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Background: Cancer stem cells (CSCs) are the tumor cell of origin with self-renewing ability and multi-
differentiation potency. CSCs can play vital roles in gastric cancer (GC) metastasis and relapse. However, 
the genes that regulate the stemness maintenance of CSCs in GC patients remain largely unknown. In the 
present study, we sought to determine the key genes associated with stemness in GC patients. 
Methods: mRNA expression-based stemness index (mRNA SI) was analyzed with regard to the differential 
expression levels between normal and GC tissues, as well as clinical features and survival outcomes. Weighted 
gene co-expression network analysis (WGCNA) was performed to identify modules of interest and key 
genes. The differences in mRNA expression of key genes between normal and GC tissues were calculated 
by “ggpubr” package in R. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) 
analysis were carried out to annotate the function of key genes. Protein-protein interaction (PPI) and gene 
co-expression analyses were conducted using STRING and “corrplot” package in R, respectively. 
Results: mRNA SI score was markedly increased in GC tumor compared to normal tissues. High mRNA 
SI score was remarkably associated with more advanced tumor stage and higher pathologic grade, but 
longer survival times. Based on the results of WGCNA, 19 key genes (i.e., BUB1, BUB1B, KIF14, NCAPH, 
RACGAP1, KIF15, CENPF, TPX2, RAD54L, KIF18B, TTX, KIF4A, SGO2, PLK4, ARHGAP11A, XRCC2, 
C1orf112, NCAPG, ORC6) were identified. GO and KEGG functional analyses revealed that these 19 key 
genes were mainly related to cell proliferation. From PPI and gene co-expression analyses, these 19 key 
genes were discovered to be intensively associated with each other at both protein and transcription levels. 
Conclusions: our study identified 19 key genes that play vital roles in the stemness maintenance of CSCs 
in GC patients. Targeting these key genes may help to control CSC characteristics in GC.
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Introduction

Gastric cancer (GC) is one of the leading causes of death 
worldwide, with approximately 1.2 million incident cases 
and about 865,000 deaths (1). Although many achievements 
have been obtained for GC treatment, the 5-year survival 
rate of GC patients with advanced stage still remains  
low (2,3).

Cancer stem cells (CSCs), the cancer cell-of-origin, 
are characterized by having the capabilities of self-
renewal or differentiation, which may serve as a trigger 
of tumorigenesis, malignant progression, metastasis 
and multi-drug resistance (4-7). Cancer stemness index 
(SI), a parameter for assessing the degree of oncogenic 
dedifferentiation, has been widely studied with artificial 
intelligence and deep learning methods. Recently, it has 
been reported two independent stemness indices, namely, 
mRNA SI and mDNA SI, can be used to distinguish the 
molecular profiles of tumor cells with different stemness 
degrees. mRNA SI is a reflective of gene expression, while 
mDNA SI can reflect epigenetic changes (8). Both stemness 
indices are correlated to the biological processes in CSCs, 
tumor dedifferentiation, and histopathological classification.

The Cancer Genome Atlas (TCGA), is an open-
access integrated database that provides genomic, 
epigenomic, transcriptomic, and proteomic data along with 
histopathological and clinical information (9). It has been 
demonstrated that the specific molecular subtypes of tumors 
obtained from TCGA are associated with mRNA SI and 
mDAN SI features (8).

Weighted gene co-expression network analysis 
(WGCNA), is mainly used to construct gene network by 
identifying and weighing the gene pairs according to the 
correlation between expression levels (10,11). Additionally, 
WGCNA can be applied to discern network topology and 
subnetwork, also known as modules, in order to measure 
the similarity between genes. Only genes that have a strong 
weighted connection with each other in the network can 
establish a gene expression module. In other words, the 
genes involved in the module are even more significantly 
associated with sample traits compared to the comparative 
genes. Thus far, the role of mRNA SI in several cancers 
has been evaluated to identify stemness-related genes by 
comprehensive analysis of TCGA data with WGCNA  
(12-14). Bai and their colleagues (12) identified 21 key genes 
as candidate therapeutic targets to inhibit the stemness of 
liver cancer through WGCNA on TCGA database. Pan 
Shen and their colleagues (13) also identified 13 key genes 
that could play vital roles in the maintenance of bladder 

CSCs through WGCNA using TCGA database. However, 
the key genes that involved in the stemness maintenance of 
GC stem cells are still not fully understood.

 In this work, mRNA SI score and WGCNA were 
applied to identify potential stemness-related genes in 
GC patients. Our novel findings indicated a considerable 
number of genes associated with GC stemness and offered 
new insights into the molecular features of GC stem cells. 
The study was based on the TCGA Research Network: 
https://www.cancer.gov/tcga, thus, ethical approval was not 
needed. 

Methods

Data acquisition and procession

The transcriptomic data of 32 normal tissue and 375 GC 
samples were obtained from TCGA database (http://
tcga-data.nci.nih.gov/tcga/). Subsequently, the gene IDs 
were converted to a matrix of gene symbol with the use of 
Ensembl database (http://asia.ensembl.org/index.html). 
Next, the clinical data of 443 cases were also retrieved from 
TCGA database for the subsequent analysis. 

mRNA SI scores and clinical significance

To assess the prognostic values of mRNA SI score, survival 
analysis was carried out by using the “survival” package in R 
language. Statistical significance was determined by log-rank 
tests. Next, we evaluated the correlation between mRNA SI 
scores and GC patients’ clinicopathologic characteristics, 
including tumor grade, lymph node metastasis, TNM stage, 
and overall survival (OS).

Differential expression analysis

Differentially expressed genes (DEGs) between normal 
stomach and GC tissues were determined using the 
following selection criteria: (I) |log2 fold change| >1; 
and (II) false discovery rate (FDR) <0.05. For genes with 
similar names, the fold-change values were averaged. This 
procedure was completed using “edgeR” package in R.

WGCNA analysis

WGCNA and module preservation
WGCNA analysis was conducted by using the WGCNA 
package in R software. To ensure the accuracy and 
heterogeneity of subsequent co-expression network analysis, 

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://tcga-data.nci.nih.gov/tcga/
http://tcga-data.nci.nih.gov/tcga/
http://asia.ensembl.org/index.html
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the genes with the greatest variance (25%) in expression 
were selected for WGCNA analysis. First, RNA-seq data 
filtering was carried out to remove outliers. The absolute 
values of the correlations among mRNA expression levels 
were determined by a co-expression similarity matrix. 
The paired genes were constructed through a Pearson’s 
correlation matrix. A power function amn=|cmn|β (where 
amn = adjacency between gene m and gene n; cmn =Pearson’s 
correlation between gene m and gene n) was adopted to 
construct the weighted adjacency matrix. The parameter 
β is a soft thresholding estimator that defines a correlation 
power, and was applied to emphasize and penalize the 
strong and weak relationships between genes, respectively. 
Then, a proper β value was chosen to enhance the similarity 
matrix and provide a scale-free co-expression network. 
Next, the adjacency matrix was converted into a topological 
overlap matrix (TOM) to measure the network connectivity 
among genes, as denoted as the sum of adjacent genes 
obtained from all other networks. Through the use of 
TOM-based dissimilarity measure, an average linkage 
hierarchical clustering was carried out with a minimum size 
(gene group) of 30. Finally, their dissimilarity was calculated 
through further analysis of modules, and the module 
dendrograms were constructed.

Confirmation of significant modules
To explore the association between genes and sample 
traits, gene significance (GS) was calculated to evaluate the 
significance of each module. For each gene module, module 
eigengenes (MEs) were regarded as the pivotal components 
in the principal component analysis. Next, the expression 
pattern of each gene was encapsulated as a unitary feature 
expression profile with specific modules. Based on the linear 
regression between clinical data and gene expression, GS 
was interpreted as the log10 conversion of the P value (GS = 
lgP). Then, module significance (MS) was used to explore the 
relationship between sample traits and each module, which 
was defined as the average GS within the module. A cutoff 
value of less than 0.25 was set to merge all modules with the 
same length for the sake of increasing the capacity of each 
module. According to a report by Malta et al. (8), mRNA SI 
and epigenetically regulated mRNA SI were selected as the 
clinical phenotypes. Finally, the association between clinical 
phenotypes and gene expression modules was evaluated.

Identification of key genes

Firstly, modules of interest were selected. Then, GS and 

module membership (MM, the relationship of the module’s 
genes and expression profiles) were calculated according to 
the following threshold values: cor.gene GS >0.5 and cor.
gene MM >0.8.

Validation of key genes

To validate the differential mRNA expression levels 
of key genes between normal tissue and GC tumors, 
“ggpubr” package in R software was used to calculate their 
differences. The scatter distribution plot of key genes was 
then presented in a heatmap.

Gene ontology (GO) and Kyoto encyclopedia of genes and 
genomes (KEGG) analysis

Through the use of “clusterProfiler” package in R software, 
GO functional annotation and KEGG pathway enrichment 
analysis were performed with the following threshold 
values: P<0.01 and FDR <0.05.

Protein-protein interaction (PPI) analysis

PPI was analyzed by using STRING version 11.0 (https://
www.string-db.org,) with multi-seed based regulatory 
modules.

Gene co-expression analysis

The co-expression relationships between the key genes 
were determined by Pearson’s correlation analysis. All the 
calculations were completed using “corrplot” package in R. 

Statistical analysis

All statistical analyses in the present study were carried out 
in R version 3.6.1. The Kaplan-Meier curve was drawn to 
analyze the survival difference between the normal group 
and the tumor group. The correlation between key genes 
was analyzed by Pearson’s correlation analysis. P value <0.05 
was considered to be statistically significant.

Results

mRNA SI is correlated with clinical characteristics of GC

By analyzing the transcriptomic data of 32 normal tissue and 
375 GC samples, mRNA SI score was found to be markedly 
increased in tumor tissue compared to normal tissue  

https://www.string-db.org
https://www.string-db.org
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(Figure 1A). High mRNA SI score was remarkably 
associated with higher pathological grade, more advanced 
stage and higher T stage (Figure 1B,C,D). Further, 
we performed survival analysis between low and high 
mRNA SI scores. Similar to a recent report by Pan and  
co-workers (13), GC patients with higher mRNA SI 
scores exhibited improved OS compared those with lower 
mRNA SI scores (Figure 1E), which are opposed to our 
understanding of CSCs.

Screening of DEGs

By comparing the tumor and normal tissues of GC 
patients, 6,739 DEGs were identified, of which 5,592 were 
upregulated, and 1,147 were downregulated. Volcano 
map (Figure 2A) shows the distribution of all DEGs in 
the dimensions of -log (FDR) and log FC; while heatmap  
(Figure 2B) demonstrates the numerical data representing 

the expression profiles of DEGs.

WGCNA analysis

After eliminating outlier samples, the 6,739 DEGs with 
top 25% of variance were selected for a module. As shown 
in Figure 3A,B,C, after considering a soft threshold of 
β=4 (scale-free R2=0.910), 16 modules were obtained for 
subsequent analysis.

MS was employed to assess the correlation between gene 
expression modules and clinical phenotypes. Notably, the 
most remarkable association was found between mRNA 
SI and blue module, with a correlation value of −0.78. The 
brown and pink modules, with the correlation values of 
0.77 and −0.56 respectively, also exhibited relatively high 
correlations with mRNA SI (Figure 3D). As a result, the 
blue module was chosen for subsequent analysis.

To screen the potential key genes, the threshold values 

Figure 1 The correlations between mRNA SI and clinical characteristic of gastric cancer. (A) mRNA SI scores are significantly different 
between normal and tumor tissues; (B,C,D) high mRNA SI scores are remarkably associated with higher pathological grade, more advanced 
stage and higher T stage; (E) GC patients with higher mRNA SI scores had better OS than those with lower mRNA SI scores.
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of mRNA SI group were set as cor.MM >0.8 and cor.
GS >0.5. A total of 19 key genes, namely, BUB1 mitotic 
checkpoint serine/threonine kinase (BUB1), BUB1 mitotic 
checkpoint serine/threonine kinase B (BUB1B), kinesin 
family member 14 (KIF14), non-SMC condensing I 
complex subunit H (NCAPH), Rac GTPase activating 
protein 1 (RACGAP1), kinesin family member 15 (KIF15), 
centromere protein F (CENPF), TPX2 microtubule 
nucleation factor (TPX2), RAD 54 like (RAD54L), kinesin 
family member 18B (KIF18B), TTK protein kinase (TTK), 
kinesin family member 4A (KIF4A), shugoshin 2 (SGO2), 
polo like kinase 4 (PLK4), Rho GTPase activating protein 
11A (ARHGAP11A), X-ray repair cross complementing 
2 (XRCC2), chromosome 1 open reading frame 112 
(C1orf112), non-SMC condensing I complex subunit G 
(NCAPG), origin recognition complex subunit 6 (ORC6) 
were successfully screened out (Figure 3E,F,G).

Validation of the expression changes in key genes

All the 19 key genes were highly expressed in GC tissues 
compared to normal samples (Figure 4A). The heatmap 
demonstrated the scatter distribution plot of key genes 
(Figure 4B).

GO and KEGG analysis

GO analysis showed that the 19 key genes were related 

to biological process (e.g., sister chromatid segregation 
and nuclear chromosome segregation) as well as cellular 
component (e.g., spindle, chromosome and centromeric 
region), suggesting that these key genes are involved in 
cell proliferation (Figure 5A). In addition, KEGG analysis 
revealed that these 19 key genes are mainly associated with 
the pathways in cell cycle (Figure 5B).

PPI analysis 

The PPI relationships among the 19 key genes were 
analyzed by STRING, and the results demonstrated a 
strong relationship between these key genes (Figure 5C). 
Barplot figure showed that BUB1, NCAPG, TPX2 had the 
most nodes with other genes (Figure 5D).

Gene co-expression analysis

A strong co-expression association was found among the 19 
key genes at the transcriptional level (Figure 6). Notably, the 
highest correlation (0.88) was observed between KIF14 and 
CENPF, while the lowest correlation (0.52) was between 
ORC6 and KIF4A.

Discussion

CSCs are considered to be tumorigenic, along with the 
capabilities of self-renewal and differentiation (4,7). CSCs 
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Figure 3 Weighted gene co-expression network of GC. (A) Clustering of samples and removal of outliers; (B) analysis of network topology 
for various soft-thresholding powers based on scale independence and mean connectivity; (C) identification of a co-expression module in 
GC; (D) association between the gene modules and clinical traits. Scatter plots of module eigengenes in blue (E), brown (F), and pink (G) 
modules. GC, gastric cancer.
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are believed to have progenitor/stem cell-like features 
with the loss-of-differentiation state, which play crucial 
roles in tumor progression, metastasis, and recurrence  
(4-7). In the present study, CSC stemness-related key genes 
were identified from WGCNA analysis based on mRNA 
SI scores. Notably, mRNA SI scores were significantly 
higher in tumor samples than in normal tissues. Higher 
mRNA SI scores were associated with more progressive 
pathological grade, clinical outcomes, and pathological T 
stage, indicating that CSCs are involved in tumorigenesis 
and progression.

Furtherly, WGCNA were performed to construct 
a DEGs co-expression network, in order to uncover 
biological gene modules relying on average linkage 
hierarchical clustering and to identify genes associated with 
GC stemness characteristics. The parameter β in WGCNA 
was selected as 4 (scale-free R2=0.910) for constructing a 
scale-free network. To identify the modules of interest, 
GS and MM were calculated for each gene. To further 
explore the association between gene module and mRNA 
SI, MS was defined as the overall gene expression level of 
a certain module for the subsequent analysis. As illustrated 
in Figure 3D, the most remarkable association was found 
between mRNA SI and blue module, with a correlation 
value of −0.78. Then, in accordance with other reports, the 
threshold values of cor.gene GS (0.5) and cor.gene MM (0.8) 
was established to identify key genes in the blue module, 
and the results showed that a considerable number of 
genes were identified. The interactions among the proteins 
encoded by key genes and co-expression association at 
the transcriptional level were both strong. These findings 

are consistent with clinical observations demonstrating 
that these 19 key genes can affect GC development and 
progression. 

As opposed to our understanding of CSCs, GC patients 
with higher mRNA SI scores exhibited improved OS 
compared to those with lower mRNA SI scores, which are 
similar to the findings of Pan and co-workers (13). They 
also found that mRNA SI is a stemness comprehensive 
index, which can be affected by the purity of tumor (13). 
However, the influence of tumor purity can be eliminated 
by the corrected mRNA SI (mRNAsi/tumor purity). It 
has been reported that the patients with higher corrected 
mRNA SI scores may exhibit significantly worse OS. The 
corrected mRNA SI scores can be calculated based on 
tumor purity derived from previous findings (15). However, 
we failed to calculate the corrected mRNA SI scores in GC 
due to a lack of necessary data.

GO analysis revealed that the 19 key genes were mainly 
involved in cell proliferation, while KEGG analysis revealed 
that the 19 key genes were primarily involved in the 
pathways of cell cycle. All these key genes have been shown 
to participate in cancer development and pathogenesis. 
BUB1 is involved in chromosome segregation, and the 
target inhibition of BUB1 kinase can sensitize tumor 
cells toward taxanes (16). BUB1B is a vital mitotic spindle 
checkpoint player, and its overexpression may enhance 
the progression of prostate cancer (PCa) and correlated 
with unfavorable clinical features (17). Yang and colleagues 
have reported that KIF14 is highly expressed in GC 
samples and cell line, thus promoting GC progression and  
metastasis (18). Upregulation of NCAPH has been found 

Figure 4 Validation of key genes. (A) Differential expression of the 19 key genes between normal and GC tissues; (B) the heatmap showing 
the scatter distribution of key genes.
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in colorectal cancer tissue. Silencing NCAPH can suppress 
colon cancer cell migration and proliferation both in vitro 
and in vivo, as well as promote cell cycle arrest at G2/M 
phase (19). RACGAP1 is overexpressed in several cancer 
cell lines following radiation, and the knockdown of 
RACGAP1 can inhibit cell viability and invasiveness after  
radiotherapy (20). KIF15 is highly expressed in pancreatic 
tumor samples, and its overexpression is associated 
with shorter survival times and pancreatic cancer  
growth (21). CENPF is involved in cancer proliferation and 
metastasis (22,23). Knocking down of CENPF can alter 

the metabolic profiles of PCa cells and thus inhibit their 
proliferation (23). TPX2, also known as TPX2 microtubule 
nucleation factor, has been found to promote cancer cell 
progression. Silencing of TPX2 exerts anti-cancer effects 
on various cancer cells (24-26). RAD54L has been found 
to be associated with tumorigenesis and radioresistance in 
glioblastoma patients (27). KIF18B has been reported to be 
upregulated in cutaneous melanoma and correlated with 
poor clinical outcomes (28). Functional experiments have 
suggested that KIF18B can aggravate the progression of 
cervical cancer (29). TTK is associated with the malignancy 

Figure 5 GO (A) and KEGG (B) enrichment analysis of the 19 key genes. (C) The protein interaction relationships among the key genes. (D) 
Barplot figure showing the degree of involvement of each key gene in the PPI network.
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of PCa, and is thought to be a potential therapeutic 
target for cancer therapy (30). KIF4A is considered to be 
a potential gene in mediating tumorigenesis and cancer 
progression, which is related with shorter OS in a wide 
variety of tumors (31,32). SGO2 is highly expressed in 
cutaneous T-cell lymphomas (33). PLK4 is a promising 
target with potential clinical application, which promotes 
cancer invasion and metastasis (34,35). Both ARHGAP11A 
and XRCC2  are highly expressed in hepatocellular 
carcinoma (36,37), and knockdown of C1orf112 can 
suppress the growth of HeLa cells (38), indicating these 
genes may be involved in cancer development. NCAPG 
has been found to be correlated with shorter disease-free 
survival and advanced clinical stage. Silencing of NCAPG 
can suppress the aggressiveness cancer cells (39). ORC6 
has been demonstrated to be highly expressed in colorectal 
cancer tissues, and downregulated expression of ORC6 
sensitizes colon cancer cells to chemotherapy (40). 

More importantly, some of these key genes have been 
found to play vital roles in maintaining the stemness of 

CSCs. Han and colleagues have reported that silencing of 
BUB1 can reduce the CSC potential of breast cancer cells, 
demonstrating that this gene is involved in the function 
of CSCs (41). BUB1B has been found to participate in the 
stemness maintenance of brain tumor-initiating cells (42). 
Huang and co-workers have report that TPX2 is associated 
with the development of breast CSCs, and lovastatin can 
sensitize breast CSCs to radiotherapy by affecting TPX2 
gene expression (43). In addition, RACGAP1 and KIF18B 
are considered to play critical roles in the regulation of 
bladder CSCs (13).

Some limitations to the present study should be 
highlighted. First, the expression and function of these 
key genes that play vital roles in the stemness maintenance 
of CSCs in GC patients should be validated in cellular 
and molecular experiments. Indeed, we will validate our 
results in the further experiments as soon as possible. 
Next, non-coding RNA have been recognized to be crucial 
in maintaining the stemness of CSCs (44-48); however, 
our study focused on the identification of key genes that 

Figure 6 Gene co-expression analysis of the 19 key genes.
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controlling stemness of GC stem cells, thus non-coding 
RNA was not included in our analysis. 

Conclusions

In summary, 19 key genes were identified to play a 
critical role in the stemness maintenance of gastric CSCs. 
These key genes can be chosen as therapeutic targets 
for suppressing the stemness of CSCs in GC patients. 
Nevertheless, further experimental studies are still required 
to validate our findings.
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