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A B S T R A C T

Blood oxygenation level dependent (BOLD) resting-state functional magnetic resonance imaging (rs-fMRI) may
serve as a sensitive marker to identify possible changes in the architecture of large-scale networks following mild
traumatic brain injury (mTBI). Differences in functional connectivity (FC) measurements derived from BOLD rs-
fMRI may however be confounded by changes in local cerebrovascular physiology and neurovascular coupling
mechanisms, without changes in the underlying neuronally driven connectivity of networks. In this study, multi-
modal neuroimaging data including BOLD rs-fMRI, baseline cerebral blood flow (CBF0) and cerebrovascular
reactivity (CVR; acquired using a hypercapnic gas breathing challenge) were collected in 23 subjects with re-
ported mTBI (14.6± 14.9 months post-injury) and 27 age-matched healthy controls. Despite no group differ-
ences in CVR within the networks of interest (P> 0.05, corrected), significantly higher CBF0 was documented in
the mTBI subjects (P < 0.05, corrected), relative to the controls. A normalization method designed to account
for differences in CBF0 post-mTBI was introduced to evaluate the effects of such an approach on reported group
differences in network connectivity. Inclusion of regional perfusion measurements in the computation of cor-
relation coefficients within and across large-scale networks narrowed the differences in FC between the groups,
suggesting that this approach may elucidate unique changes in connectivity post-mTBI while accounting for
shared variance with CBF0. Altogether, our results provide a strong paradigm supporting the need to account for
changes in physiological modulators of BOLD in order to expand our understanding of the effects of brain injury
on large-scale FC of cortical networks.

1. Introduction

Neuroimaging is being increasingly utilized as a tool to assess the
effects of mild traumatic brain injury (mTBI) on brain health. In par-
ticular, blood oxygenation level dependent (BOLD; Ogawa et al., 1993,
1990) functional magnetic resonance imaging (fMRI) acquired at rest
has highlighted that possible changes in the organization of large-scale
brain networks may occur acutely and chronically following mTBI
(Doshi et al., 2015; Iraji et al., 2015; Mayer et al., 2011; Nathan et al.,
2015; Rosenthal et al., 2018; Sours et al., 2015; Stevens et al., 2012;
Xiong et al., 2016). Functional connectivity (FC) measurements are
characterized by the degree of low frequency synchronization in BOLD
signal across different regions of the brain. Changes in FC have been

associated with clinical recovery in injured athletes and have been
suggested as a means to determine return-to-play in athletes
(Lovell et al., 2007). Partial recovery of impairments in functional sub-
networks have also been linked with varying degrees of compensation
within cortical nodes of the brain (extending beyond a year post-injury;
Dall'Acqua et al., 2017), showing that there may be differences across
subjects with respect to recovery mechanisms after an mTBI.

In addition to changes in resting-state fMRI (rs-fMRI), alterations in
cerebrovascular physiology have been documented following mTBI.
These include changes in resting cerebral blood flow (CBF0; Lin et al.,
2016; Maugans et al., 2012; Meier et al., 2015; Militana et al., 2016;
Stephens et al., 2018; Wang et al., 2018, 2016) identified using ad-
vanced arterial spin labelling (ASL) techniques (Alsop et al., 2015) and
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changes in cerebrovascular reactivity (CVR; Len et al., 2011; Len and
Neary, 2011; Mutch et al., 2016), characterized by the change in CBF
upon exposure to a vasodilatory stimulus such as hypercapnia (HC;
Fisher et al., 2018). Multiple methods exist to probe CVR clinically by
inducing HC in patients including the use of a breath-hold task or an
automated gas delivery system which allows control of end-tidal CO2

partial pressures in the during an MRI scan (reviewed in Liu et al., 2018).
Together, documented changes in CBF0 and CVR following mTBI sug-
gest that the symptomatic response observed in patients post-injury
may be influenced by factors with vascular origins, emphasizing the
need to include physiological biomarkers in the characterization of
head injuries and their effects on brain health.

In studies demonstrating that BOLD rs-fMRI may serve as a sensitive
marker to identify mTBI patients (Vergara et al., 2018, 2016), changes
in FC are typically interpreted as impairments in neural connections
between or within brain networks (if FC is lower), or evidence for brain
plasticity (Bashir et al., 2012; Meehan et al., 2017) via compensatory
mechanisms (if FC is higher). One limitation to BOLD rs-fMRI however
is that changes in FC correlation coefficients may be confounded by
changes in neurovascular coupling, defined as the changes in CBF
coupled with changes in metabolic demands in response to increased
neuronal activity, and baseline cerebrovascular physiology (Chu et al.,
2018; Liu, 2013; Tak et al., 2015, 2014). This is because the BOLD
contrast reflects a complex interplay between CBF, cerebral metabolism
(via cerebral metabolic rate of oxygen consumption (CMRO2)), cerebral
blood volume (CBV) and venous blood oxygenation, which all con-
tribute to the hemodynamic response that follows neural activity and
modulates the local concentration of venous deoxy-hemoglobin
(Davis et al., 1998; Hoge et al., 1999; Ogawa et al., 1993). Thus, factors
that disturb the neurovascular coupling processes between neural
fluctuations and concurrent changes in the BOLD contrast may affect
the amplitude of the recorded BOLD signal fluctuations, and subse-
quently decrease correlation coefficients (i.e., FC measurements) be-
tween brain regions without actually changing the underlying neu-
ronally-driven connectivity (reviewed in Liu, 2013; see Fig. 1). Such
changes in vascular parameters have also been shown to bias the BOLD
response in task-based fMRI (Bandettini and Wong, 1997; Liu et al.,
2013; Para et al., 2017). In rs-fMRI, findings by (Chu et al., 2018)
showed that FC measurements are dependent on a complex interaction
between the BOLD signal (from neural activity) and physiological noise,
which together make up the variability in BOLD measurements across
the brain. It is thus critical that we consider the effects of physiological
modulators of BOLD (e.g., CVR, CBF0 and venous oxygenation) in the
study of rs-fMRI, especially given that differences in vascular phy-
siology and neurovascular coupling (A.K. et al., 2018; Burnett et al.,
2014) have been documented post-mTBI.

The purpose of this paper was to introduce a multi-modal approach
based on (Qiu et al., 2017) to account for local physiology in the study
of rs-fMRI and FC in mTBI patients. This was done in order to explore
the effects of such normalization on reported group differences in
functional network architecture based on a history of mTBI. We hy-
pothesized that multi-modal analysis of FC scaled by local physiology
would reveal unique connectivity differences between the groups that
may reflect differences in the organization of large-scale networks fol-
lowing mTBI. Altogether, our results provide a strong paradigm sup-
porting the need to account for physiological modulators of BOLD in
order to expand our understanding of the effects of disease and injury
on large-scale FC of cortical networks.

2. Methods

2.1. Subjects and ethical approval

This study was approved by the Health Sciences and Affiliated
Teaching Hospitals Research and Ethics Board of Queen's University
(Kingston, ON, Canada). A total of 23 subjects with reported mTBI

(“mTBI”) were retrieved from our database. The majority of those
participants presented with a history of head injury associated with
sport-related concussion. Neuroimaging was obtained for patients
14.6±14.9 months post-injury (range: [1–48 months]). Informed
consent was obtained from each participant at the time of the MRI.
Confirmation was obtained from each patient that mTBI had been di-
agnosed by a practicing medical professional according to the most
updated International Consensus Agreement on head injuries
(McCrory et al., 2013). No patients reported any loss of consciousness
associated with the injury. In order to evaluate the effects of scaling FC
by cerebrovascular physiology in mTBI patients, data from a control
group of 27 age-matched healthy (“healthy”) participants was retrieved
from the same database. Healthy subjects did not report any history of
mTBI and did not have positive imaging findings on the anatomical
imaging. Table 1 summarized the demographic characteristics for each
group.

At the time of the MRI, all subjects were asked to complete the
symptom evaluation section of the Sport Concussion Assessment Tool
(3rd edition; SCAT-3; Concussion in Sport Group, 2013), in order to
assess for possible differences in self-rated symptoms related to mTBI
between the groups (Table 1).

2.2. Structural imaging and tissue segmentation

All imaging data was acquired on a Siemens 3.0T Magnetom Tim
Trio system using a 32-channel receiver head coil. A whole brain high
resolution T1-weighted magnetization prepared rapid acquisition gra-
dient echo (MP-RAGE) image was acquired for segmentation and re-
gistration purposes with the following parameters: TR = 1760 ms,
TE = 2.2 ms, time of inversion (TI) = 900 ms, voxel size = 1 mm
isotropic, field of view (FOV) = 256 × 256 mm, flip angle = 9°, re-
ceiver bandwidth = 200 Hz/pixel and a total scan time of 7 min and
32 s. The 3D structural images were inspected by a practicing neuro-
surgeon (D.J.C.) to ensure that the anatomical image did not show any
structural alterations. The anatomical scans were then brain extracted
and segmented using FSL's automated 3D segmentation tool (FAST;
Zhang et al., 2001) to create subject-specific grey-matter (GM), white-
matter (WM) and cerebrospinal fluid (CSF) tissue maps.

2.3. BOLD resting-state imaging

Rs-fMRI data was acquired using a 6 min functional BOLD sequence
run with a 2D echo planar imaging (EPI) readout. A total of 36 axial
slices were acquired on a 68 × 68 matrix in an interleaved fashion
using the following parameters: TR = 2000 ms, TE = 30 ms, voxel
size = 3.5 mm isotropic, flip angle = 90°, receiver
bandwidth = 2042 Hz/Px, FOV = 240 × 240 mm and no slice gap.
Whole brain coverage was obtained using GRAPPA (Griswold et al.,
2002) parallel imaging (acceleration factor set to 2).

2.4. Dual-echo pCASL acquisition

BOLD and CBF data were acquired simultaneously during the HC
breathing protocol using a dual-echo pseudo-continuous arterial spin
labelling (pCASL) sequence (Dai et al., 2008) with a 2D EPI readout and
the following parameters: TR = 4000 ms, TE1/TE2 = 10/30 ms,
FOV = 250 × 250 mm, flip angle = 90°, voxel size = 3.9 mm iso-
tropic, slice gap = 0.773 mm, label offset = 100 mm, receiver band-
width = 2604 Hz/pixel and EPI factor = 64. For each pCASL acqui-
sition, the label duration was set to 1665 ms and the post-labelling
delay (PLD) ranged between 1000 and 2291 ms. Because of the multi-
slice single-shot EPI readout, the PLD varied across the slices acquired
(average PLD = 1646 ms), which was accounted for in the computation
of CBF (see below). A total of 25 axial slices were acquired on a
64 × 64 matrix (7/8 partial Fourier) in ascending order with whole
brain coverage and parallel imaging (GRAPPA acceleration factor=2).
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A tissue equilibrium magnetization map (M0) was also acquired with
the same pCASL parameters, other than a longer TR (15,000 ms) and no
spin labelling, for quantification of CBF.

2.5. Pre-processing of BOLD resting-state fMRI

The order of pre-processing steps in the study of mTBI has been
shown to play an important role in the classification of injured subjects
(Vergara et al., 2017; Vergara et al., 2017). Thus, careful steps were
taken in this study to follow recommendations from (Vergara et al.,
2017) in order to optimize the results of our imaging data (Fig. 1A). The
first two volumes of the resting dataset were discarded to allow for the
BOLD signal to reach a steady state. Following slice-time correction
(Jenkinson et al., 2012a) and volume-to-volume re-alignment
(MCLFIRT; Jenkinson et al., 2002; Mark Jenkinson and Peter
Bannister, 2002), the resting BOLD EPI images were co-registered with
the high-resolution T1 image using FSL's epi_reg function
(Jenkinson et al., 2012b) and boundary-based registration, in order to
improve the alignment between the functional and structural scans
(Greve and Fischl, 2009). The EPIs were then spatially normalized and
transformed to the Montréal Neurological Institute (MNI) standard
space using concatenated linear (FLIRT; 12 dof; Jenkinson et al., 2002)

Fig. 1. Schematic summarizing the workflow for the analysis of resting-state network connectivity. (A) Pre-processing steps for the blood oxygen level dependent
(BOLD) images included slice time correction (ST corr.), motion correction (motion corr.), co-registration, spatial normalization in standard Montréal Neurological
Institute (MNI) space, temporal regression of nuisance parameters (white-matter (WM), cerebrospinal fluid (CSF), global signal (GS) and motion), spatial smoothing,
bandpass filtering and resampling to 4 mm to align with the independent component volumes extracted in (B). The “power resting-state plots” display the time-
courses of the grey-matter (GM) voxels as intensity plots for a random participant (Power et al., 2014) to show the effects of pre-processing steps employed in this
study. As recommended in (V.M. et al., 2017; Vergara et al., 2017) the cleaned BOLD data was input into FSL's (Jenkinson et al., 2012) MELODIC for group
independent component analysis (ICA) before bandpass filtering. A total of 50 dimensions was pre-set for the ICA with all subjects. (C) The labelled components
characterized in (B) using the (Yeo et al., 2011) parcellation atlas for resting-state neural networks were used as seeds to compute intra- and inter-network functional
connectivity (FC) measurements using Pearson correlations.

Table 1
Subject demographics.

Healthy (N = 27) mTBI (N = 23) P-valuea

Age (years) 32.2 ± 10.7 31.0 ± 11.0 0.819
Height (cm) 179.6 ± 6.6 177.5 ± 9.5 0.375
Weight (kg) 99.9 ± 45.7 107.6 ± 55.0 0.595
Number of Males (%) 20 (74) 14 (61) N/A
SCAT-3 symptom score 2.8 ± 3.6 13.3 ± 8.0 <0.0001
SCAT-3 severity score 4.1 ± 5.6 38.6 ± 30.9 <0.0001

Values are mean ± standard deviation.
a = Statistically compared using a univariate ANOVA. N/A = not applic-

able, mTBI = mild traumatic brain injury, SCAT-3 = sport-concussion assess-
ment tool (3rd edition).
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and non-linear (FNIRT; Andersson et al., 2007) transformation matrices
that aligned the functional scan to the template via the anatomical
image. Temporal regression of the nuisance components including the
global signal, the mean WM and CSF signals, and the six rigid-body
motion parameters was done followed by spatial smoothing of each
volume using a full-width at half maximum (FWHM) gaussian kernel of
6 mm. Volumes with a displacement above 0.2 mm were also censored
out prior to smoothing to avoid biasing correlation coefficients based on
large motion artifacts. As proposed in (Vergara et al., 2017), the
smoothed data were then input into the group independent component
analysis (gICA; discussed below).

2.6. Network construction and calculation of functional connectivity

Once pre-processed, each functional scan was resampled to a spatial
resolution of 4mm to reduce the computational cost of the analysis
(Fig. 1B). Resampled volumes from all subjects were then concatenated
into a large 4D image and input into FSL's MELODIC command
(Jenkinson et al., 2012a) to carry the gICA and separate the neural-
related signals from different sources of noise and variability across
subjects (Beckmann, 2012; Murphy et al., 2013). The resultant set of
functionally independent resting-state components were first inspected
visually (Griffanti et al., 2017) and overlaid onto the well-known pre-
defined functional network atlas from (Yeo et al., 2011). Components
with spatial correlation over 0.3 based on FSL's fslcc (Jenkinson et al.,
2012a) tool were kept for further analysis. Spatial maps with con-
siderable overlap with CSF or WM were automatically discarded.

A total of 6 large-scale resting networks (Fig. 2) were identified
based on the atlas from (Yeo et al., 2011): default mode network
(DMN), dorsal attention network (DAN), somatomotor network (SMN),
visual network (VN), ventral attention network (VAN) and fronto-par-
ietal network (FPN). The identified spatial components were masked to
a statistical threshold set to |t| > 4 and then clustered into seeds to
identify brain areas of relevance within each network of interest. As
recommended in (Vergara et al., 2017), the pre-processed BOLD rs-
fMRI image were then temporally smoothed with a Gaussian filter
(approximate cutoff frequency = 0.15 Hz) before computing correla-
tion coefficients between the seeds. Seed-based intra- and inter-network
correlations were then extracted between each region's time course and
all other region of interests’ (ROI) timeseries, in order to create a large-
scale connectivity matrix for each subject (Fig. 1C).

2.7. Voxelwise CBF0 and CVR mapping and registration in standard space

To quantify CVR, each subject completed a 6-minute HC breathing

protocol (Fig. 3A) during which the end-tidal carbon dioxide (PETCO2)
was targeted to 10 mmHg above baseline using a computerized feed-
forward system (RA-MRTM, ThornHill Research Institute, Toronto, ON,
Canada) connected to a gas blending unit (Mark et al., 2010;
Prisman et al., 2008). The boxcar manipulation consisted of a 2-minute
baseline, followed by a block of gas inhalation (2-minute) and a 2-
minute recovery period (Fig. 3A). During HC, end-tidal pressure of
oxygen (PETO2) was held constant at baseline values (~110 mm Hg)
while the automated system sampled the partial pressures of the sub-
ject's expired air via a facemask sealed using adhesive tape (Tegaderm,
3M Health Care, St. Paul, MN, US).

The BOLD data from the pCASL acquisition during HC was used to
compute CVR as the percentage change in signal divided by the change
in PETCO2 during the task (CVR = Δ%BOLD/ΔmmHg). The BOLD
contrast was isolated from the pCASL images using a surround aver-
aging of the second echo (TE2 = 30 ms; Smith and Brady, 1997). Ex-
tracted volumes were motion corrected (MCFLIRT; Jenkinson et al.,
2002; Mark Jenkinson and Peter Bannister, 2002), brain extracted
(BET) and co-registered with the high-resolution structural image using
the epi_reg tool (Jenkinson et al., 2012b) and rigid-body registration (6
dof; FLIRT; Jenkinson et al., 2002). Volumes were then smoothed with a
Gaussian kernel of 8mm using SUSAN (Jenkinson et al., 2012b) and
high-pass filtered to correct for the possible linear drift in the signal
during the EPI acquisition. Following conversion of the BOLD signal to
a percent change from baseline, CVR maps (Fig. 3B) were computed for
each subject by averaging volumes acquired during HC (Fig. 3A) and
dividing out the change in PETCO2. Only the last 80s of HC (out of 120s)
were used to compute the mean BOLD change in signal during the
stimulus in order to avoid possible bias from delays in the vascular
response to HC (Champagne et al., 2017; Donahue et al., 2016;
Poublanc et al., 2015).

CBF0 data were reconstructed from the first echo of the pCASL se-
quence (TE1 = 10 ms) using a linear surround subtraction of the ad-
jacent tag and control volumes (ΔM). Following spatial smoothing of
the ASL volumes (8mm FWHM), a voxelwise CBF0 map (mL/100g
tissue/min; Fig. 3C) was computed for each subject using FSL's oxfor-
d_asl toolbox (Chappell et al., 2009) with partial volume
(Chappell et al., 2011) and T2* correction. This was done in order to
reduce the partial volume effects from neighboring voxels containing a
mixture of GM, WM and CSF. The slice-varying differences in PLD due
to the 2D EPI readout were corrected using PLDi = 1000 ms + (sT)*(i-
1), where sT represents the slice time in milliseconds (sT = 53.8 ms).
Baseline volumes prior to the stimulus (Fig. 3A) were then averaged to
compute the CBF0 maps (Fig. 3C).

Once constructed, the CVR and CBF0 maps were aligned in standard

Fig. 2. Independent component analysis. Statistical results from the independent component analysis (ICA) using the resting functional data from the entire cohort
and a pre-set total number of 50 dimensions. Components of interest were identified using the fslcc (Jenkinson et al., 2012) function combined with the (Yeo et al.,
2011) parcellation atlas for resting-state neural networks. Statistical component maps (yellow-red) are overlaid onto the MNI template and threshold at a minimum t
score set to 4. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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MNI space using a combination of affine (12 dof; Jenkinson et al., 2002)
and non-linear warp-fields (FNIRT; Andersson et al., 2007) that regis-
tered the EPI functional images from native to standard space via the
high-resolution structural image. Images were then resampled to 4mm
isotropic voxels in order to align spatially with the rs-fMRI spatial
components extracted from the gICA.

2.8. Calibration of functional connectivity coefficients using seed-based
physiology

Differences in physiological modulators of the BOLD contrast (e.g.,
CBF0 and CVR) post-mTBI may affect the amplitudes and correlation
coefficients across regions of the brain included in large-scale networks
(Chu et al., 2018; Liu, 2013; Qiu et al., 2017). To account for these
confounds, we implemented a weighting scheme proposed by
(Qiu et al., 2017) that adjusts seed-to-seed correlation coefficients
based on local physiology (Fig. 4). This global scaling was applied to all
seed-to-seed correlation coefficients (see below) studied if significant
differences in the vascular parameter (i.e., CBF0 or CVR) specific to the
gICA spatial components were documented between the group at the
voxelwise level (discussed next). This is because group-based

differences in physiology within the gICA spatial components may
contribute or bias the rs-fMRI metrics studied within the large-scale
networks (Chu et al., 2018). However, if no differences in physiology
were identified, no scaling for that vascular parameter was applied.

In this analysis (see results Section 3.2), significant group-based
differences in CBF0 spread across voxels of the large-scale network were
identified. However, no significant voxelwise differences in CVR were
documented suggesting that mechanisms for modulation of blood flow
during HC were similar between the groups. Because network-based
differences in CBF0 were observed, individual functional connections
between each seed were scaled by the seeds’ mean CBF0 measurement.
This was done by multiplying the Pearson correlation coefficient
(Pearson's r = ρ x y( , )r seed r seed( ) ( )1 2 ) by the inverse of the product of the
seeds’ CBF0, normalized by the mean GM value (weight = GMCBF0/
(seed1(CBF0)∗seed2(CBF0)); Fig. 4), as proposed in (Qiu et al., 2017). The
resultant weighted coefficient thus reflects the degree of synchroniza-
tion between two ROIs timeseries, scaled by the possible contribution of
local cerebrovascular physiology (Qiu et al., 2017).

2.9. Clinical assessment of sensorimotor performance

In order to assess sensorimotor function between the groups, each

Fig. 3. Computation of voxelwise cerebrovascular reactivity (CVR) and resting cerebral blood flow (CBF0) maps. (A) Real-time end-tidal CO2 (PETCO2; top, blue dots)
and O2 (PETO2; bottom, red dots) peaks during the normoxic hypercapnia breathing manipulation. The peaks are overlaid onto the respiratory timecourse (light blue
trace) targeted and collected using the RA-MRTM (ThornHill Research, Toronto, ON, Canada) computerized system. (B–C) Sample grey-matter (GM) blood oxygen
level dependent (BOLD) CVR (B) and CBF0 (C) maps in a control subject overlaid onto the high-resolution anatomical scan registered in Montréal Neurological
Institute (MNI) standard space. Possible voxels including cerebrospinal fluid (CSF) were masked out to limit the partial volume effects between tissues. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).

Fig. 4. Scaling functional connectivity measurements using weights derived based on local physiology. The original inter- and intra-network connectivity matrix
(middle) shown in Fig. 1C derived from computing Pearson correlation coefficients (ρ) across all seeds extracted from the independent component analysis (Fig. 3).
Original ρ values between seeds were normalized independently using the resting cerebral blood flow (CBF0; right) map by multiplying the ρ index times a weight
factor. The weight factor for ρ between two seeds (ROI1 and ROI2) was computed by dividing the mean grey-matter (GM) CBF0 (or CVR; not shown) value by the
product of the regional measurements (ROI1⋅ROI2), as shown on the equation above the arrow. The final resultant matrix (right) provides functional connectivity (FC)
estimates that are weighted by the local physiology. This method was first introduce in (Qiu et al., 2017) to account for the possible confounding nature of changing
perfusion on FC analysis within and across subjects.
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subject completed the “object hit and avoid” task (OHA; Bourke et al.,
2016) using the standing bilateral KINARMTM end-point robot (BKIN
Technologies Ltd., Kingston, Ontario, Canada; Fig. 5A), which creates a
virtual environment platform seen by the participant (Little et al., 2015;
Scott, 1999). The bilateral graspable robotic arms measure how the
subject moves in the horizontal plane and applies loads to move the
limb(s) in the workspace to create haptic feedback for virtual objects.

The OHA task (Fig. 5B) was designed to assess rapid bimanual
motor actions, spatial and temporal performance during the task, as
well as attention, executive functions and inhibitory control. Specifi-
cally, each participant is first shown a pair of target shapes to memorize
(Fig. 5B left). These are the only shapes they are instructed to hit during
the entire duration of the task. All other shapes are considered to be
distractors and must be avoided successfully (Fig. 5B middle). A total of
300 objects are dropped from 10 bins spread across the width of the 80
cm workspace (Fig. 5B). When a target is hit using the virtual paddle,
the target is pushed away and the robotic arm gives haptic feedback
(i.e., small force pulse). If the participant hits a distractor, the paddle
passes through the object and no haptic feedback is delivered in order
to let the subject know about successful and unsuccessful maneuvers.
During each trial, sensorimotor parameters such as positions and ve-
locities are recorded for each hand at a sampling rate of 1000Hz. These
are then used to compute a performance grid (Fig. 5C) and extract
sensorimotor parameters that provide an index of the participant's
sensory, motor and cognitive function (Table 2).

2.10. Statistical analyses

All spatial components extracted from the gICA (Fig. 2) were
masked and merged into one image to create a large-scale network map
of the voxels that were included in the characterization of seed-to-seed
connectivity. This mask was then used to restrict the voxelwise group-
comparison of the CVR and CBF0 maps and determine whether cere-
brovascular physiology differed between the groups within the ROIs
studied. The network-specific mask used to restrict the gICA was also
further filtered using the T2* signal in order to eliminate voxels with
baseline T2* values below 30ms, which are likely caused by suscept-
ibility artefacts (as done in Lajoie et al., 2016).

Physiological maps (i.e., CBF0 and CVR) were assessed for sig-
nificant differences between the groups using a voxel-based analysis
performed in AFNI's (Cox, 1996) 3dMVM (Chen et al., 2014). The
voxelwise analyses were corrected for multiple comparisons using
10,000 Monte Carlo simulations in AFNI's 3dFWHMx (with spatial
AutoCorrelation) and 3dClustSim (Cox et al., 2017, 2016) and a P value
was set to 0.05. Clusters showing statistical differences between the
groups were then extracted to compute the average value for the ROI in
each subject and run post-hoc tests to describe the direction of the
group effect.

Intra- and inter-region connectivity were compared between the
groups using a series of ANOVAs corrected at a false discovery rate set
to a P value of 0.05 (adjusted). This was repeated for normalized

Fig. 5. Robotic assessment of sensorimotor and cognitive functions using object hitting task. (A) The KINARM end-point robot lab (BKIN Technologies, Kingston, ON,
Canada). Participants are secured into the robotic arms via a harness in case of any falls from the cognitive load. The robotic arms allow for movement in the
horizontal plane and in depth characterizing of sensorimotor features from the task. (B) The view of the virtual environment platform seen by the subject showing a
projected version of their hands on the screen below their eyes. The subject is informed in the pre-trial setting to “hit” the red circles and triangles, while avoiding
everything else (left). The shapes appear at random from 10 different bins (not displayed) at an increasing speed throughout the task (~140 s). The subject uses 5 cm
paddles to hit away the shapes of interest (middle-top). Upon contact with a shape, the robot generates a 50 ms force pulse to provide feedback of contact with the
object. Sensorimotor parameters like positions and velocities for each hand are recorded at a sampling rate of 1000Hz. The timeseries (middle-bottom) show the real-
time recording of the hand speed for the right (pink) and left (yellow) hands. The total hand path for each hand is also shown (right). (C) Performance grid for the task
where the X-axis represents the bins and the Y-axis shows the random blocks increasing in speed from top to bottom. Successful hits for the right (red) and left (blue)
hands are colored respectively, while misses are shown in white. Distractor hits signify that the subject attempted to contact a shape outside of the ones selected by
the robot pre-trial. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.).
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connectivity measurements scaled by CBF0 since group-differences
were identified (see results Section 3.2) within voxels spread across the
spatial distribution of large-scale networks studied.

All five sensorimotor parameters (Table 2) were compared between
the groups using a series of univariate Analysis of Variance (ANOVA)
and a significance level set with a P value < 0.05.

3. Results

3.1. Participants

This study analyzed a total of 23 mTBI subjects compared to 27
healthy controls. Groups did not differ significantly with respect to age,
height or weight (Table 1). mTBI subjects reported significantly greater
and more severe symptoms collected using the SCAT-3 scale (Table 1),
compared to the healthy participants. Despite being more symptomatic
at the time of the MRI, the studied mTBI patients did not show any
significant differences in the sensorimotor parameters of the OHA task
studied using the KINARMTM (Table 3).

3.2. Voxelwise differences in physiological measurements

Voxelwise analysis of the CVR maps showed no significant differ-
ences in vascular reactivity between the groups (P > 0.05, corrected at
a cluster volume size of 33 voxels). Despite finding no differences in
CVR, significant differences in baseline perfusion (i.e., CBF0) were
documented between the groups (Fig. 6; P< 0.05, corrected at a cluster
volume size of 94 voxels). A total of three cortical clusters were iden-
tified (cluster size = 173, 228 and 293 voxels), which spread across the
networks studied (Table 4). Specifically, higher baseline perfusion was
observed in the mTBI group (101.8±21.6 mL/100g/min), relative to
the healthy participants (84.5±16.5 mL/100g/min), although no di-
rect relationship between time post-injury (in months) and CBF0 was
identified (rho = 0.115, P = 0.601). Of the large-scale networks ex-
plored in this study, the DAN, FPN and SMN had the highest percentage
of voxels showing differences in CBF0 (Table 4). No voxels with group-

differences in basal perfusion were observed in the VN.

3.3. Group-comparison of original and scaled functional connectivity
matrices

Non-contiguous clustering of the gICA spatial components (Fig. 2)
created a total of 41 ROIs spread across the 6 large-scale networks of
interest (Table 4). The comparison of non-weighted FC coefficients from
BOLD rs-fMRI between the groups showed significant differences (P <
0.05, corrected) within and across networks of the brain (Fig. 7A). A
total of 29 seed-to-seed connections were different between the groups,
of which 10 were from ROI pairs within networks, and 19 were from
functional connections between networks. These included a mixture of
both higher (Fig. 7A left, red) and lower seed-to-seed connectivity
(Fig. 7A left, blue) in the mTBI group as compared to controls, which
were distributed across a proportion of the networks studied. Specifi-
cally, differences in connectivity within the DMN, DAN and FNP were
observed (Fig. 7A middle), while inter-network differences in the
functional architecture of the cortical hubs included ROI pairs from the
majority of the spatial components studied.

Because widespread differences in baseline perfusion were docu-
mented within the gICA functional components, FC coefficients were
normalized by CBF0 (see Fig. 4) in order to explore the possible dif-
ferences in connectivity results after accounting for the effect of re-
gional seed-based blood flow (Fig. 7B). When comparing the weighted
FC coefficients between the groups, a reduced total of 14 seed-to-seed
connections were identified that were different between the healthy
and mTBI cohorts (P < 0.05, corrected). Significant differences in
connectivity were documented within the FPN only, while previously
observed group differences within the DMN and DAN (Fig. 7A middle)
were no longer significant in this analysis (Fig. 7B middle). A number of
inter-network connectivity differences between the DAN and the rest of
the brain were still present after CBF0 corrections, although many dif-
ferences in seed-to-seed connections across networks including the
DMN and SMN were not observed.

Lastly, a subset analysis of the co-localized results between differ-
ences in connectivity with the unweighted and CBF0-weighted FC
coefficient was done by multiplying the resultant statistical matrices
together (Fig. 7C). The final combined matrix showed a total of 11 al-
tered paired connections (6 with lower FC, 5 with higher FC) between
the groups. Approximately 80% of these results were also identified
with normalized FC (Fig. 7B). In other words, most connections high-
lighted in the CBF0-scaled statistical analysis (Fig. 7B) were common to
the unweighted differences in FC coefficients (Fig. 7A) between the
groups. Only intra-network differences within the FPN (all showing
lower FC in the mTBI) survived the weighted scaling and the matrix
multiplication, while most of the inter-network significant differences
involved the DAN (7/11 inter-network FC differences; Fig. 7C).

Table 2
Description of sensorimotor parameters computed from the KINARMTM object hit and avoid task.

Object hit and avoid parameters Meaning Motor/sensory/cognitive domain
targeted

Distractor hits total Total count of distractor objects hit with both hands during the task. motor (inhibition)
Hand bias hits Measurement ranging between -1 (left) and 1 (right) characterizing the hand used most often to hit the

objects. A value of 0 indicates equal use of both hands.
hand dominance & visuospatial
bias

Median error Percentage of the progress through the task based on the number of balls dropped (not time) when the
subject makes half of their total mistakes. Higher values indicate an ability to maintain focus throughout
the task.

cognitive stamina

Object processing rate Measurement indicating the number of objects processed correctly per second at the time when 80% of
the objects (240 objects) in the task have entered the screen. Higher values suggest that the participant
could separate the targets and the distractors properly up to that point in the task.

sensorimotor (integration)

Target hits total Total count of target objects hit with both hands during the task. motor

Table 3
Group-analysis of the sensorimotor parameters computed using the KINARMTM

end-point robot (BKIN Technologies Ltd., Kingston, Ontario, Canada).

Object hit and avoid parameters Healthy mTBI P valuea

Distractor hits total 6.6 ± 8.5 7.3 ± 5.8 0.754
Hand bias hits (range: [-1 - 1]) 0.1 ± 0.1 0.1 ± 0.1 0.448
Median error (%) 74.1 ± 7.0 73.2 ± 6.3 0.641
Object processing rate (objects/

second)
2.7 ± 0.3 2.7 ± 0.2 0.725

Target hits total 172.4 ± 12.6 171.4 ± 7.3 0.777

Values are mean ± standard deviation.
a = Statistically compared using a univariate ANOVA. See (Table 2) for

definition of each parameter.
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4. Discussion

4.1. Main findings

In this study, we proposed a novel multi-modal approach inspired
by (Qiu et al., 2017) to explore the effects of scaling FC coefficients by
local physiology, which may be altered in patients with a history of
mTBI. We are the first to implement such an approach as a way to
combine information from rs-fMRI and cerebrovascular physiology to
gather insight about the long-term effects of mTBI on brain FC bio-
markers. The main findings in this study are three-fold: (1) Differences
in CBF0 within the spatial distribution of the large-scale networks were
documented between the healthy and mTBI groups, although no

significant differences in vascular reactivity (i.e., CVR) were observed.
(2) Inter- and intra-network connectivity differences were documented
between the healthy and mTBI participants, which is in line with pre-
vious work on the long-term effects of head injuries on brain con-
nectivity (Doshi et al., 2015; Iraji et al., 2015; Mayer et al., 2011;
Nathan et al., 2015; Rosenthal et al., 2018; Sours et al., 2015;
Stevens et al., 2012; Xiong et al., 2016). Patterns of higher and lower
synchronization between seed-to-seed connections were observed,
especially in cortical hubs associated with the DMN, DAN and FPN. (3)
Weighting of the connectivity matrices by CBF0 measurements revealed
fewer regions with significant differences in connectivity, although the
majority of connections detected using the normalized analysis were
spatially concordant with findings from the unscaled approach.

Fig. 6. Results from the voxelwise comparison
of the perfusion maps between the groups.
Significant clusters from the voxelwise analysis
of the resting cerebral blood flow corrected for
partial volume effects (CBF0-pvc) maps which
was restricted to voxels within the large-scale
neural networks of interest described in Fig.3.
Statistical group-comparisons were corrected
for multiple comparisons at P < 0.05 using
cluster sizes set to 94 voxels. The statistical
maps are overlaid onto the freesurfer surface to
show the lateral (top) and medial (bottom)
views from the left (LH) and right (RH) hemi-
spheres. The bar graph summarizes the mean
value (± standard deviation) for the healthy
and mTBI groups to show the magnitude and
direction of the difference (* = P < 0.05,
corrected) in CBF0 within the region-of-interest
(top).

Table 4
Distribution of large-scale networks showing differences in baseline perfusion between the groups.

Network of interest Total number of seeds Total number of voxels (4mm isotropic) % of voxels with differences in CBF0

Dorsal attention network (DAN) 9 1559 34.8
Default mode network (DMN) 9 1600 4.8
Fronto-parietal network (FPN) 11 2274 39.2
Somatomotor network (SMN) 4 2019 34.1
Ventral attention network (VAN) 6 647 4.1
Vision network (VN) 2 1729 0

Network listed here are displayed in Fig. 4 and labelled using the (Yeo et al., 2011) atlas. CBF0 = baseline cerebral blood flow (mL/100g/min).
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Altogether, these results suggest that although differences in the orga-
nization of large-scale network may follow mTBI, as previously re-
ported, fluctuations in baseline physiology may confound the analysis
of FC between groups (Chu et al., 2018; Liu, 2013). On the other hand,
robust differences in network connectivity between functional nodes
following correction for CBF0 may provide evidence of reorganization
of correlation structures across and within networks following mTBI.
This process, referred to as cortical plasticity (Bashir et al., 2012;
Meehan et al., 2017), could be a compensatory mechanism within the
brain that allows for maintenance of sensorimotor function despite
functional reorganization, as evidenced by equivalent performance on
the sensorimotor task. Moving forward, the use of a multi-modal design
combining BOLD and ASL imaging at rest may capture unique aspects
of the changes in network connectivity and brain physiology that occur
in functional networks of the brain post-mTBI.

4.2. Network-specific differences in baseline perfusion despite no differences
in vascular reactivity

Voxelwise analysis of healthy and mTBI subjects demonstrated that
CBF0 may be chronically higher in certain regions of the brain for in-
dividuals with a history of head injury. Although the mechanisms for
the pathogenesis of mTBI have yet to be elucidated, it has become
apparent that changes in perfusion play an important role in the evo-
lution of the biochemical sequelae that follows the injury in the short-
term (Barkhoudarian et al., 2011; Churchill et al., 2017; Giza and

Hovda, 2001, 2014), and throughout the long-term recovery process
(Barlow et al., 2016; Mutch et al., 2016; Stephens et al., 2018). In the
acute and sub-acute phases of post-mTBI, CBF0 is typically reduced
(Lin et al., 2016; Maugans et al., 2012; Meier et al., 2015; Wang et al.,
2018, 2016), which reflects possible differences in cerebral metabolism
at the cellular level (Champagne et al. (2020). Under revision.). In weeks
and months following the injury, the opposite trend has been observed,
with higher CBF0 documented in patients recovering from mTBI com-
pared to controls (Stephens et al., 2018), although findings of lower
CBF0 in chronic mTBI patients have also been reported (Wang et al.,
2015). The results reported in this study are also consistent with reports
of higher perfusion in patients with persistent mTBI-related sympto-
mology (Barlow et al., 2016; Mutch et al., 2016; Stephens et al., 2018),
which have been associated with the trajectory of recovery patterns,
although no relationship between the higher CBF0 and time post-mTBI
was identified in our data. The variability in reports of altered CBF
across different cohorts and the heterogeneity in the spatial distribution
of CBF-based differences between groups post-mTBI emphasizes the
need to account for possible subject-to-subject differences in perfusion,
which could affect connectivity measurements from rs-fMRI (Chu et al.,
2018; Liu, 2013).

In this study, no voxelwise differences in CVR within the spatial
components of the gICA were identified. Widespread differences in
CBF0 without the presence of CVR-based differences suggests that the
mechanisms associated with modulation of blood flow upon exposure
to the vasodilatory HC stimulus were intact in the mTBI subjects

Fig. 7. Intra- and inter-network connectivity differences detected between the groups. The mean network connectivity matrices (left) for the healthy and mTBI group
are displayed for each analysis conducted. These include the original connectivity matrices (non-weighted; (A)), and the normalized connectivity coefficients using
seed-based resting cerebral blood flow (CBF0; (B)) measurements. The binary statistical results (middle) showing seed-to-seed connections that differ significantly
between the groups (white square), corrected for multiple comparison using a false discovery rate set to P< 0.05, were projected in 2D (right) using numbered nodes
(colored based on the network labelling atlas (Yeo et al., 2011)) and connecting edges (links). Edges (light grey) for seed-to-seed connections showing significant
differences between the groups following corrections for multiple comparisons were color-coded to show the direction of the group difference (blue = healthy >
mTBI, red = healthy < mTBI). (C) Matrices from (A) and (B) were multiplied to extract intra- and inter-network connectivity differences that were robust to both the
original and CBF0-corrected analysis. The final calibrated 2D projections shows narrowed differences in network connectivity. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article).
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studied, at the group-level. Similar to CBF0 findings from other studies,
mixed results for differences in CVR post-mTBI have been reported
(da Costa et al., 2016; Len et al., 2011; Len and Neary, 2011;
Mutch et al., 2016). This heterogeneity in documented differences (or
no differences) in vascular reactivity post-mTBI suggests that regional
differences in cerebrovascular responsiveness to HC may be hetero-
geneous across patients where unique patient-specific signatures of
changes in CVR occur post-injury (Mutch et al., 2016). It is also possible
that the cohort studied did not differ in CVR both at the group- and
subject-level, which has also been reported (da Costa et al., 2016). The
wide variability in the time of injury post-mTBI studied may also pre-
clude possible observation of differences in CVR between the groups,
which emphasize the need for similar methods to be implemented in a
large and more heterogenous patient population, moving forward. It is
also important to consider that the analysis performed in this study was
focused specifically on regions extracted from the gICA spatial com-
ponents. CVR within other regions of the cerebral cortex outside of
those may have been impaired (Ellis et al., 2016), although this is be-
yond the scope of this study, which was focused specifically on ex-
ploring the effects of impaired physiology on co-localized patterns of
network connectivity following mTBI. Lastly, it should also be noted
that the use of BOLD CVR may have limited our ability to identify
differences in CVR, as the BOLD physiology reflects a compound effect
that integrates changes in metabolism, blood volume and blood flow
(Champagne et al., 2019a).

4.3. Network differences in brain network connectivity of large-scale
networks and the effects of weighting in vascular physiology

In this study, BOLD rs-fMRI measurements of inter- and intra-net-
work connectivity were used to compare the organization of cortical
hubs in mTBI patients, relative to controls. Prior to normalization of the
FC measurements using local physiological parameters, differences
within and across large-scale network connectivity were identified,
which were in line with the existing literature (Doshi et al., 2015;
Iraji et al., 2015; Mayer et al., 2011; Nathan et al., 2015;
Rosenthal et al., 2018; Sours et al., 2015; Stevens et al., 2012;
Xiong et al., 2016). Patterns of higher and lower FC within the cortical
networks of the injured group were observed which are also common in
the study of brain network connectivity in mTBI patients (Iraji et al.,
2015; Mayer et al., 2011; Sours et al., 2015; Stevens et al., 2012;
Xiong et al., 2016). Consistent differences in connectivity markers post-
mTBI based on the existing literature suggest that rs-fMRI may serve as
a promising tool to understand the effects of head injuries on the or-
ganization of functional networks within the brain. Though most of the
group-differences involved the DMN, DAN and FPN, altered seed-to-
seed connections linking other networks such as the SMN, VN and VAN
were also documented. This suggests that connectivity differences
characterized by BOLD rs-fMRI post-mTBI may involve a wide range of
ROIs across the GM. Additionally, the presence of group-differences in
FC measurements despite the wide range of time since injury post-mTBI
in this analysis suggests that differences in brain connectivity may
persist long after injury.

In theory, alterations in BOLD-based FC after injury may be in-
dicative of differences in the spontaneous synchronization of neurons
associated with large-scale networks, local changes in perfusion, blood
volume and oxidative metabolism (via neurocoupling mechanisms), or
a combination of these factors, all of which effect the BOLD contrast
(Fox and Raichle, 2007). Regional baseline physiological factors such as
CBF0 may also play an important role in the characterization of cor-
relation structures based on activity of the brain at rest (Chu et al.,
2018; Liu, 2013). This is because although FC is considered to be pre-
dominantly driven by neural activity (reviewed in Fox and
Raichle, 2007), the synchrony of the BOLD time series across regions
may also be dependent on vascular factors (Golestani et al., 2016) and
physiological noise (Birn et al., 2006; Chang et al., 2009). In this study,

widespread voxelwise differences in CBF0 across the networks of in-
terest motivated the approach to account for seed-based perfusion in
the computation of FC coefficients. It is important to note that CBF0 is
not purely a vascular parameter, unlike CVR, in that it reflects a balance
for the local vascular tone that is associated, at least in part, with the
neuronal components at the cellular level (Liang et al., 2013). Thus, the
weighing of CBF0 in order to compare FC between patients with altered
physiology assumes that neuronal firing driving the synchronization of
the BOLD signal across cortical hubs is the major factor contributing to
the computation of the FC coefficients, without the possible con-
founding effects of local changes in blood flow that are driven by vas-
cular physiology (i.e., autoregulation) post-mTBI.

Co-localized differences in connectivity and perfusion have been
reported previously in acute (Militana et al., 2016) and chronic
(Sours et al., 2015) presentation of mTBI suggesting that the weighted
method proposed in this study may provide valuable insight into the
effects of mTBI on reorganization of cortical hubs, without the con-
founding nature of altered vascular parameters. Although calibrated
results were narrowed to a more specific set of networks (Fig. 7C),
robust differences within the FPN and between the DAN, the DMN and
the rest of the brain provide possible evidence that the brain may re-
organize after mTBI. More specifically, differences in intra- and inter-
network FC including the DMN, DAN and SMN seem to have been the
most affected by the scaling using CBF0. These findings suggest that
certain regions within the brain may share variance with respect to
changes in perfusion and FC after mTBI, which may confound the direct
analysis of connectivity across large-scale networks of brain. These
systematic differences in physiology may be associated to direct
changes in local physiology of the brain tissues, or a complex interac-
tion involving multiple factors such as the ratio of large vessels to tissue
volume, which has been shown to play a role in determining FC
strength (Tak et al., 2015, 2014). These compensatory mechanisms may
allow for proper cognitive, motor and sensory integration, which is
supported by the fact that no group differences in the mTBI group were
documented based on the OHA task, compared to controls.

Although the direct relationship between CBF0 and FC has yet to be
characterized in full, findings from (Chu et al., 2018) suggest that the
degree of correlation between seeds within and across networks can be
influenced by the complex relationship that relates physiological noise
and neuronal activity, which together, make up the rs-fMRI BOLD
contrast (see Fig.1 in Liu, 2013). This is because inter-voxel (or region)
correlation coefficients with low influence from noise may be increased
for regions with higher CBF0, likely due elevated resting metabolism in
neurons (Liang et al., 2013; Lord et al., 2013). Conversely, a negative
association between CBF0 and FC is also possible when the noise-related
correlations (i.e., physiological processes and motion) dominate the FC
coefficient (instead of being driven by neuronally-specific physiological
modulators). Thus, the non-linear relationship between FC and CBF0
arises from a balance between neurovascular coupling mechanisms
linking CBF0 and metabolic demand, and regional and global syn-
chronization of neuronal activity (see summary Fig.13 in Chu et al.,
2018). To support this contention, simulations from (Chu et al., 2018)
showed that changes in perfusion can affect the FC measurements in
ways that depend on both the local CBF0 measurements, and the extent
of the influence from physiological noise, which varies across cortical
networks (Golestani et al., 2015). The same authors, and others
(Tak et al., 2015), also showed that the presence of large vessels across
selected regions of the brain may reduce FC despite local increases in
CBF0, which is likely associated with differences in the macrovascular
content and local sources of physiological noise. Additional imaging of
the vasculature using a time-of-flight sequence, as in (Tak et al., 2015),
may help accounting for possible differences in resting macrovascular
volume fraction across patients.

Taken together with findings from this study, it is possible that
systemic physiological noise varying across regions of the brain (not
neuronally specific modulators of the BOLD signal), along with
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differences in baseline vascular physiology, may confound the compu-
tation of FC measurements and limit the ability for rs-fMRI to be used to
identify group-level and individual-based differences due to mTBI. As
reviewed in (Liu, 2013), the additional acquisition of electro-
encephalographic (EEG) or magnetoencephalographic (MEG) mea-
surements may allow to complement our understanding of the con-
founding effects between baseline physiology and rs-fMRI findings.
Strong correlations between rs-fMRI BOLD signal and EEG activity have
been reported (de Munck et al., 2007; Goldman et al., 2002; Laufs et al.,
2003; Moosmann et al., 2003), as well as with MEG recordings
(Brookes et al., 2011; Liu et al., 2010), suggesting that future studies
may consider multimodal imaging designs as a way to validate cali-
bration methods such as the one proposed, and improve modeling of
the potential changes in neural and vascular components that may
characterize FC differences in clinical population.

4.4. Methodological limitations and future considerations

Despite the novelty of the imaging design and post-processing
analysis proposed, the findings reported in this study are limited pri-
marily by the large range of time post-injury used to make up the mTBI
group. Although documented group-differences in both CBF0 and net-
work connectivity suggest that the brain may change following mTBI,
future designs using this approach should use a narrower range of time
since injury to provide better insight about the chronic effects of head
injuries on cortical GM connectivity and physiology. The integration of
longitudinal designs with multiple timepoints such as in
(Nakamura et al., 2009) may also be an avenue to explore in order to
understand the relationship between differences in vascular physiolo-
gical parameters and functional markers of the brain throughout the
recovery process in patients. Increasing the sample size of both groups
in a larger study will also improve the power of the statistical analysis
and the clinical applications of these findings.

The weighting approach employed in this study from (Qiu et al.,
2017) assumes a linear relationship between the cerebrovascular phy-
siology and its possible influence on the variability in network func-
tional connectivity. As highlighted in recent studies by (Chu et al.,
2018; Golestani et al., 2016), the physiological effects of CBF0 and CVR
may be better represented using a non-linear relationship, which re-
flects the increased complexity of the link between underlying vascular
physiology and BOLD-based FC. Although no correction has yet been
proposed to account for these possible non-linear relationships, with
respect to comparing FC coefficients, future designs may consider al-
ternative approaches to calibrate the resting-state BOLD signal. For
instance, the acquisition of a rs-fMRI scan using a dual-echo pCASL
sequence (Dai et al., 2008) may allow to calibrate the BOLD signal of
the brain at rest with concurrent time-varying measurements of per-
fusion (Champagne et al., 2019b; Wu et al., 2009). This approach
provides a comprehensive method to calibrate BOLD-based network
connectivity measurements while accounting for different physiological
modulators which contribute to the BOLD contrast. The use of dual-
calibrated fMRI method, or QUO2 MRI (Hoge, 2012), which in-
corporates both HC and hyperoxia breathing manipulations
(Gauthier et al., 2012; Gauthier and Hoge, 2013), may also be im-
plemented moving forward in order to compute additional hemody-
namic parameters such as resting oxygen extraction fraction (OEF0) and
CMRO2, in order to gain insight into the physiological mechanisms that
underscore differences in blood flow following chronic mTBI.

In this study, the KINARMTM end-point robot (BKIN Technologies
Ltd., Kingston, Ontario, Canada) was used to assess the sensorimotor
performance of the participants at the time of the MRI. Although the
KINARMTM may be an effective tool to provide objective measurements
of the upper limb motor function and visuospatial skills (Bourke et al.,
2016; Tyryshkin et al., 2014), it may be limited in its ability to assess
specific neurocognitive functions typically reported following mTBI.
Moving forward, the inclusion of a more comprehensive battery of tests

such as the one used in (McCrea et al., 2013, 2003; Nelson et al., 2013)
may help to better characterize possible differences in functional mar-
kers and their relationship to the symptomology of mTBI.

5. Conclusion

The primary objective of this study was to explore the effects of
scaling vascular parameters in the comparison of rs-fMRI correlation
structures between healthy and mTBI subjects. Inclusion of regional
perfusion measurements in the computation of correlation coefficients
within and across large-scale networks of the brain narrowed the dif-
ferences in FC between the groups, suggesting that this approach may
elucidate unique differences in connectivity post-mTBI while ac-
counting for shared variance with CBF0. Moving forward, this multi-
modal approach may improve the diagnostic and prognostic utilities of
rs-fMRI in characterizing intrinsic pathological disturbances in the or-
ganization of cortical hubs within the brain. Moreover, this method
may improve current data-driven classification models which have
shown promising results in the characterization of mTBI using in-
formation from combined imaging modalities (Vergara et al., 2016).
Altogether, the integration of multiple parameters with both vascular
and neural origins, as well as the inclusion of comprehensive neuro-
cognitive assessments, may help to identify the processes associated
with cortical plasticity of the brain following mTBI and the patient-
specific trajectories for recovery.
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