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Abstract: The Poly(2-chloroquinyl methacrylate-co-2-hydroxyethyl methacrylate) (CQMA-co-HEMA)
drug carrier system was prepared with different compositions through a free-radical copolymeriza-
tion route involving 2-chloroquinyl methacrylate (CQMA) and 2-hydroxyethyl methacrylate) (HEMA)
using azobisisobutyronitrile as the initiator. 2-Chloroquinyl methacrylate monomer (CQMA) was
synthesized from 2-hydroxychloroquine (HCQ) and methacryloyl chloride by an esterification reac-
tion using triethylenetetramine as the catalyst. The structure of the CQMA and CQMA-co-HEMA
copolymers was confirmed by a CHN elementary analysis, Fourier transform infra-red (FTIR) and
nuclear magnetic resonance (NMR) analysis. The absence of residual aggregates of HCQ or HCQMA
particles in the copolymers prepared was confirmed by a differential scanning calorimeter (DSC) and
XR-diffraction (XRD) analyses. The gingival epithelial cancer cell line (Ca9-22) toxicity examined by a
lactate dehydrogenase (LDH) assay revealed that the grafting of HCQ onto PHEMA slightly affected
(4.2–9.5%) the viability of the polymer carrier. The cell adhesion and growth on the CQMA-co-HEMA
drug carrier specimens carried out by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide) (MTT) assay revealed the best performance with the specimen containing 3.96 wt% HCQ.
The diffusion of HCQ through the polymer matrix obeyed the Fickian model. The solubility of HCQ
in different media was improved, in which more than 5.22 times of the solubility of HCQ powder
in water was obtained. According to Belzer, the in vitro HCQ dynamic release revealed the best
performance with the drug carrier system containing 4.70 wt% CQMA.

Keywords: preparation and characterization; poly(2-chloroquinyl methacrylate-co-2-hydroxyethyl
methacrylate); 2-chloroquinyl methacrylate; drug carrier system; in vitro 2-hydroxychloroquine release

1. Introduction

2-Hydroxychloroquine (HCQ), also called “Plaquenil”, is a weak basic drug belonging
to the family of 4-aminoquinolines. This medication is an antimalarial widely used in
the treatment of systemic lupus erythematosus, rheumatoid arthritis, malaria and other
autoimmune diseases [1,2]. It is also recommended to take 2-hydroxychloroquine with food
to reduce stomach irritation. According to Hedya et al. [3], the addition of HCQ to cytotoxic
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or antiangiogenic agents can dramatically improve antitumor activity. Many tests [4,5]
combining different anticancer therapies, including chemo and radiation therapies with
HCQ, have shown very satisfactory results. This drug is mainly found in a dicationic
form in physiological pH media and is readily trapped in cellular tissues resulting in a
tissue deposition effect. According to a report published in 2005 by Day et al. [6], the
distribution of HCQ in the bloodstream is relatively slow, which delays the onset of an
antirheumatic effect. Therefore, a high dose of HCQ is needed to reach a steady state
more quickly. According to Ono et al. [7], a dose of 400 to 600 mg is usually prescribed
for normal men, while 200 to 400 mg is the maintenance dose. A higher dose results in
a greater magnitude of dose-dependent side effects such as retinopathy, which is mainly
due to a build-up of threads in the cornea [8]. Antirheumatic drugs, of which HCQ is a
part of, can cause serious gastrointestinal complications that become more acute at higher
doses. As a result, symptomatic treatments with glucocorticoids and non-steroidal anti-
rheumatic drugs (NSAIDs) are known to induce gastric or duodenal ulcers, especially in
association with combination therapy [9]. The control of the HCQ amount released during
gastrointestinal transit (GIT) in the different organs is necessary in order to minimize the
release of HCQ in organs sensitive to unwanted side effects and, more particularly, in
the stomach.

In the absence of an established treatment regimen, many drug reuse strategies have
been emerging to treat corona virus disease (COVID-19) [10]. Indeed, among these drugs,
HCQ in combination with azithromycin has been recommended to treat this virus, espe-
cially in older patients or patients with underlying conditions and severe symptoms [11,12].
Despite the promise of the reuse of this drug, there are concerns about its toxicity, because
some in vitro studies suggest that the dose needed to be effective against COVID-19 may
be higher than that used in malaria. The World Health Organization (WHO) is currently
conducting clinical tests (SOLIDARITY) to assess the effectiveness of 2-hydroxychloroquine
as a treatment for COVID-19, while some countries have already included treatment with
2-hydroxychloroquine in their clinical advice for patients with COVID-19 [13,14]. In addi-
tion, the HCQ base has a partition coefficient ranged between 2.89 and 3.87 and a water
solubility of 26.1 mg·L−1 [15]. These two properties place this drug in the Biopharmaceuti-
cal Classification System-II (BCS-II); in other words; this medication is highly permeable
but poorly soluble. In its sodium sulfate form, HCQ has excellent bioavailability with an
average fraction of 0.74 absorbed doses [16]. On the other hand, this salt is highly soluble
in gastric fluid but can recrystallize in the environment at a higher pH (small intestine),
because the mother base is highly insoluble in this medium. In addition, an increase in the
pH of the stomach in the postprandial state can also present a solubility challenge. In both
cases, a decrease in the solubility of the drug is conceivable, which results in a lower in vivo
exposure and, as such, an approach allowing the solubility can overcome this variation in
solubility during gastrointestinal transit (GIT). In particular, and as recently described in
the literature by Zhang et al., salt forms of drugs can experience a significant decrease in
solubility upon transition to the higher pH of the small intestine [17].

Poly(2-hydroxyethyl methacrylate) (PHEMA) has exhibited very interesting proper-
ties in its application in the biomedical field due to its high water content, its non-toxicity
and its favorable biocompatibility. This polymer is easily synthesized by free-radical poly-
merization involving 2-hydroethyl methacrylate as the monomer and azobisisobutyronitile
(AIBN) as the initiator. The ease of handling by the formulation chemistry has allowed
this polymer a wide application in the biomedical field, such as contact lenses [18,19],
keratoprostheses and as orbital implants [20]. The presence of the hydroxyl and carboxyl
groups on the substituent of this polymer give it compatibility with water, a hydrolytic
stability, support for mechanical resistance [21] and a better adhesion of cells [22,23].

In this work, to increase the solubility of the HCQ base in pH-neutral media (intestines)
and reduce the amount of HCQ released in acidic media (stomach), a new monomer
(CQMA) involving HCQ and methacryloyl chloride was synthesized via a catalytic es-
terification reaction. The new monomer obtained was copolymerized at different ratios
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with 2-hydroxyethylmethacrylate (HEMA) using the radical polymerization route to ob-
tain poly(2-chloroquinylmethacrylate-co-2-hydroxyethylmethacrylate) (CQMA-co-HEMA).
The structures of monomers and copolymers obtained were characterized by the Fourier
transform infrared (FTIR), nuclear magnetic resonance (NMR) and CHN elementary anal-
yses. The absence of free drug particles aggregated incrusted in the copolymer matrix
was confirmed by DSC and XRD methods. The cell toxicity was examined by the lac-
tate dehydrogenase (LDH) assay on the gingival epithelial cancer cell line (Ca9-22) and
the cell adhesion and growth on the CQMA-co-HEMA drug carrier was examined by
the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test. The in vitro
dynamic release of the HCQ base from these drug carrier systems occur in different pH
media through a retroesterification reaction, in which the influence of the swelling capacity
of the drug carrier system, the drug content grafting in the copolymer and pH media
are investigated.

2. Materials and Methods
2.1. Chemicals

HEMA (purity 98%), triethylenetetramine (purity > 97%), methacryloyl chloride (pu-
rity ≥ 97%), AIBN (purity 99%) and chloroform (purity ≥ 99%) were supplied from Sigma-
Aldrich (Taufkirchen, Germany). Plaquenil commercial trade tablets were manufactured
and commercialized by Aventis Pharma Limited (Guildford, UK), Sanofi (Paris, France),
Kyowa Hakko (Galashiels, UK). All the chemicals were used without further purification
except the monomer which was purified by distillation under reduced pressure.

2.2. Extraction of 2-Hydroxychloroquine from the Plaquenil Commercial Tablets

A determined amount of 200 mg of Plaquenil tablets was finely ground using a
quartz mortar, then added in small portions with continuous stirring in distilled water
until complete dissolution (~72 h). Two drops of phenolphthalein indicator were added
to the aqueous solution, then titrated by 2% by volume ammonia solution until pink
color persisted. In order to extract HCQ from the aqueous solution, the obtained solution
was then transferred in a separator funnel containing equivalent amount of diethyl ether.
HCQ was extracted from the organic layer by vaporization of diethyl ether using a rotary
evaporator. The purity of HCQ was confirmed by NMR analysis. The physicochemical
characteristics of this molecule are gathered in Table 1.

Table 1. Some physicochemical characteristics of 2-hydroxychloroquine [24].

Formula Molar Mass
(g·mol−1) Appearance Density

(g·L−1)
Water Solubility

(mg·L−1)
Melting Temperature

(◦C)

C18H26ClN3O 335.87 White crystals 1.2 26 90

2.3. Synthesis of 2-Chloroquinyl Methacrylate (CQMA)

CQMA was synthesized by an esterification reaction involving HCQ and methacryloyl
chloride using triethylenetetramine as a catalyst according to the reaction in Scheme 1. In a
250 mL two-necked flask, 10 g of HCQ was dissolved by stirring in 100 mL of chloroform,
and then triethylenetetramine was added to this mixture so that the 2-hydroxychloroquine/
triethylenetetramine molar ratio was 1:3 in order to ensure complete consumption of HCQ
during the esterification reaction. A reflux condenser was connected through the main
opening of the flask containing the HCQ/triethylenetetramine mixture in chloroform,
through which a stream of nitrogen gas at low flow (3 mL·min−1) passed. The whole was
placed in an ice bath for 10 min. The excess of methacryloyl chloride diluted in chloroform
was then added dropwise with moderate stirring to the preceding solution using an
addition bulb. The reaction took place in a dark atmosphere under a stream of nitrogen
and under reflux during the whole period of the reaction. CQMA was isolated from the
reaction mixture by a complete evaporation of solvent and liquid residual reactants using
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rotary system. The residual HCQ was removed by washing the CQMA obtained three
times by an excess of distillated water, then dried in a vacuum oven until constant mass.
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Scheme 1. Synthesis reaction of 2-chloroquinyl methacrylate.

2.4. Preparation of CQMA-co-HEMA Drug Carrier Systems

CQMA was copolymerized with HEMA at 60 ◦C through a free-radical polymeriza-
tion route under nitrogen gas using AIBN as initiator (Scheme 2). Different copolymers
containing different co-monomer ratios were synthesized and the preparation conditions
are summarized in Table 2.
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Table 2. Experimental conditions of the synthesis of CQMA-co-HEMA copolymer with different
CQMA content.

Copolymer CQMA
(g)

HEMA
(g)

AIBN
(wt%)

Monomers
Composition (wt%)

Drug Content
(wt%)

CQMA-co-HEMA5 0.20 9.80 0.1 10 2.0
CQMA-co-HEMA7 0.85 9.15 0.1 25 8.5

CQMA-co-HEMA10 1.00 9.00 0.1 50 10.0
CQMA-co-HEMA15 1.50 8.50 0.1 75 15.0

2.5. Characterization

The new synthesized monomer and copolymers were characterized by different
techniques. The FTIR spectra of the samples were recorded on a Nicolet iS10 spectrometer
(Thermo Scientific, Madison, WI, USA), equipped with an attenuated total reflection (ATR;
diamond crystal) accessory. Spectra were obtained over a region of 4000–500 cm−1 at room
temperature and acquired with a total of 32 scans per spectrum and resolution of 2 cm−1.
The 1H NMR and 13C NMR spectra of samples were taken at 400 and 100 MHz, respectively,
on a spectrometer (JEOL Resonance, JEOL, Tokyo, Japan) using deuterated dimethyl
sulfoxide (DMSO-d6) as a solvent. The DSC thermograms were traced by a Shimadzu
DSC 60A (Kyoto, Japan) system previously calibrated with indium. In total, 8–10 mg
of monomer and copolymer powders was packed in aluminum DSC pans before being
placed in a DSC cell, then heated under nitrogen gas from 30 to 200 ◦C at a heating rate of
20 ◦C·min−1. Data were collected from the second scan run for all samples. No degradation
phenomena of HCQ, CQMA and CQMA-co-HEMA samples were observed in all DSC
thermograms in the investigated temperature range, noting that the Tg value was estimated
as the midpoint of the heat capacity change with temperature and the Tm at the top of the
melting peak. X-ray diffraction of pure HCQ and CQMA microparticles and copolymers
was recorded by (Rigaku Dmax 2000, The Woodlands, TX, USA) diffractometer using an
anode tube of Cu working with voltage of 40 KV and a generator current of 100 mA.

The range of diffraction angle was 0–80 two theta. The samples were used as thin
films, except that of pure HCQ and prepared CQMA which were analyzed as powder. SEM
images of film samples before and after the release process were performed on a JEOL
JSM-6610LV scanning electron microscope (SEM) (Tokyo, Japan) at an accelerating voltage
of 10 kV. The surface and cross-sections of samples were first sputter-coated with a thin
layer of gold and then observed at magnification range of 300–3000×.

2.6. Toxicity and Cell Adhesion
2.6.1. Cell Culture Conditions

The gingival epithelial cancer cell line (Ca9-22) was obtained from RIKEN BioResource
Research Center, Tsukuba, Japan. Ca9-22 cells were cultured in RPMI-1640 medium
(Thermo Fisher Scientific, Burlington, ON, Canada), supplemented with L-glutamine, 5%
fetal bovine serum (FBS) (Gibco; Thermo Fisher Scientific, Burlington, ON, Canada) and
antibiotics (Sigma-Aldrich, Oakville, ON, Canada). Cell cultures were performed at 37 ◦C
in humidified incubator with 5%; CO2 atmosphere conditions and cell culture medium
were changed every two days.

2.6.2. Cell Adhesion by MTT Assay

Each biomaterial was placed in 24-well plates and cancer gingival cells at 100 × 103

cells/wells were seeded directly in biomaterial sample, then cultured for 24 h with RPMI
medium. After 24 h of adhesion cells, an MTT assay was performed as described by
Semlali et al. [25,26]. Briefly, each culture was supplemented with 10% of MTT (5 mg/mL)
and incubated for 3 h at 37 ◦C. The stained cells were then lysed using 500 µL of isopropanol-
HCl solution at 0.04 M with agitation for 15 min. An amount of 100 µL triplicate of lysis
solution was transferred to 96-well plates to be read at 550 nm using an iMark microplate
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reader (Bio-Rad, Mississauga, ON, Canada). Cell adhesion levels were determined at
550 nm by means of the following formula:

Cell viability(%) =
OD(treated cells)− OD(Blank)
OD(Control cell)− OD(Blank)

× 100 (1)

where OD is the optical density.

2.6.3. Cell Toxicity by LDH Assay

Ca9-22 cells were seeded at 105/well in 24-well cell culture plates for 48 h. The LDH
activity was assessed in culture supernatants collected from cell adhered in different
biomaterials for 48 h. LDH activity was measured using LDH (Sigma-Aldrich, Oakville,
ON, Canada) [27]. Triton (1%) was used as positive control (100% of toxicity) and pure
PHEMA as negative control (13% of toxicity).

2.7. Mass Transfer

The mass transfer of media in the polymers was carried out by gravimetric method [28].
CQMA-co-HEMA films of known masses and thicknesses were immersed in excess of water
at 37 ◦C in media of pH 1, 3, 5 and 7. These samples were then removed after time intervals,
wiped with tissue paper from water droplets deposited on both surfaces, then immediately
weighed. Each operation lasted until the films were saturated (constant weight). Each
process was triplicate and the masses of media absorbed were taken from the arithmetic
average. The swelling of the film sample in weight percent was calculated according to
Equation (2):

S (wt%) =
mt + mHCQ − mo

mo
× 100 (2)

where mt and mo are the masses of the film sample at time t and to, respectively. mHCQ is
the mass of HCQ released during time t.

2.8. In Vitro Drug Release

CQMA-co-HEMA films with a square surface area of 4 cm2 and an average thickness
of 1.23 mm were suspended in 100 mL of water/hydrochloric acid solution at pH fixed
at 1, 3, 5 and 7, and stirred at 100 rpm at 37 ◦C. Aliquots of 0.5 mL were withdrawn
at time intervals and immediately replaced by water at the same pH media just after
analysis. This operation kept a constant volume of media during the release process and
reflected as much as possible what was actually happening in the intestines in which the
HCQ released was absorbed gradually. The concentration of drug released during this
period was calculated taking into account the volume of medium removed for quantitative
analysis. The total mass of HCQ released during this period (mt) was calculated from its
concentration deduced from the UV–visible calibration curve indicating the change in the
absorbance versus the concentration of medication. It is important to note that, during
the drug release process, the pH of the medium was practically not affected by the small
amount of HCQ released and, hence, the addition of a buffer solution to stabilize the pH of
the medium was not necessary. The percentage of HCQ released, R (wt%), in the media
during a certain time, t, was calculated from Equation (3):

R (wt%) =
mt − mo

mo
× 100 (3)

where mo is the mass of the initial HCQ incorporated in the drug carrier sample.

3. Results and Discussions
3.1. Characterization

The chemical structures of the CQMA monomer and CQMA-co-HEMA copolymers
were confirmed by FTIR, NMR and elemental analyses. The absence of HCQ and CQMA
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residual particles aggregated in the copolymer samples was highlighted by DSC, XRD and
SEM analyses.

3.1.1. Elementary Analysis

The elemental composition of CQMA was confirmed by the CHN analysis through
the consistent comparison of the experimental data with those calculated, and the results
obtained are summarized in Table 3.

Table 3. Comparison between the experimental determination of the elementary composition of the
CQMA and that calculated.

Element

Composition (wt%)

Sulfanilamid (Ref) HCQ CQMA

Exp. Calc. Exp. Calc. Exp. Calc.

C 41.850 41.860 64.230 64.310 65.470 65.367
H 04.680 04.651 07.787 07.741 07.489 07.428
N 16.260 16.279 12.393 12.505 10.450 10.399

The composition of the copolymer in CQMA and HEMA monomeric units was also
determined by this same method and the results obtained were gathered in Table 4. As
these data show, the composition of these copolymers in the CQMA unit did not accurately
reflect the composition in starting monomers. This seemed obvious, because the large steric
hindrance of the CQMA monomer, which was much greater than that of HEMA, went in
the sense of considerably reducing its reactivity with respect to HEMA.

Table 4. Composition of CQMA-co-HEMA determined by CHN elementary analysis.

System
Elementary Composition (wt%)

CQMA (wt%) HCQ (mol%)
C H N

PHEMA 55.287 7.723 0 0 0
CQMA-co-HEMA5 56.747 7.602 01.412 04.70 1.61
CQMA-co-HEMA7 59.906 5.294 02.116 07.22 2.52
CQMA-co-HEMA10 59.496 7.720 02.673 09.68 3.44
CQMA-co-HEMA15 57.110 7.673 01.852 14.82 6.49

PCQMA 65.362 7.540 10.563 100 100

3.1.2. FTIR Analysis

The FTIR spectrum of CQMA in Figure 1 shows the presence of the combination
of the different absorption bands belonging to the two reagents HCQ and methacryloyl
chloride and the total disappearance of that at 3343 cm−1 assigned to the hydroxyl group
of the pure HCQ indicating the formation of this monomer. The CQMA spectrum con-
firmed the structure of this monomer through the apparition of the same absorption bands
attributed to both HCQ and mathacryloyl methacrylate, except that of –OH stretching
frequency which appeared in the HCQ spectrum at 3385 cm−1. Indeed, the main signals
that appeared on the CQMA spectrum were the aromatic C–H stretching frequency at
2915 cm−1, aromatic C=C stretching frequency in two regions at 1634 and 1457 cm−1, the
C–Cl stretching frequency at 1056 cm−1 and the C–N bending frequency at 1157 cm−1. The
two absorption bands observed at 2500 and 2600 cm−1 were probably assigned to residual
quaternary ammonium salts, resulting from the reaction involving methacryloyl chloride
and triethylenetetramine during the monomer preparation.
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Figure 1. FTIR spectra of CQMA, HEMA monomers, pure HCQ and pure methacroyle chloride. Figure 1. FTIR spectra of CQMA, HEMA monomers, pure HCQ and pure methacroyle chloride.

Figure 2 shows the FTIR spectra of the CQMA-co-HEMA copolymer of different
compositions. These spectra showed the combination of the absorption bands attributed
to the two monomers HEMA and CQMA, except that which characterized the vinyl C=C
double bond of the two monomers of average intensity at 1635 cm−1 represented in Figure 1.
The bands of absorption attributed to C–Cl stretches and CN bending shown at 1057 and
1157 cm−1 in the CQMA monomer (Figure 1) were covered in the copolymer spectra by the
–C–O–C– bands of the HEMA units, which appeared between 1321 and 1032 cm−1 [29].
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Figure 2. FTIR spectra of pure PHEMA, PCQMA and CQMA-co-HEMA copolymers.

3.1.3. NMR Analysis

The 1H NMR spectrum of the CQMA monomer in Figure 3 presents the signals of
protons involving HCQ and methacryloyl chloride with a significant shift toward the right
from 3.45 to 4.32 ppm. This was due to the change in the environment of the two protons
of the methylene group in position (1) belonging to HCQ to those of the ester group of the
2-chloroquinyl mathacrylate unit; thus, confirming the results of the FTIR.
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Figure 3. 1H NMR spectra of pure HCQ, methacryloyl chloride and CQMA.

The 1HNMR spectra of CQMA-co-HEMA15, selected among the other copolymers by
their higher density in chloroquinyl groups, the PHEMA and PHCQMA homopolymers
were grouped in Figure 4. As in the case of the FTIR analysis, the spectra of the copolymers
revealed the presence of the combination of all the signals attributed to the two monomeric
units, CQMA and HEMA, with the exception of those attributed to the protons (a) and
(b) of the vinyl double bonds (sites of the polyaddition reaction), which appeared on the
monomers spectra of Figure 3.
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Figure 4. 1H NMR spectra of PCQMA, PHEMA homopolymers and CQMA-co-HEMA15 copolymers.

Figure 5 shows the comparison of the 13C NMR spectra of the CQMA monomer with
those of its reagents HCQ and methacroyl chloride. As in the case of the 1HNMR analysis,
the structure of the CQMA monomer was demonstrated in its spectrum by the presence
of all the signals attributed to the carbons of the two reagents, except that in position (1)
observed at 52.4 ppm, which was directly linked to the hydroxyl group of HCQ, which
shifted to the higher chemical shifts (63.5 ppm), indicating the formation of the ester group
of the CQMA monomer.
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Figure 5. 13C NMR spectra of pure HCQ, pure methacryloyl chloride and CQMA in DMSOd6.

The structure of the CQMA-co-HEMA copolymer was confirmed by the 13C NMR
analysis from the comparison of their spectra with that of the PHEMA homopolymer.
Indeed, as shown in Figure 6, the signals of carbons attributed to the CQMA and HEMA
co-monomeric units were present in the spectra of the copolymer except those of the two
ethylenic carbons (c) and (d) of their starting monomers (Figure 5), which were transformed
into two ethenic carbons (i) and (j), respectively, during the polyaddition reaction. In
addition, small shifts were observed on some signals of the carbons in the environment of
sites subject to additional reactions.
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Figure 6. 13C NMR spectra of PHEMA homopolymer and CQMA-co-HEMA15 copolymers.

3.1.4. DSC Analysis

The DSC thermograms of the pure HCQ and CQMA monomers were grouped for
comparison in Figure 7. The profile of each thermal curve shows a sharp endothermic
peak characterizing the absorption enthalpy during the melting process. The melting
temperature of each sample was taken from the top of the peak, which was 90 ◦C for HCQ,
which agreed with the literature [15], and 167 ◦C for CQMA. The slight change in the heat
capacity of the CQMA sample observed at 117 ◦C seemed to indicate a glass transition
temperature, revealing the presence of a polymer resulting from a thermal polymerization
of a fraction of the monomer during the DSC heating process in a nitrogen gas atmosphere.

For CQMA-co-HEMA, Figure 8 shows a comparison between the thermograms of
the PHEMA homopolymer and those of the copolymers involving CQMA and HEMA
monomers with different compositions. As shown in these profiles, PHEMA presented a
glass transition temperature, Tg, at 95 ◦C, which agreed with that of the literature [30], while
the thermal curves of the copolymer showed a shift in the Tg towards low temperatures,
which increased with the CQMA content. This appeared to be evident due to the effect
of the steric hindrance of the chloroquinyl methacrylyl substituent of the CQMA units.
Indeed, according to Reimschuessel [31], the more the substituent of the alkyl methacrylyl
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units in the homopolymer is hindered, the less the values of Tgs are important. The large
spacing between the polymer chains caused by this substituent facilitated the sliding of the
chains between them, and this reflected the reduction in Tg values. On the other hand, the
more the number of these units increase in the copolymer, the less the Tg values.
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3.1.5. X-ray Diffraction Analysis

The X-ray diffractograms of the CQMA monomer, PHEMA homopolymer and CQMA-
co-HEMA copolymers with different compositions are shown in Figure 9. The profiles of
the curves attributed to the copolymers, as for the homopolymer, did not show any signs
indicating a crystalline region. Indeed, the appearance of broad peaks in PHEMA centered
at 19.5◦ 2 theta [32] and CQMA-co-HEMA, which slightly shifted from 20.0 to 21.2◦ 2 theta
with the CQMA content, was due to the lack of crystallographic order of the polymeric
chains; thus, leading to the formation of amorphous structures which was mainly caused
by the steric hindrance of the substituent on both sides of the polymer chains. The absence
of the main signals attributed to the CQMA monomer crystals observed in its spectrum at
12.3, 22.0 and 25.02 theta in the spectra of the copolymers indicated the absence of residual
particles of chloroquinyl methacrylate non polymerized incrusted in the copolymer matrix;
thus, confirming the results of DSC.
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Figure 9. XRD patterns of: (A) PHEMA; CQMA-co-HEMA with different CQMA contents: (B) 5 wt%;
(C) 7 wt%; (D) 10 wt%; (E) 15 wt% and (F) CQMA.

3.2. Surface Morphology

Figure 10 shows the SEM surface morphology of a virgin PHEMA film, HCQ parti-
cles and CQMA-co-HEMA copolymer films. As can be seen in the blank PHEMA image,
there was a smooth, non-porous, wave-shaped surface devoid of any aggregated residual
particles of HCQ or CQMA. The image (on the right) shows the HCQ particles clustered
together as endangered snowflakes, indicating the presence of moderate attractive elec-
trostatic forces between them. Micrographs of CQMA-co-HEMA films showed pores of
different shapes and sizes on their surfaces, which varied depending on the amount of
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HCQ grafted. Indeed, the CQMA-co-HEMA5 and CQMA-co-HEMA7 samples exhibited
surface morphologies containing spherical pores of sizes between 3 and 70 µm, and were
much denser in the case of the film sample containing 5% of CQMA by weight. The CQMA-
co-HEMA10 image showed a smooth surface containing significantly fewer pores of similar
sizes to the two previous copolymer films. The film surface of the highest HCQ-loaded
copolymer sample (CQMA-co-HEMA15) exhibited fewer spherically shaped or compressed
pores, probably due to the mechanical stress during film preparation.
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Figure 10. SEM micrographs of HCQ particles, surface morphologies of virgin PHEMA and CQMA-
co-HEMA copolymers films.

3.3. Swelling Behavior of CQMA-co-HEMA Systems

The swelling behavior of any hydrogel is an important key which controls the amount
and transfer of drug released from a drug carrier system to a target external medium.
The mechanism of the swelling of a polymer gel in a liquid medium mainly involves two
important factors, which are the affinity of the polymer–solvent type and the diffusion
dynamics of the absorbate in the absorbent material. The affinity of the polymer with
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respect to the absorbate is governed, mainly, by the difference between their solubility
parameters. On the other hand, the diffusion dynamics of the molecules of the absorbate in
the absorbent polymer matrix are controlled by various parameters such as the degree of the
crosslinking of the polymer [33,34], the temperature [35,36] and the pH of the medium in
which the drug is to be released [37,38]. In this work, the swelling degree at the equilibrium
(S) of CQMA-co-HEMA films was calculated at different pH media from Equation (3) and
the results obtained are plotted in Figure 11.
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media pH.

As can be observed from these curve profiles, the capacity of the CQMA-co-HEMA
system to swell did not vary continuously with the pH medium, regardless of the copolymer
composition. Indeed, for the drug carrier systems containing a CQMA content equal or
superior to 6.22 wt%, the swelling degree at saturation reached a maximum in pH media
3 and 7, then passed by a minimum when the pH medium was 5, while for the CQMA-
co-HEMA system containing less CQMA (4.70 wt%), the variation in the swelling rate at
equilibrium reached its maximum at pH medium 3, then continuously decreased to reach
a minimum at pH 7. Similar results were also obtained by different authors on the swelling
capacity of PHEMA-containing amine groups [39,40]. These authors explain the increase
in the swelling degree by the positive charge on the amine after protonation in the acidic
medium. According to these authors, the electrostatic repulsion gives more volume to
the hydrogel, allowing the diffusion of a higher water content. Similar results were also
obtained by Kost et al. [40]. In this case, the greater the amount of CQMA in the copolymer,
the greater the swelling capacity. This seemed to be true at a certain limit of CQMA content,
but the three copolymers containing equal amounts of CQMA or more than 7.22 wt%
practically had the same swelling capacities in pH medium 1. At pH 3, the swelling at
equilibrium reached its maximum for all the samples. Similar results were also obtained by
Sari et al. [39] in the case of copolymers involving HEMA and N,N-dimethylaminoethyl
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methacrylate (DMAEMA) monomers. At a high CQMA content (9.68 and 14.82 wt%),
the increase in the release dynamic in the neutral pH medium was probably due to the
elimination of HCQ from the copolymer through a retroesterification reaction, which was
favorable in the medium at pH 7 as shown in Scheme 3. In this case, the hydrophilic contact
density between hydroxyl (HEMA) and hydroxyl (water) increased at the expense of the
hydrophobic contact density between carboxyl ester and hydroxyl water, resulting in a
higher swelling of the system.
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Scheme 3. Esterification/retroesterification reactions between PHEMA and HCQ.

Figure 12 shows the change in the swelling capacity of the CQMA-co-HEMA copoly-
mer at equilibrium as a function of the CQMA content. These curve profiles revealed a
linear dependence of the swelling capacity for the copolymer with the CQMA content in
pH medium 5 and logarithmic in pH 1, 3 and 7. As can also be seen from these data, in
any pH medium investigated, the swelling rate of copolymers increased quickly when the
CQMA content in the copolymer ranged between 4.70 and 7.22 wt%, while an increased
linearly in pH medium 5 in all the investigated composition ranges was seen. The increase
in the swelling capacity of the copolymer with the CQMA content could be explained
by two main factors: (i) the increase in the solvation of the chloroquinyl methacrylate
substituent through the protonation of the amine group which occurred in acidic media
and (ii) the increase in the density of the hydrogen bonds between the hydroxyl of water
and that of the HEMA unit through an increase in the free volume between the copolymer
chains created by the bulky chloroquinyl methacrylate substituent. At a certain limit of the
CQMA content, the hydrophobic character of the ester substituent intervened by limiting
the solvation of the copolymer, which reflected the slowing down of the swelling capacity
of copolymers containing more than 7.22 wt% in the CQMA unit, notably in pH medium 1,
in which a plateau was obtained resulting from a pseudo-equilibrium between a decrease
in the hydrophilicity of the copolymer due to the formation of ester (chloroquinyl methacry-
late) and, simultaneously, an increase in the solvation of HCQ due to the protonation of its
amine groups.
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3.4. Cell Viability of HCQMA-co-HEMA on Ca9-22 Cells

As shown in Figure 13, Ca9-22 cells, when treated with the polymer, presented a
low toxicity between 2% and 13%. However, when the cells were treated with the drug
carrier systems, an increase in cell cytotoxicity was observed for CQMA-HEMA5 (A1)
(8.2 ± 0.2%), CQMA-HEMA7 (A2) (12.28 ± 0.4%), CQMA-HEMA10 (A3) (7.36 ± 0.12%),
CQMA-HEMA15 (A4) (12.68 ± 0.27%), CQMA-co-HEMA15 (A5) and 3.07 ± 0.10% for the
virgin PHEMA used as the reference. The increase in cell cytotoxicity was due to the effect
of HCQ released as an anti-oral cancer agent (Figure 14).

3.5. Cell Adhesion and Growth

Figure 14 shows the effect of the CQMA content in the CQMA-co-HEMA drug carrier
system on Ca9-22 cell adhesion. As emerged from these histograms, the system containing
the least CQMA (4.70 wt%) seemed to have the best performance (0.64 ± 0.19) compared
to that of the reference film (virgin PHEMA) (0.23 ± 0.002). Beyond this amount grafted
into the polymer, this performance almost returned again to that of the virgin polymer
with a slight increase (0.27 ± 0.01) and a slight decrease (0.20 ± 0.008) when the CQMA
content was 14.82 and 9.68 wt%, respectively. The adhesion of cells to a polymeric material
could be managed by three essential factors which were toxicity, chemical affinity between
the two target entities and surface porosity. In this case, according to the toxicity test
(Figure 13), the grafting of HCQ onto PHEMA slightly affected (4.2–9.5%) the viability of
the virgin material. Regarding the affinity between the polymer and the cell, this seemed to
be favored by the presence of hydrogen bonds between the hydroxyl groups of the polymer
and those of the cell. The size of the pores on the surface of the polymer carrier played an
important role in cell adhesion and growth, because the larger the pore size, the greater the
penetration of cells, the more it grows and the greater its adhesion. In this work, it was
found that the best cell adhesion was observed in the system containing 4.70 wt% CQMA.
This appeared to be quite consistent with the swelling results as a function of the amount
of drug grafted onto the polymer (Figure 12). Because the more the swelling, the less the
size of the pores as shown in Scheme 4.
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3.6. In Vitro HCQ Release
3.6.1. Release Kinetics of HCQ

Figure 15 shows the profiles of the curves indicating the change in HCQ released at
37 ◦C from CQMA-co-HEMA drug carrier systems in different pH media as a function
of time over a week. As can be seen from these plots, the CQMA-co-HEMA10 system
appeared to be the most efficient in releasing HCQ in all pH media. In fact, 62% of this
drug by weight was released in pH medium 1, 68% by weight at pH medium 3, 69% by
weight at pH medium 5 and 66% by weight at a neutral pH. Just after came the CQMA-
co-HEMA7 and CQMA-co-HEMA15 systems, releasing during the same period 66% and
64% of 2-hydroxychloroquine by weight in pH medium 3, respectively, and 59% by weight
for both in the neutral pH medium. On the other hand, CQMA-co-HEMA5, although
it delivered much less of this drug, the maximum amount released was observed in the
neutral pH medium with 27 wt% and between 24 and 25 wt% in acidic media.

3.6.2. HCQ Solubility Enhancement

The solubility of any drug in an aqueous medium is a key factor in any drug delivery
process, because it governs its rate and kinetics of absorption by target organs. The
solubility of pure HCQ in water reported in the literature was estimated at 26.1 mg·L−1

at 25 ◦C [15]. It is well known that the solubility of a poorly water-soluble drug increases
with a decrease in the size of its dispersed particles [41–43]. Indeed, the decrease in the
size of the drug particles leads to an increase in their total surface area, leading to an
increase in the contact surface water molecule drug particles. This promotes the increase
in the dissolution of a very large number of particles, particularly when they are slowly
released into water in the molecular state through a retroesterification reaction. In this
work, the solubility of HCQ in different pH media was approximately estimated through
the cumulative amount of this drug released until saturation (equilibrium) and the results
obtained are given in Table 5.
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Table 5. Solubility of HCQ in different pH media at 37 ◦C deducted from the maximum amount of
HCQ released from CQMA-co-HEMA drug carrier systems.

Compound Solubility (mg·L−1)

pH 1 3 5 7

HCQ powder 35.62 31.17 28.08 27.82
CQMA-co-HEMA5 22.61 21.41 19.0 19.32
CQMA-co-HEMA7 168.0 149.0 137.0 167.0

CQMA-co-HEMA10 58.0 149.0 70.0 84.0
CQMA-co-HEMA15 186.0 249.0 252.0 261.0

In this work, the solubility of pure HCQ powder estimated at 37 ◦C in a neutral pH
medium was 27.82 mg·L−1 and increased slowly when the pH of the medium decreased
to reach 35.62 mg·L−1 in pH1. On the other hand, the concentrations of HCQ released
in these solutions from the CQMA-co-HEMA drug carrier systems during 164 h were
much higher, with the exception of the one containing the least HCQ (4.70% by weight), in
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which the concentration obtained during this same period did not exceed 22.61 mg·L−1,
regardless of the pH of the medium. This seemed to be obvious, since 4.70 wt% as the
HCQ/HEMA starting composition was not sufficient to release a sufficient amount of
HCQ to reach or approach the saturation of the medium. Compared to the solubility of
dissolved HCQ in powder form, this value was slightly lower. For example, the maximum
concentration of HCQ released in the water of the CQMA-co-HEMA15 system varied
between 186 and 261 mg·L−1 when the pH of the medium went from 1 to 7 without
observing any precipitation or cloudiness for one week. This represented an improvement
of over 5.22 to 9.38 times the solubility of HCQ when dissolved in the powder form. In
the case of the CQMA-co-HEMA5 system, in which the release dynamics continued to
increase (Figure 16), the lower concentrations of HCQ obtained in the different pH media
obtained at the end of the release process were due to the lower amount of HCQ initially
incorporated into the copolymer.
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3.6.3. Diffusion Behavior of HCQ

According to Lin et al. [44], for a release of less than 60 wt% from the total drug loaded,
the diffusion of this substance through the carrier system follows a Fickian model. The
value of the diffusion coefficient, D, can be calculated from Equation (4) [45–48]:

D =
0.196 × l2

t

(
mt

mo

)2
(4)

where l is the film thickness, mo and mt are as defined previously. The D value is deter-
mined when the permanent regime of the release process is reached and the HCQ particles
deposited on the surface of the material are totally washed. Under such conditions, the
profile of the D curve as a function of time would be significant and accurately reflect
the dynamic of the drug released into the aqueous solution inside the carrier material.
Figure 16 indicates, for all samples, the variation of D as a function of the reverse of time
plotted from the data of Figure 15 and Equation (4). The profiles of the curves obtained
clearly showed two types of diffusion which occurred during the HCQ release process. The
first one was rapid, which took place during the first hours of the process, mainly due to a
detachment and a leaching of HCQ particles from the surface of the sample; the second,
which was long, described a straight line indicating an establishment of a permanent
regime. This indicated that the HCQ diffusion process through CQMA-co-HEMA materials
obeyed a Fickian model and also indicated that the release dynamics of this drug from these
hybrid materials were mainly governed by a diffusion mechanism through the copolymer
matrix. Under these conditions, the steady state of the liberation process was reached and
it was possible to build our investigation on the second zone of the liberation process in
which the steady state was reached.

3.6.4. Effect of the Swelling Degree of CQMA-co-HEMA Systems

The swelling capacity of a polymer in an aqueous medium is a fundamental property
and considered as a key in the field of drug delivery. Indeed, this parameter regulates
the amount of drug released, controls both the rate of diffusion of the penetrate into the
polymeric carrier and its dissolution in the medium in which the drug is released [49–52].
In this work, the influence of the swelling capacity of the CQMA-co-HEMA system on
the release behavior of hydroxychloroquine was carried out in different pH media during
72 h of the release process and the results obtained are plotted in Figure 17. As can be
observed from these curve profiles, minimum releases of 53.52, 50.02 and 48.32 wt% were
obtained for the drug carrier systems containing 9.68, 7.22 and 14.82 wt% of HCQ content,
respectively, whereas for the system containing the lowest HCQ content (4.70% by weight),
the dynamics behaved differently, which passed by a maximum of 23.70 wt% at a swelling
saturation of 38.70% by weight.

3.6.5. Effect of the CQMA Content

Figure 18 shows the influence of the CQMA content in the CQMA-co-HEMA drug
carrier system on the release dynamics during 24 and 72 h of the process. For both
durations, these curve profiles revealed a significant increase in the HCQ released when
the concentration of this medication in the drug carrier system did not exceed 7.22% by
weight, then stabilized or decreased more or less quickly depending on the pH medium
at a higher HCQ content. This could be explained mainly by two opposing factors which
acted simultaneously on the swelling capacity of the drug vehicle system depending on
their capacities to act and the content of CQMA in the copolymer. In fact, an increase in
the hydroxychloroquinyl ester group as a substituent of the copolymer acted negatively
on the hydrophilic power of the CQMA-co-HEMA system. This had an effect of reducing
the quantity of water necessary for the reaction of retroesterification (drug regeneration
reaction) and also reduced the dissolution of HCQ released inside the polymeric matrix.
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On the other hand, an increase in the steric hindrance of this substituent also promoted
an increase in the free volume between the chains of the copolymer, facilitating the penetra-
tion of more water molecules. In this situation, a competition between these two opposite
effects, which essentially depends on the amount of HCQ grafted into the copolymer,
governs the dynamics of HCQ release in the medium. Finally, we could conclude from the
results obtained that the ability to release HCQ in these different media was governed by
the more or less hydrophilic character of the CQMA-co-HEMA system, which depended
on its CCQMA/PHEMA composition.

3.6.6. Effect of pH Media

The nature of the environment in which drugs are released greatly influences the
dynamics of drug release in a target organ. Indeed, various studies have been carried
out on the influence of the medium such as the pH [53,54], the enzymes [54,55] and the
bacteria [56,57] on the dynamics of the drug released by the drug delivery systems and the
results obtained were very striking. In this work, the effect of pH media on the dynamics of
HCQ released from CQMA-co-HEMA drug carrier systems was performed at pH media 1, 3,
5 and 7, and the results obtained for 24 and 72 h are plotted for comparison in Figure 19. As
can be seen from the profiles of the curves obtained, for the drug carrier system containing
the least CQMA (4.70% by weight), virtually no change in the release dynamics was
observed, regardless of the pH of the medium. At 24 h of the release process, the two
systems containing 7.22 and 9.68 wt% of CQMA content evolved according to the same
trend, in which the release dynamics passed by a maximum of 54 wt% for the first system
and 52 wt% for the second when the pH of the medium was 4.2. In contrast, for drug carrier
systems containing 4.70 and 14.82% of CQMA by weight, the release dynamic continued
to decrease slightly and linearly for the first drug carrier system to reach 10.35 wt% of
HCQ in pH medium 7, while that of the second system passed through an inflection point
at 37% of HCQ by weight released in pH medium 4.2. At 72 h of release process, the
dynamics of HCQ released from the CQMA-co-HEMA7 and CQMA-co-HEMA10 drug
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carrier systems, which contained 7.22 and 9.68 wt% of CQMA, respectively, completely
changed from those observed at 24 h. Indeed, two extremums were observed for the drug
carrier system containing 7.22 wt% of CQMA content in which a maximum release of
29.7 wt% of HCQ was observed in Ph 3 and a minimum of 26.6 wt% in pH medium 5,
while that with 9.68 wt% of CQMA content reached a maximum release of 63 wt% in this
same pH medium. The explanation for such behavior appeared to be complicated by the
fact that two main antagonistic factors may simultaneously intervene in the drug release
mechanism: the first being chemical which resides in the reaction of retro-esterification
which generates the HCQ and the second being physical which resides in the hydrophilic
character of the copolymer. The intensity of each depends on the pH of the medium and the
CQMA content in the drug carrier system. Indeed, the chemical factors were the reactions
of retro-esterification which took place in a neutral pH medium which regenerated the
HCQs in the presence of an excess of water, leading to the release of a large amount of
drug, and the reaction of esterification which took place in an acidic medium, which, on
the contrary, promoted the formation of insoluble ester, which disfavored the release of
the drug as shown in Scheme 3. The physical factor that could affect the release dynamic
of HCQ from the CQMA-co-HEMA system was already discussed in the previous section.
Indeed, at a high CQMA content, the swelling capacity of the polymer was also affected by
the pH medium, since the more acidic the medium the less swelling of the system. This
was due to the formation of the ester which was insoluble in water. Contrarily, as can be
revealed in the previous section, a minimal amount of CQMA in the copolymer, less than
7.22% by weight, promoted an increase in the swelling capacity.

3.6.7. Performance of CQMA-co-HEMA Drug Carrier System

The study of the performance of the CQMA-co-HEMA drug carrier system based on
the drug amount released the instantaneous release rate and the duration of the release
process, deduced from the slopes of the pseudo-linear portions of the kinetic curves of
Figure 15, led to the results of Table 6.

Table 6. Performance of the CQMA-co-HEMA drug carrier systems.

System pH Stable Zone
(h)

HCQ Released
(wt%)

Release Rate
(wt%/h) System Stable Zone

(h)
HCQ Released

(wt%)
Release Rate

(wt%/h)

C
Q

M
A

-c
o-

H
EM

A
5 1 0–27

30–164
12.0 ± 0.2
12 ± 0.5

0.44 ± 0.04
0.10 ± 0.03

C
Q

M
A

-c
o-

H
EM

A
7

0–15
15–62
62–164

22.0 ± 0.8
22.0 ± 0.7
10.0 ± 0.3

1.46 ± 0.02
0.47 ± 0.02
010 ± 0.02

3 0–30
44–164

13 ± 0.2
18.2 ± 0.5

0.43 ± 0.04
0.15 ± 0.01

0–10
10–60
60–164

26.03 ± 0.6
18.00 ± 0.6
10.0 ± 0.6

2.60 ± 0.04
0.36 ± 0.02
0.10 ± 0.06

5 0–37
50–164

17.0 ± 0.6
6.0 ± 0.7

0.46 ± 0.08
0.05 ± 0.04

0–10
10–60
60–164

37.0 ± 0.6
17.0 ± 0.5
13.0 ± 0.6

3.70 ± 0.07
0.34 ± 0.03
0.13 ± 0.06

7 0–30
30–164

16.0 ± 0.5
12.0 ± 0.8

0.53 ± 0.04
0.09 ± 0.03

0–22
22–65

65–164

38.0 ± 0.4
18.0 ± 0.5
7.0 ± 0.6

1.73 ± 0.10
0.42 ± 0.02
0.07 ± 0.06

C
Q

M
A

-c
o-

H
EM

A
10 1

0–20
20–58

58–164

30.0 ± 0.3
22.0 ± 0.4
7.0 ± 0.4

1.5 ± 0.08
0.58 ± 0.09

0.070 ± 0.04

C
Q

M
A

-c
o-

H
EM

A
15

0–10
10–48
48–164

26.0 ± 0.3
20.0 ± 0.3

13.0 ± 0.02

2.60 ± 0.04
0.53 ± 0.05
0.11 ± 0.04

3
0–20
20–60

60–164

40.0 ± 0.3
9.0 ± 0.5
9.0 ± 0.4

2.3 ± 0.02
0.23 ± 0.02
0.09 ± 0.04

0–10
10–42
50–146

31 ± 0.4
20 ± 0.4

10.0 ± 0.4

3.10 ± 0.06
0.63 ± 0.04
0.06 ± 0.04

5
0–20
20–60

60–164

46.0 ± 0.3
14.0 ± 0.4
9.0 ± 0.4

2.30 ± 0.02
0.35 ± 0.09
0.09 ± 0.04

0–12
12–56
56–164

24.0 ± 0.5
22.0 ± 0.5

10.0 ± 0.04

2.00 ± 0.06
0.50 ± 0.05
0.09 ± 0.04

7
0–28
28–73

73–164

41.0 ± 0.4
13.0 ± 0.5
10.0 ± 0.4

1.46 ± 0.06
0.29 ± 0.02
0.11 ± 0.04

0–12
12–54
54–164

25.0 ± 0.5
21.0 ± 0.5

10.0 ± 0.04

1.93 ± 0.04
0.10 ± 0.05
0.09 ± 0.4
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As can be seen from these curve profiles, the release dynamic of HCQ showed two
principal pseudo stable zones for the specimen containing 4.70 wt% of CQMA and a
supplementary transit zone for the CQMA-co-HEMA drug carrier systems with a higher
CQMA content. The first zone observed during the first hours of the release process was
between 10 and 30 h depending on the composition of the copolymer and the pH of the
medium. During this period, a significant amount of HCQ was released, probably due
to the large difference between the chemical potential for dissolving HCQ outside and
inside the polymer matrix. For the CQMA-co-HEMA5 drug carrier system, a rapid release
dynamic (0.43–0.53 wt%/h) was observed during the second zone which was located
between 120 and 134 h in which 6.0 to 18.2% of HCQ by weight was released depending
on the pH medium. For drug carrier systems initially containing a higher CQMA content,
the second zone was short (32–43 h) and relatively fast (0.10–0.63 wt%/h). This step was
considered as a transit zone in which 9.0–22.0% of drug by weight was released during this
period depending on the CQMA content in the copolymer and the pH of the medium. The
third zone observed for CQMA-co-HEMA drug carrier systems containing 4.70, 9.68 and
14.82 wt% CQMA was the longest (91–116 h) and also the slowest (0, 06–0.13 wt%/h),
wherein 7.0–13.0 wt% HCQ was released depending on the initial content of CQMA in the
drug carrier system and the pH medium. The gradual decrease in the release dynamics
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of these drug delivery systems can mainly be explained thermodynamically by a gradual
decrease in the difference between the chemical potentials of the HCQ dissolution inside
and outside the polymer matrix up until the equilibrium is reached, taking into account the
various parameters of interaction between the various components of the copolymer and
that of the medium. The performance of the drug carrier systems was determined from
the criteria that stipulate: the maximum of drug released in neutral pH medium (intestinal
transit), minimum drug release in acidic pH medium (stomach), stable release rate and
longest release period. According to Belzer et al. [58], the mean total gastrointestinal transit
time (GITT) was between 53 and 88 h distributed over three main stages: (i) stomach transit
(pH ≈ 1.5–3.5), which lasts between one and 4 h, (ii) intestinal transit (pH ≈ 7–9), which
varies between 4 and 12 h and, finally, (iii) transit in the colon (pH ≈ 5–7), which lasts
between 48 and 72 h. Taking into account the pH of the medium and the transit times
in different digestive organs, it was possible to approximately estimate from the data of
Table 7 the distribution of the percentages of cumulative HCQ released in different organs
and the average stomach/digestive organs rate (SDO) (Equation (5)), independently of
the effects of enzymes and microorganisms and the results obtained are grouped in Table
7. These data revealed that the CQMA-co-HEMA5 system was the most efficient, because
it was able to reduce the release of HCQ in the stomach to 2.40 wt% of the total quantity
released for the fast GITTs and 6.69 wt% for the slow GITTs.

SDO(wt%) =
rs

rs + rsi + rc
× 100, (5)

where rs, rsi and rc are the percentages of HCQ released in the stomach, small intestine and
colon, respectively, during a certain transit time.

Table 7. Estimated distribution of the cumulative HCQ released from CQMA-co-HEMA drug carrier systems on the
principal digestive organs timed according to Belzer.

CQMA-co-HEMA System Stomach Transit
(wt%)

Small Intestine Transit
(wt%)

Colon Transit
(wt%)

SDO
(wt%)

Transit Time Min
(1 h)

Max
(4 h)

Min
(4 h)

Max
(12 h)

Min
(48 h)

Max
(72 h)

Min
(48 h)

Max
(72 h)

CQMA-co-HEMA5 0.44 1.74 2.12 6.36 15.76 17.90 2.40 6.69
CQMA-co-HEMA7 2.03 8.12 6.92 20.76 43.68 49.86 3.86 10.31

CQMA-co-HEMA10 1.90 7.60 5.84 17.52 40.96 47.92 3.90 10.40
CQMA-co-HEMA15 2.85 11.4 7.72 23.16 20.98 23.38 9.03 19.68

4. Conclusions

Very interesting results were obtained from this investigation. Indeed, 2-chloroquinyl
methacrylate as a new monomer could be easily synthesized through a catalytic reaction in-
volving methacryloyl chloride in the presence of triethylenetetramine. Poly(2-chloroquinyl
methacrylate-co-2-hydroxyethyl methacrylate drug carrier systems with different com-
positions were also successfully synthesized through a radical copolymerization route
involving the synthesized 2-chloroquinyl methacrylate and 2-hydroxyethylmethacrylate.
This method was able to obtain, in aqueous medium, a generator of a desired percentage
of 2-hydroxychloroquine regularly and slowly released during a long period through a
retro-esterification reaction. The cell toxicity examined by the LDH assay revealed that
the grafting of HCQ onto PHEMA was slightly affected (4.2–9.5%) and the cell adhesion
and growth on the CQMA-co-HEMA drug carrier specimens carried out by the MTT assay
revealed the best performance with the specimen containing 4.70 wt% CQMA. A significant
improvement of 5.22 to 9.38 times the solubility of HCQ over that in powder form was
obtained when it was released from CQMA-co-HEMA systems. The results of the in vitro
release dynamics of HCQ from these systems showed very encouraging results in which
the system initially containing 4.70% of CQMA by weight showed the best performance.
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