 NADP +  38.84 ADP +  Lipid

Pigment_S: 58.54 NADPH +  25.67 C3 +  21.73 ATP →  5.71 O2 +  58.54 NADP +  21.73 ADP +  12.54 CO2 +  Pigment

RNA_S: 47.07 NADPH +  9.087 C3 +  38.54 ATP +  2.35 CO2 →  47.07 NADP +  38.54 ADP +  RNA

Ribosome_S: 0.339 E_Ribosome_comp +  0.661 RNA +  0.21 ATP →  Ribosome +  0.21 ADP

Soluble_Pool_S: 24.95 NADPH +  4.937 C3 +  15.69 ATP →  0.12 O2 +  24.95 NADP +  15.69 ADP +  1.716 CO2 +  Soluble_Pool

Glycogen_S: 2 NADPH +  2 C3 +  2 ATP →  2 NADP +  2 ADP +  Glycogen

Glycogen_Use: 2 NADP +  Glycogen →  2 NADPH +  2 C3

Enzyme synthesis:

e_S: 
104.56 ATP +  AA →  104.56 ADP +  e ∀e ∈  {E_AA_S, E_ATPase, E_Inorganic_Ion_S, E_Calvin, E_Cell_Wall_S,  
E_Cyt6bf, E_CytC, E_DNA_S, E_FNR, E_Glycogen_S, E_Glycogen_Use, E_Lipid_S, E_Maintenance, E_NDH, 
E_Others, E_PSI, E_PSII, E_Pigment_S, E_RNA_S, E_Ribosome_S, E_Ribosome_comp, E_Rubisco,  
E_Soluble_Pool_S, E_TCA, E_Carbon_Uptake}

Exchange:

CO2_Export: CO2 → 

O2_Export: O2 ↔  

Photon_Uptake: →  photon

Uptake_Carbon: ATP →  ADP +  CO2

Table 1.  Summary of model equations. Throughout the text, enzymes are denoted as E_< reaction 
name> . The naming scheme for enzyme synthesis reactions is < enzyme name>_S.
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described above, such that light absorption is proportional to the amount of pigment multiplied with the 
time-dependent light intensity. Figure 5 shows all 52 reaction fluxes over the entire diurnal period, anal-
ogous to Fig. 3. Individual time courses are provided in the Supplementary Information. Qualitatively, 
the time-dependent flux changes are similar as for constant light availability, albeit with some notable 
differences. In particular, most synthesis fluxes now peak before dusk, corresponding to the diminishing 
light availability at the end of the day.

Small differences are also observed in the overall biomass composition over the full simulation period, 
shown in Fig. 4 (right panel). More pronounced changes are observed in the degree of capacity utilization 
of reactions. Specifically, for a bell-shaped light intensity most enzymes operate below their maximal 

Capacity constraints: 

0.002549 v k
PSII +  0.0006371 v k

PSI ≤  −M k
Pigment

1

γk _v k
Photon Uptake ≤  −M k

Pigment
1

4.36 RE∑ ∈ ve e
k ≤  −M k

Ribosome
1

0.3814 _vk
AA S ≤  _ _

−M k
E AA S

1

0.001171 vk
ATPase ≤  _

−M k
E ATPase

1

12.88 _ _v k
Inorganic Ion S ≤  _ _ _

−M k
E Inorganic Ion S

1

0.008816 vk
Calvin ≤  _

−M k
E Calvin

1

0.4419 _ _vk
Cell Wall S ≤  _ _ _

−M k
E Cell Wall S

1

0.00009621 vk
Cyt6bf  ≤  _

−M k
E Cyt6bf

1

0.000001396 vk
CytC ≤  _

−M k
E CytC

1

2.515 _v k
DNA S ≤  _ _

−M k
E DNA S

1

0.0008281 v k
FNR +  0.0008281 v k

PSIcyc ≤  _
−M k

E FNR
1

0.001658 _vk
Glycogen S ≤  _ _

−M k
E Glycogen S

1

0.0001272 _vk
Glycogen Use ≤  _ _

−M k
E Glycogen Use

1

17.49 _v k
Lipid S ≤  _ _

−M k
E Lipid S

1

0.00005342 v k
Maintenance ≤  _

−M k
E Maintenance

1

0.00278 v k
PSIcyc +  0.00278 v k

NDH ≤  _
−M k

E NDH
1

0.001041 v k
PSI ≤  _

−M k
E PSI

1

0.02612 v k
PSII ≤  _

−M k
E PSII

1

3.423 _v k
Pigment S ≤  _ _

−M k
E Pigment S

1

1.084 _v k
RNA S ≤  _ _

−M k
E RNA S

1

0.2214 _v k
Ribosome S ≤  _ _

−M k
E Ribosome S

1

0.002621 v k
Rubisco ≤  _

−M k
E Rubisco

1

3.193 _ _vk
Soluble Pool S ≤  _ _ _

−M k
E Soluble Pool S

1

0.0222 v k
TCA ≤  _

−M k
E TCA

1

0.0003567 _v k
Uptake Carbon ≤  _ _

−M k
E Carbon Uptake

1

Quota constraints: 

≥ ._M b0 01k k
Inorganic Ion

_M k
Cell Wall ≥  0.059 bk

≥ ._M b0 1275E
k k

Others

M k
Lipid ≥  0.12 bk

+ . ≥ .M M b0 661 0 17k k k
RNA Ribosome

_M k
Soluble Pool ≥  0.029 bk

MDNA
0  ≥  0.031 b0

Maintenance constraints: 
v k

Maintenance −  0.05 vk
ATPase ≥  0

v k
Maintenance ≥  0.00641 bk

Table 2.  Reaction constraints of conditional FBA. RE  is the set of enzyme synthesizing reactions. bk is the 
amount of biomass at time point tk, which is a weighted sum of compounds (=wTMk). The term γk denotes 
the inverse of the time-dependent effective catalytic efficiency of light harvesting of pigments in the k-th 
interval (in the case of varying light). Coefficients in the capacity constraints have the units [s]. Coef f icients 
in quota and maintenance constraints are dimensionless.
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capacity during dawn and dusk. Only a few hours after dawn, the reaction fluxes reach the maximal 
capacity given by the amount of their respective catalyzing compound, see Supplementary Information.

Robustness and the limits of growth. While the overall simulation results are in good agreement 
with several known features of diurnal phototrophic metabolism, it must be expected that the precise 
forms of the time courses also depend on parameter values and model assumptions. In particular the 

Figure 3. Flux rates over a full diurnal cycle. A prefix E_ denotes compounds that catalyze reactions. A 
suffix _S denotes the synthesis flux of the respective biomass compounds. For example, the term Carbon_
Uptake denotes the flux through the carbon uptake reaction, while E_Carbon_Uptake_S denotes the 
rate at which the transporter is synthesized. Flux rates are normalized such that the color  indicates the 
maximum value. White color indicates no flux activity. Each rate is represented by two rows. The upper row 
encodes the upper bounds of the normalized flux rates, the lower rows encode lower bounds. In the absence 
of flux variability, both rows coincide. The flux O2_Export switches sign during the cycle, with negative 
rates during night (net O2 uptake). Shown is the absolute value.

Figure 4. Relative biomass composition over a full diurnal cycle. The left panel shows the results for the 
scenario where light harvesting during day is constrained by the availability of pigments only. The right 
panel shows the results for a bell-shaped curve of light intensity. Total biomass over the full diurnal period is 
shown in logarithmic coordinates.



www.nature.com/scientificreports/

9Scientific RepoRts | 5:15247 | DOi: 10.1038/srep15247

catalytic efficiencies kcati,j, while being reasonable first approximations, are not precise estimates of the 
actual values. We therefore study the robustness of our results with respect to these values. Specifically, 
we evaluate the respective change in maximal growth yield, corresponding to the factor α, in response 
to a change in the catalytic efficiencies kcati,j of each catalyzing compound. The catalytic efficiencies are 
perturbed individually for each compound, with a fold change 10−3 to 10+3 from the reference value, 
and the effect on the factor α (growth), as well as on the compound composition vector M, is recorded. 
In addition, we record if a given synthesis reaction is active in the absence of light. Results are shown 
in Fig.  6 for the case of binary light availability. As expected, an increase in any of the kcati,j, corre-
sponding to a catalytic compound with higher catalytic activity, results in an increase of the factor α, 
hence higher growth yield over one diurnal period. The effect is most pronounced for compounds that 
make a significant contribution to the compound composition vector M, such as photosystem II and 
ribosomes. Similar, an increase in any of the kcati,j results in a reduction of the amount of the respective 
compound in the compound composition vector M. With respect to the results shown in Fig. 6, we note 
that only ribosomes and PSII correspond to actual cellular compounds, whereas other compounds, such 
as E_Lipid_S, represent a conglomerate of enzymes associated to a specific pathway, such as lipid syn-
thesis. The respective kcati,j therefore correspond to a global change in the respective enzyme properties.

Differing from the behaviour of most other compounds, we observe a sudden discontinuous decrease 
of E_NDH, a compound in the electron transport chain, upon a decrease in its kcati,j. Given our model 
definitions, E_NDH is involved as a capacity limiting compound in cyclic electron flow and hence ATP 
generation during day. With decreasing catalytic efficiency of E_NDH, more compound is needed to 
establish the required flux, hence the costs of establishing the pathway increases. Above a certain thresh-
old, the system undergoes a switch and an alternative pathway using E_CytC is utilized. The synthesis 
of E_NDH nonetheless remains essential for the use of NADPH in the absence of light, hence a further 
decrease in its kcati,j results again in an increasing amount of E_NDH to meet the requirements for night 
metabolism. The switch is therefore an outcome of an interplay between different synthesis costs per 
catalytic rate of alternative pathways.

A related question concerns the activity of cellular metabolism during the night. Metabolism in 
the absence of light is dominated by the (enforced) requirement for ATP for cellular maintenance. 
Nonetheless, as shown in Figs 3 and 5, several cellular compounds are also synthesized in the absence 

Figure 5. Flux rates over a full diurnal cycle using a bell shaped light curve. A prefix E_ denotes 
compounds that catalyze reactions. A suffix _S denotes the synthesis flux of the respective biomass 
compound. Flux rates are normalized such that the color  indicates the maximum. White color indicates 
no flux activity. Each rate is represented by two rows. The upper row encodes the upper bounds of the 
normalized flux rates, the lower rows encode lower bounds. In the absence of flux variability, both rows 
coincide. The flux O2_Export switches sign during the cycle, with negative rates during night (net O2 
uptake). Shown is the absolute value.
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of light. It is known that Synechocystis sp. PCC 6803 exhibits a highly reduced metabolism during the 
night, and no growth is observed. Nonetheless synthesis of few cellular compounds may proceed also 
during the night phase. We therefore investigate the possibility of synthesis reactions in the absence of 
light in the dependence of the catalytic efficiencies kcati,j. For each catalyst the value of kcati,j was varied 
around its estimated reference value (fold change 10−3 to 10+3) and the activity of synthesis reactions 
was recorded. The results are shown in Fig. 7. While cellular synthesis (as opposed to energy generation 
and maintenance) mostly ceases during night, several synthesis fluxes can indeed be active during the 
night. In particular, the uptake of inorganic ions (Inorganic_Ions_S) proceeds at a constant rate 
during the night. Likewise, ribosome synthesis, as well as lipid and DNA synthesis can proceed in the 
absence of light within the given range of kcati,j. The catalytic efficiencies kcati,j that exert most influence 
on the night activities of synthesis reactions are those of ribosomes, those of ribosome synthesizing com-
pounds, as well as those of amino acid synthesizing compounds. We note that the dependency of night 
activity upon the kcati,j is not necessarily confined to one-sided intervals. That is, for some compounds, 
night activity occurs for increase as well as decrease of kcati,j. The latter finding indicates that compound 
synthesis during night is indeed the outcome of a global resource allocation problem and dependent on 
several factors, such as catalytic efficiencies, costs for storage and energy generation and competition 
between common building blocks, such as amino acids.

Discussion
A computational analysis of phototrophic growth using constraint-based optimization requires to go 
beyond current time-invariant implementations of FBA. In particular, to describe the growth of cyano-
bacteria in a periodic environment necessitates new approaches that enable us to incorporate the tem-
poral organization and conditional dependencies into a constraint-based description of metabolism. In 
this work, we have employed such an approach to describe the metabolic activity of the cyanobacteria 
Synechocystis sp. PCC 6803 over a full diurnal cycle. Based upon existing computational concepts21,22,25, 
we have incorporated conditional dependencies within cellular metabolism into a constraint-based anal-
ysis of cyanobacterial growth. Our approach allows us to simulate phototrophic growth of an average cell 
as a function of time in an environment with varying light intensity.

Our approach results in a time-course for all involved reaction fluxes, as well as changes in biomass 
composition over a diurnal cycle. The results are in reasonable agreement with several known properties 
for the temporal organization of phototrophic metabolism. We observe exponential growth during light 
period and only minor metabolic activity during night. Glycogen is accumulated before darkness, as also 
observed experimentally for some cyanobacteria26. Despite the reduced metabolism in the absence of 
light, synthesis of a few compounds may also proceed during darkness. Overall, however, reliable quanti-
tative experimental observations for a detailed direct comparison are still scarce. Most currently available 
data relates to time-dependent gene transcription, often revealing strong diurnal dynamics, see27,28 for an 
overview. However, such changes do usually not translate straightforwardly into corresponding protein 
or flux changes. Studies of the proteome are scarce and typically reveal far less diurnal variation29. 13C 

Figure 6. Dependency of overall growth factor α and of the compound composition vector M on 
the catalytic activities kcati,j. The bars in the legend (rightmost column) indicate the relative amount of 
compounds, as determined by the compound composition vector M after the full diurnal period. Only 
the top 11 compounds are shown. (A) Increasing kcati,j typically results in higher α. (B) Increasing kcati,j 
typically results is a decreasing amount of the respective compound in the compound composition vector. 
A change in kcat of E_NDH induces a discontinuous transition. See text for details.
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labeling experiments over a full diurnal cycle, as would be necessary to reveal the actual changes in 
resource and flux allocation, are as yet not available.

Nonetheless, our simulation framework already allows us to formulate several hypotheses with respect 
to the optimality of metabolism under diurnal light availability. For example, to what extent a compound 
is synthesized in the absence of light strongly depends not only on its own catalyst but also the catalytic 
efficiency of other pathways. This finding reflects the fact that synthesis at night makes use of common 
storage compounds, hence strong coupling between all pathways must be expected. While it is known 
that Synechocystis sp. PCC 6803 exhibits only reduced metabolic activity at night, synthesis of individual 
compounds as well as transport may still be active, as also indicated by global transcription data that 
exhibit few genes that peak at night, including genes related to transport28. A striking feature of the simu-
lation is the highly intermittent synthesis rates observed for some reactions, most notably the synthesis of 
enzymes. This behaviour is not due to numerical instabilities, but reflects the optimal temporal pattern of 
enzyme synthesis. While transcriptional bursts are well known, the time-resolution of currently available 
transcription data, usually only 6–8 data points per diurnal period, does not allow determining whether 
such intermittent synthesis rates also occur in vivo.

Similar to conventional FBA, our computational framework can be extended into a multitude of 
further applications, such as in-silico testing of knockout mutants and the identification of essential 
genes under diurnal light availability. As yet, we consider the approach presented here primarily as a 
proof-of-concept for the application of FBA on diurnal cyanobacterial metabolism. Necessary improve-
ments include a more refined distinction between balanced cellular compounds and those which are 
allowed to accumulate, corresponding concepts were developed recently in more detail24. Likewise, while 
the computational demand is significantly higher than for conventional FBA, in particular when making 
use of flux variability analysis, it is feasible to apply our concept on metabolic networks of increas-
ing, up to genome-scale, size. We can estimate the approximate computational effort for application on 
large-scale models using extrapolation of results obtained from finer time-discretization. See section 
“Materials” for details. However, for large networks we expect that flux variability and multiple alternate 
solutions require further attention. Similar as in conventional FBA, the flux solutions must not necessar-
ily be unique and we expect significant variability for larger models.

Of high relevance from a biological perspective is to incorporate further conditional dependencies 
into the computational description of phototrophic metabolism. While in this study, most key interde-
pendencies of phototrophic growth have been considered, the list is far from complete. For example, 
high light intensities are known to have adverse consequences including oxidative stress and reducing 
the lifetimes of key proteins. We therefore expect that trade-offs between capacity and potential damage 
in changing light are among the important factors that further shape cyanobacterial metabolism.

Figure 7. Activities of cellular synthesis reactions in the absence of light as a function of catalytic 
efficiencies. Black squares indicate that the respective synthesis reaction is also active in the absence of light, 
irrespective of the value of kcat (varied with fold change 10−3 to 10+3 from the reference value). Gray squares 
indicate that the respective synthesis reaction is also active in the absence of light for some, but not all, 
values of kcat within the considered interval (fold change 10−3 to 10+3 from the reference value). Specifically 
the uptake of inorganic ions, as well as the synthesis of ribosomes, lipids and DNA exhibits activity in the 
absence of light.



www.nature.com/scientificreports/

1 2Scientific RepoRts | 5:15247 | DOi: 10.1038/srep15247

Taken together, we envision our framework to be able to contribute novel insights to the expected 
evolutionary trade-offs in metabolic resource allocation. In this respect, we consider the present analysis 
a pilot study that demonstrates the feasibility of diurnal simulations of metabolism using constraint-based 
approaches. We expect that aspects of our method must be expanded upon before the solution of the 
computational resource allocation reflects actual resource allocation of phototrophic growth. Nonetheless, 
our simulation results already give rise to several testable features of temporal resource allocation that 
can be verified or refuted in future experiments. We expect that this and similar methods will become 
instrumental to analyze, and eventually understand, the principles that shape metabolic resource alloca-
tion in complex environments.

Methods
A minimal model of Synechocystis sp. PCC 6803. Simulations were performed using a simplified 
model of the cyanobacterium Synechocystis sp. PCC 6803. The model incorporates the main metabolic pro-
cesses required to describe phototrophic growth in a diurnal environment. The cell harvests energy from 
incoming light using the photosynthetic apparatus (reactions PSI, PSII, PSIcyc, FNR, Cyt6bf and  
CytC) and produces cellular energy (ATP) and the reduction equivalent NADPH. At the oxygen-evolv-
ing complex of PSII water is split and the resulting electrons reduce plastoquinone Q to QH2. The 
Cytb6f complex transfers the electrons to plastocyanin (PC). At PSI electrons are transferred to ferre-
doxin and further to NADPH via the ferredoxin-NADP+  reductase (FNR). Cyclic electron flow is rep-
resented by a separate reaction PSIcyc. The electron transport chain (ETC) creates a proton gradient 
at the thylakoid membrane. This gradient is used by the ATPase to regenerate ATP.

To account for cellular growth, the model contains lumped overall reactions for the biomass com-
ponents pigments, DNA, RNA, proteins, lipids, cell wall, amino acids, soluble pool and inorganic ions. 
These overall reactions produce the respective components out of 3-phosphoglycerate (C3), energy 
(ATP), redox (NADPH) equivalents, and inorganic compounds. The compound C3 is generated by the 
Calvin-Benson cycle. The cycle is split into the RubisCo reaction which fixes carbon dioxide and uses 
ribulose-1,5-bisphosphate (C5) as a precursor to generate two molecules of C3. The remaining part of the 
cycle is represented by an overall reaction which regenerates C5 from C3 (reaction Calvin).

The reactions Glycogen_S and Glycogen_Use describe glycogen synthesis and mobilization, 
respectively. Glycogen is broken down via the TCA cycle to generate NADPH that serves as a sub-
strate for respiration. The model is summarized in Table  1. All stoichiometries are derived from the 
genome-scale reconstruction7. The stoichiometries for the RNA and protein requirement, as well as for 
the ribosome synthesis were derived from the known ribosomal RNA content and the ribosomal protein 
content (KEGG) and their carbon content.

Conditional dependencies and capacity limits. Rate dependencies are listed in Table 2. The level 
of Ribosomes limits the translational capacity. The level of Pigments limits the light uptake and 
hence the activity of photosystems PSI and PSII. All metabolic reactions in the network have a cata-
lyzing enzyme. Hence, these reactions are limited by the corresponding enzyme. The naming scheme of 
an enzyme for a specific reaction is the prefix E_ combined with the name of the reaction.

For many cellular compounds, precise estimates of their catalytic activities are not available. We there-
fore approximated the respective kcati,j values using a known static flux solution and available data on 
average compound abundances. Specifically, based on an average division time of approximately 24 h 
under diurnal illumination, we assume that the amount of cellular biomass components synthesized by 
the time-independent FBA model over a (light) period of 12 h is sufficient to catalyze its own flux distri-
bution (self-consistency). To this end, we obtain estimated reference flux distributions for day and night 
conditions, denoted as v̂ D and v̂ N respectively, using conventional FBA with parameters as described 
previously7. Computational details are provided in the Supplementary Information. The integrated cellu-
lar components resulting from the conventional FBA solution are denoted as M̂. Formally, the capacity 
constraints for the capacity limiting compound j is given by
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where  j is the set of reactions catalyzed by the compound j and | |j  denoting the number of catalyzed 
reactions. In case a compound catalyzes several reactions, we assign equal amounts of the catalyzing 
compound to each reaction and estimate the kcati,j accordingly (with the exception of enzyme synthesis 
reactions, for which the ribosomes have the same catalytic efficiency). A complete list of dependencies 
is provided in Table 2.
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Reference compound amounts. The reference compound amounts M̂ for the estimation of catalytic 
activities are obtained from the biomass composition of the genome scale model in7. In general they are 
identical to the stoichiometric coefficients in the biomass assembly reaction. However, the genome scale 
model only provides an estimate of total protein content, not the amount of individual enzymes allocated 
to synthesis pathways. Reference amounts for enzymes in the reduced model were therefore estimated 
using available proteomic data of Synechococcus elongatus PCC 794229. The data contain protein counts 
per cell for 2178 proteins of 2854 proteins total. These data were converted to (relative) protein amounts 
assuming the measured proteins represent 100% of total proteins. Mapping of measured proteins to 
enzymes in the minimal model was performed according to the gene mappings provided by Beck et al.30. 
Importantly, most metabolic enzymes in the model represent lumped protein sets. The reference amount 
for each (lumped) protein set was obtained by summing over the respective set of (relative) protein 
abundance using gene annotation of the genome-scale model and GO annotation of the Synechocystis sp. 
PCC 6803 genes. We note that the lumped protein sets corresponding to lumped overall reactions are 
not disjoint. The reference amount of enzymes for the synthesis of the Soluble_Pool was assumed 
to be 1% of total proteins. The remaining proteins which could not be assigned to any lumped protein 
set were assigned to the pool of additional proteins E_Others. These proteins have no catalytic activity 
and must satisfy therefore a minimum quota. Furthermore the genome scale model does not explicitly 
contain ribosomes. Here the reference amount of ribosomes was estimated according to the quota of 
the  ribosomal proteins. The reference amount for RNA was reduced by the ribosomal RNA amount 
correspondingly. Phosphate and water are explicitly included in the genome scale model but not in 
the presented model. The list of reference compound amounts is provided in the Supplementary 
Information.

Additional constraints and dependencies. To represent overall cellular maintenance a 
Maintenance reaction is introduced that consists of two parts. First, there is a basal growth-independent 
minimal activity of the Maintenance reaction proportional to biomass. This proportion was chosen 
such that the Glycogen quota reported in a previous time-invariant FBA7 is completely utilized during 
night. Second, a minimal activity of the reaction Maintenance is coupled to the ATPase rate.

For the cellular components Cell_Wall, Lipids, RNA, DNA, Cell_Wall, Soluble_Pool  
and Inorganic_Ions minimum quotas are defined. These constraints are required, since these com-
ponents do not impose any capacity limit nor are they the educt of other reactions (excluding RNA 
which is required for the synthesis of ribosomes). The respective quotas are adopted from the biomass 
composition reported in Knoop et. al.7 We note that for some compounds, such as free amino-acids (AA) 
no lower bound was implemented, resulting in a nominal amount of zero during the simulation, despite 
non-zero flux through the compound. The results imply that free amino-acids are not accumulated, 
but the value zero should not be interpreted as an actual concentration or amount. The DNA quota is 
enforced only at the start, and hence implicitly at the end of the day, whereas other quotas have to be 
fulfilled at all times. This choice is motivated by the fact that, for example, Cell_Wall has to increase 
with system size, whereas DNA replication has only to be completed at certain time points.

Conditional FBA. Similar to conventional FBA, our approach makes use of a stoichiometric matrix 
∈ ×S IRn nm r for nr reactions and nm compounds. In contrast to conventional implementations, only a 

subset  of compounds are assumed to be in steady state. Non-stationary compounds as well as all 
catalyzing compounds are represented by the set ∼. The subset of corresponding rows in the stoichio-
metric matrix are indicated by S and S respectively.

The method starts with the initial amounts ∈M IRn0 m of the compounds in ∼. These amounts are 
not a priori chosen but are itself model variables. The method then estimates nt flux distributions 
, , …,v v v{ }n1 2 t  in nt time intervals , , ( , , …, ( ,−t t t t t{[0 ] ] ]}n n1 1 2 1 t

. Compound amounts are updated at 
each time point tk according to flux distribution vk complying with the Euler scheme. The flux capacities 
in time interval [tk, tk+1] are linearly dependent on the compound amounts Mk at time point tk.

Additionally the method takes into account linear constraints on the compound amounts. The prob-
lem corresponds to a global optimization problem and is implemented as linear program (LP) as follows:
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Constraint (5) enforces the mass balance for metabolites in steady state, constraint (6) updates the 
compound amounts at time point tk according to the flux in time frame k, constraint (7) limits the 
capacities according to pre-assigned values and allows integration of environmental changes (when 
appropriate). The constraint (8) encodes the set of ncap capacity constraints with matrices of inverse kcats 

∈ ×A IRk n n
cap

rcap  and an index matrix ∈ ×
∼

B IRn
cap

cap . We note that for the capacity constraints a sepa-
rate A k

cap matrix is used for each k. While the kcati,j are assumed to be time-independent, the matrix A k
cap 

can be used to also specify time-dependent constraints. In our case, varying light intensity is imple-
mented as a time-dependent effective kcati,j for the compound Pigments (see second line in Table 2). 
(9) is the set of quota constraints with index matrices ∈ ×

∼
B IRk n

quota
k
quota , quota matrices ∈C IRk n

quota
k
quota, 

the biomass weights ω ∈
∼

IR  (wT is the transposed vector) and the number of quota constraints n k
quota 

for each k. Constraint (10) encodes the set of nmain maintenance constraints with ∈ ×A IRn n
main

rmain  and 
∈C IRn

main
main. Constraints (8)–(10) are given in detail in Table 2. For different k the the quota constraint 

matrices B k
quota and C k

quota differ in the number of rows, because the DNA quota is enforced only at sim-
ulation start (and, implicitly, simulation end), whereas other quotas have to hold in each time point tk. 
Constraint (11) reflects the fact that compound amounts must not be negative. Constraint (12) enforces 
the synthesis of the compound vector (cyclic growth), with α denoting the fold change. Constraint (13) 
limits the starting amount of biomass. Biomass is defined as a weighted sum of all components in Mk. 
The variables in the LP problem are M0, vk, and Mk for all k from 1 to nt.

The formulation allows for a global optimization for any given α. Our objective is the maximal bio-
mass fold change α. The maximal value was estimated using bisection (see algorithm 1). The algorithm 
computes the maximal α, for which the LP has a solution.

The solution is not necessarily unique. Variabilities of flux and compound levels are estimated as 
follows: Using the pre-determined (maximal) value of α, each flux value and each component level is 
minimized and maximized within each time interval. The difference between minimum and maximum 
is denoted as flux and compound level variability, respectively. We note that estimation of variability is 
computationally demanding and requires two optimization runs per flux/compound and per time inter-
val. For the implementation nt =  48 intervals were chosen, results for different choices of nt are shown in 
Fig. 8. The results are robust with respect to the choice of nt. A run with a time-discretization of nt =  96 
is provided in the Supplementary Information to confirm robustness of the overall results.
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Implementation and runtime. The method was implemented in MATLABTM as a linear optimiza-
tion problem. The optimizations were performed with Gurobi 12.2 on a 3.2 GHz computer (Intel®  Xeon®  
Processor E5-1650) with 6 GB RAM. Simulations were tested with different solvers (Gurobi and CPLEX 
12.6) with identical outcomes. The model size grows linearly with the number of compounds, the num-
ber of reactions, the number of additional constraints nc and quadratically with the number of time steps 

M R( ((| | + ) × | | × ))O n nc t
2 . To check for the variabilities of the optimal solutions, two optimizations 

for each reaction and each time point had to be performed. All code is provided in the Supplementary 
Information. To estimate runtimes for large-scale models, we extrapolate results obtained from finer time 
discretization nt. For the presented model the runtime of one LP increased by a factor 10.000 with nt 
increasing from 48 to 512 (about 10 min on the specified computer). The size of this problem would be 
equivalent to an LP for a model with 550 reactions, 550 compounds and nt =  48.
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