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Abstract

An unusual decline and collapse of young established trees known as “rapid apple decline”

(RAD) has become a major concern for apple growers, particularly in the northeastern

United States. This decline is characterized by stunted growth, pale yellow to reddish

leaves, and tree collapse within weeks after onset of symptoms. We studied declining apple

trees to identify potential involvement of abiotic and biotic stresses. We used 16S and ITS to

profile bacterial and fungal communities in the soil, rhizosphere, roots, and shoots and

tested for the presence of six viruses in scions and rootstocks of symptomatic and asymp-

tomatic trees. The viruses detected were not associated with RAD symptoms. Bacterial and

fungal populations were highly variable in plant tissue, soil and rhizosphere samples, with

bacteroidetes, firmicutes, proteobacteria, acidobacteria, and actinobacteria the predomi-

nant bacterial classes in various samples. ‘Alphaproteobacteria-rickettsiales’, a bacterial

class usually reduced in water-limiting soils, had significantly low abundance in root samples

of symptomatic trees. Basidiomycota and Ascomycota fungal classes were the most com-

mon fungal classes observed, but neither showed differential enrichment between symp-

tomatic and asymptomatic trees. Analyzing weather data showed an extremely cold winter

followed by drought in 2015–2016, which likely weakened the trees to make them more sus-

ceptible to varied stresses. In addition, similar physical and nutritional soil composition from

symptomatic and asymptomatic trees rules out the role of nutritional stress in RAD. Necrotic

lesions and wood decay symptoms dispersing from bark or vascular cambium towards the

heartwood were observed primarily below the graft union of declining apple trees, suggest-

ing that the rootstock is the originating point of RAD. We speculate that differences in abiotic

factors such as moisture levels in declining roots in combination with extreme weather pro-

files might cause RAD but cannot clearly rule out the involvement of other factors.
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Introduction

“Rapid apple decline” (RAD) describes a decline and collapse of young apple trees. This

decline has become a major concern for growers in apple producing areas in the central,

northeastern, and northwestern United States and in Ontario, Canada in recent years [1–4]. A

similar situation was first described in north-central Washington State orchards in 1983 [5],

and fifteen years later in southern British Columbia, Canada [6]. RAD is usually characterized

by stunted tree growth, chlorotic canopy, and tree collapse within weeks after the onset of

symptom development [2–4]. Symptoms generally first appear on one limb, with small, rolled

leaves and reduced terminal growth, followed by the full tree canopy manifesting pale yellow

to reddish leaves. Cankers and shedding are visible at the graft union, and wood necrosis pro-

gresses upstream to the trunk of the tree. The root system generally appears healthy, except

that small feeder roots are absent [2, 5]. No common root rot pathogens or nutrient deficiency

has been associated with RAD. After originating in one point of an orchard, the disorder

seems to spread to adjacent trees. Symptomatic trees are usually removed from orchards due

to poor productivity; however, if kept in the orchard, the symptoms may spread throughout

the tree within a single year and ultimately lead to tree death.

Despite extensive speculation on the potential causes of RAD, the causative agent is still

unknown. For example, cultivar-rootstock incompatibility, extreme weather conditions,

wood-boring insects, and pathogen infection have all been proposed as possible causes. Trees

presenting incompatible grafts are frequently described as displaying breaks or malformations

at the graft union, leaf chlorosis, early defoliation, plant wilt, and premature death. Unfavor-

able weather conditions have also been suggested to be involved in RAD [7–9]. For instance,

freezing temperatures can cause direct injury to plant tissue, making them vulnerable to sec-

ondary abiotic or biotic stresses [8–9]. Likewise, drought or flooding may potentially cause

retarded shoot and leaf growth, leaf chlorosis and defoliation, root necrosis, wilting, and even-

tually plant senescence [10–16]. Wood-boring insects can also cause serious damage or death

of apple trees and have been identified in trees with RAD [17]. Insect infested trees usually

have a sickly appearance, a sparse and pale-colored foliage, and can die with a heavy fruit crop

during the fruit maturation stage. Although insect borer injury to the graft union or trunk has

been reported in RAD-symptomatic areas, it is believed that insects take advantage of already

declining trees, and compound the injury by providing an entryway for destructive fungi [2, 4,

17].

The involvement of plant pathogens in RAD is still a matter of speculation. Many important

diseases of apple trees are caused by pathogens that initiate infections at wounds caused by

insects, humans, machinery, fire, lightning, wind, hail, animals, or nutritional and physiologi-

cal disorders [18–19]. Symptoms from other microbes such as wood-rotting and Phytophthora
crown rot pathogens and mycoplasma-like organisms showed partial matches to RAD symp-

toms [5, 20–22]. In contrast, the necrotic symptoms of the inner bark on RAD-affected trees

were more likely to be from latent apple viruses such as apple stem pitting virus and apple

stem grooving virus [2, 4]. Although apple luteovirus 1 (ALV1) was recently characterized

from trees with RAD [23], the association between the presence of ALV1 and RAD symptoms

is weak. Therefore, no virus has been confirmed as the causative agent for RAD [2]. It might

be possible that RAD is caused by an as yet unknown pathogen.

The identification of microorganisms responsible for plant disease has relied mainly on cul-

ture-dependent techniques and PCR amplification of genomic DNA [24]. However, these

techniques are specific and can miss certain infectious microorganisms or groups of organisms

that cause diseases. Microbial communities have been shown to have synergistic effects by

improving agronomical features, such as limiting or preventing attacks by phytopathogens
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[25–27] or causing the establishment and development of plant diseases [20, 24, 27–31]. High

throughput sequencing approaches are powerful tools to determine the involvement of known

and new organisms in disease etiology and permit the investigation of complex microbiomes

[20, 27, 32, 33]. Routine 16S and ITS sequencing allow rapid identification of soil, rhizosphere,

or endophyte bacterial and fungal communities, respectively [34–39]. For example, a bacterial

community potentially interacting with a colonizing fungus was isolated from the grapevine

trunk fungal disease “esca” [33]. Similarly, three fungi typically not considered root pathogens

have been reported as causal agents of apple replant disease [20]. A comparative analysis

between healthy and declining trees can help identify differentially abundant classes of bacteria

and fungus and therefore assist in the identification of their putative role in RAD.

We carried out a study in an orchard with a block of ‘HoneyCrisp’ trees showing symptoms

of RAD to identify the potential role of different abiotic and biotic stresses. We characterized

the morphological status of wood from RAD symptomatic trees to localize the origin of necro-

sis, compared microbial community profiles of soil, rhizosphere, roots, and shoots of symp-

tomatic and asymptomatic trees to identify biotic agents involved in RAD, and analyzed

weather data and physical characteristics of soil to investigate the involvement of abiotic

stresses.

Materials and methods

Site description and weather data

The experimental orchard is located in a commercial apple orchard in Newark, Wayne

County, New York in the United States (43˚7’30”N, 77˚5’31”W, and 170m elevation). The

orchard has more than 30 cultivars of apples grafted on different rootstocks. The majority of

declining trees were observed in a block of ‘HoneyCrisp’. The block had 1,700 ‘HoneyCrisp’

trees grafted onto the Malling 9 (M.9 NIC 29) rootstock. This block was established in 2010, in

a high-density planting system, with 1.25m x 4.25m spacing between trees and rows. The soil

type is characterized as silty loam and belongs to the hydrologic soil group B/D with moderate

to very slow infiltration rate and moderate potential for frost action according to the United

States Department of Agriculture (USDA)—Natural Resources Conservation Service Soil Cli-

mate Analysis Network (NRCS) (USDA-NRCS, 2017). The water movement in the most

restrictive layer and the shrink-swell potential is low in this area. The area is considered mod-

erately well drained, with low probability of flooding and ponding. Annual precipitation in the

area varies from 787 to 1,447mm, and the frost-free period varies from 100 to 190 days.

Weather datasets from 2013 to 2017 were accessed from three weather stations located in

Phelps, Farmington, and Sodus, New York using the Network for Environment and Weather

Applications (NEWA) (http://newa.cornell.edu) [40]. These three locations were within 15

miles of the ‘HoneyCrisp’ apple orchard selected for this study. Weather data included temper-

ature (maximum, average, and minimum), precipitation, relative humidity, leaf wetness, and

wind speed. There were no major differences in weather parameters among the three stations.

Therefore, datasets from three weather stations were used to calculate monthly mean values

for each year.

Sampling for soil, microbiome and virus analysis

Asymptomatic and symptomatic (declining) apple trees were dispersed across the experimen-

tal orchard. Four rows (R1-R4) in the north end of the block had clearly declining as well as

healthy-looking trees. The two central rows (R2 and R3) were selected for soil and tree tissue

sampling, avoiding outer open rows to minimize experimental error (S1A Fig). Three sets of

trees (two asymptomatic trees on either side of a symptomatic tree) were sampled from R2
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(S1B Fig). In R3, 20 (10 asymptomatic and 10 symptomatic) trees were randomly selected and

sampled (S1C Fig).

A total of 87 samples were collected from shoots (13 symptomatic, 16 asymptomatic), roots

(13 symptomatic, 16 asymptomatic), and the rhizosphere (13 symptomatic, 16 asymptomatic)

of ‘HoneyCrisp’ trees selected in R2 and R3. For sampling, shoots (30cm in length) were cut

with pruning shears from three different positions in the tree canopy (top, middle, and base)

and pooled together (Fig 1A). Soil surrounding the tree rootstock was dug out to expose lateral

roots for root and rhizosphere sampling. Five root pieces (5-20cm) adjacent to the rootstock

trunk were collected using pruning shears and a chisel (Fig 1B). Pruning shears, shovels, chis-

els, and augers used during sampling were cleaned with 50% bleach between uses to avoid

cross contamination, and gloves were changed between samples.

A total of nine bulk soil samples were collected from six asymptomatic and three symptom-

atic trees in R2 using a soil auger (4.5 cm Ø). For each sample, six soil cores (~20 cm depth)

were collected around the tree, approximately 20cm from the center of the tree trunk. The first

2 cm of each sample was discarded, and the remaining soil was combined, sieved with a 2-mm

mesh, and homogenized (Fig 1C). One portion of all soil samples was kept in -80˚C for DNA

extraction. Another portion of each sample was used for soil physicochemical analysis at the

Soil Lab, Cornell University in Ithaca, New York. Plant material and soil samples were kept on

ice and carefully transported to the laboratory in a cold container. In the lab, roots were gently

shaken inside sampling bags and the rhizosphere soil was carefully detached and transferred to

a sterile container. Shoot, root, and rhizosphere samples were processed within 24 hours.

Visual characterization of rootstocks of symptomatic tress

At the end of the growing season in 2017, eighteen symptomatic apple trees, a subset of the

trees that were sampled for microbiome and virus testing, were pulled out from rows R2 and

Fig 1. Schematic overview of the sampling strategy of soil and tree samples in a ‘HoneyCrisp’ orchard block with rapid apple decline (RAD). Sampling

and pooling of shoots from three different positions in the tree canopy (top, middle, and base) (A), Sampling of root tissue and rhizosphere (B). Soil sampling

for the analysis of soil physical and chemical properties (C).

https://doi.org/10.1371/journal.pone.0213293.g001
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R3. The trunks were cut 30cm above the graft union and brought to the lab for visual charac-

terization of symptoms. Three parallel cuts (5 cm each) were made above and below the graft

union to verify the presence of abnormal wood, as well as signs and/or symptoms of potential

pathogen and insect damage. High-resolution images of the cross section of each cut piece

were taken to analyze necrotic lesions as the percentage of necrotic wood area to the total cross

section area. A macro in ImageJ (version 1.51 h - http://imagej.nih.gov/ij) was used to convert

pictures to a binary format, assigning white and black colors to healthy and pigmented tissue,

respectively. The outputs were used to estimate healthy and pigmented necrotic wood area.

The image data were further evaluated to localize the origin and progress of the necrosis using

the following scale: DS = 1, external wood discoloration, DS = 2, internal wood discoloration,

DS = 3, co-occurrence of external and internal wood discoloration, DS = 4, edge-shaped dis-

coloration (<50%), DS = 5, edge-shaped discoloration (>50%), and DS = 6, circular

discoloration.

Virus detection

Shoot and root samples of asymptomatic and symptomatic trees were tested for the presence

of viruses using double-antibody sandwich enzyme-linked immunosorbent assay (DAS-E-

LISA) and commercial antibodies (Bioreba, Reinach, Switzerland) according to the manufac-

turer’s instructions. Viruses assayed were apple stem grooving virus (ASGV), apple stem

pitting virus (ASPV), apple chlorotic leafspot virus (ACLSV), tomato ringspot virus (ToRSV),

apple mosaic virus (APMV), and tobacco ringspot virus (TRSV). Briefly, shoot and root sam-

ples (0.5g) were homogenized in Bioreba universal extraction bags containing extraction

buffer (5ml) using a HOMEX 6 (Bioreba, Reinach, Switzerland). DAS-ELISA was conducted

as follow: Specific polyclonal antibodies were diluted 1,000 times in coating buffer, dispensed

into wells of a microtiter plate (100 μl/well), and incubated overnight at 4˚C. Plates were

washed three times with phosphate-buffered saline (PBS) containing 0.05% Tween 20 and

500 μl of sample extracts were added to two wells and kept overnight at 4˚C. After three washes

with PBS-Tween, 100 μl of conjugate antibody diluted 1,000 times were added and incubated

4h at 30˚C. After adding the substrate, absorbance readings were recorded using a microplate

reader (EL800, Biotech. Instruments, USA) at 405 nm. Samples were considered virus-positive

when the average absorbance values (A405nm) were at least three times higher than those of the

negative control.

Sample processing and DNA extraction

Shoot and root samples were processed prior to DNA extraction. Shoots and roots were first

washed with sterile water, blotted dry on sterile absorbent paper, and transferred to a laminar

flow hood. The bark of the shoots and the cortex of the roots were removed to trim the sample

ends. Wood samples were cut horizontally, and small wood chips were quickly collected using

a sterile scalpel and transferred to sterile bags. Samples were immediately frozen in liquid

nitrogen. Approximately 100 mg of shoot or root tissue were disrupted and homogenized

using a tissue lyser II (Qiagen, Crawley, UK). Three 5 mm stainless steel beads were used per

sample. Three rounds of 45 s of grinding were performed at a frequency of 30 Hz. Total geno-

mic DNA was extracted from shoots and roots using DNeasy Plant Mini Kit (Qiagen, Ger-

many), and microbial DNA was extracted from bulk soil and rhizosphere samples using the

MoBio Power Soil DNA isolation kit (Qiagen, Germany), according to the manufacturer’s

instructions. Quality and quantity of extracted DNA was assessed by NanoDrop (absorbance

ratio at both 260/280 and 230/260 nm) and by electrophoresis on 1.5% agarose gels. Concen-

tration of extracted DNA was adjusted to 5ng/μl and samples were stored at -80˚C until use.
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Characterization of microbial communities

Bacterial and fungal communities were characterized in soil, shoot, root, and rhizosphere sam-

ples. The gene-specific primers V3-357F (5’-CCTACGGGNGGCWGCAG-3’) and V4-805R

(5’-GACTACHVGGGTATCTAATCC-3’) targeting the V3 and V4 regions of 16S rRNA gene

were used to study bacterial communities (Klindworth et al., 2013; Yim et al., 2015). The gene-

specific primers ITS1F (5’-TCCGTAGGTGAACCTGCGG-3’) and ITS4R (5’-TCCTCCGCT
TATTGATATGC-3’), targeting the two transcribed intergenic spacers (ITS) ITS1 and ITS4

rDNA regions were used to study fungal communities (Manter and Vivanco, 2007). The for-

ward and reverse Illumina overhang adapter sequences added to locus-specific sequences

were: 5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3’ and 5’-GTCTCGTGGGC
TCGGAGATGTGTATAAGAGACAG-3’, respectively. DNA was amplified by PCR in a reaction

mixture (25 μl final volume) consisting of 2.5 μl of microbial DNA (5 ng/μl), 5 μl of each

amplicon PCR primer (1 μM), and 12.5 μl of 2x KAPA HiFi HotStart ReadyMix (KAPA Bio-

systems). The PCR amplification conditions for 16S rRNA region were as follows: 95˚C for 3

min; 25 cycles of denaturation at 95˚C for 30 s; hybridization at 55˚C for 30 s; extension at

72˚C for 30 s; and a final extension at 72˚C for 5 min. For amplification of ITS rDNA region,

PCR conditions were: 95˚C for 5 min; 25 cycles of denaturation at 95˚C for 30 s; hybridization

at 55˚C for 1 min; extension at 72˚C for 1 min; and a final extension at 72˚C for 10 min. The

amplicons were sequenced using paired-end sequencing on an Illumina MiSeq instrument at

the Institute of Biotechnology at Cornell University in Ithaca New York, United States.

Raw sequence reads were de-multiplexed, low quality read ends were trimmed using Trim-

momatic [41], and low-quality sequences were removed. QIIME2 (https://qiime2.org/) was

used to perform the downstream diversity and taxonomy composition analysis. Correspond-

ing paired end reads were merged and un-joined reads were discarded. Another quality pro-

cessing was performed using ‘Deblur’ plugin in QIIME2 to remove chimeric sequences. Read

quality profiles were visualized to retain high-quality sequences for 16S and ITS datasets. The

remaining sequences were used to determine differences in bacterial and fungal communities

between asymptomatic and symptomatic samples from root, shoot, soil, and rhizosphere, and

to calculate the Shannon diversity index to obtain alpha and beta diversity statistics. Sequences

were grouped to obtain operational taxonomic units (OTUs) with 97% similarity. The result-

ing OTUs were compared against the trained full-length Greengenes 13_8 OTUs database

(http://greengenes.secondgenome.com/) for bacterial taxonomic classification. For ITS taxon-

omy analysis, a database was trained using the fungus sequences in UNITE (Fungal ITS)

(https://unite.ut.ee/). Fungus OTUs were compared against the resulting database for taxo-

nomic analysis of ITS sequences. A differential abundance analysis of the OTU was indepen-

dently performed for bacterial and fungal datasets using a Kruskal-Wallis test with multiple

correlation testing (FDR). The test was performed by separately comparing the asymptomatic

and symptomatic samples within root, shoot, soil, and rhizosphere. The sample-specific differ-

entially abundant OTUs were determined using a threshold p<0.01. The output files were

visualized in QIIME2.

Statistical analysis

The means and standard deviations of various soil elements from symptomatic and asymptom-

atic trees were analyzed using student’s T-test assuming unequal variances. A p-value of 0.05

was used as a threshold to declare significant differences. Similarly, the monthly means from

different weather variables were compared against five-year averages using a student’s T-test,

assuming unequal variances with significant p-value threshold of less than 0.05. The differential

abundance of bacterial and fungal classes were analyzed using the Kruskal-Wallis test with
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multiple correlation testing (FDR). Class enrichment data was retrieved from QIIME2 output

and a principal component analysis (PCA) was performed in R (https://www.r-project.org/) to

visualize sample-specific variation. The ggplot2 package in R was used to plot PAC biplots.

Results

Physical and chemical composition of soil

Analysis of the physicochemical properties of bulk soil showed that the experimental orchard

area had silty loam soil (Fig 2A) with large proportions of sand and silt fractions (39.3% and

50.75% respectively), a pH of 6.8, total N of 0.14%, total C of 1.5%, and 2.4% organic matter.

The quantities of various macro- and micronutrients showed a wide range in different soil ele-

ments (Fig 2B). In general, both macro- and micronutrients in soil from asymptomatic and

symptomatic trees were homogeneous (Table 1). However, calcium (1839.6 mg/Kg) and man-

ganese (8.5 mg/Kg) were present at higher concentrations in soil of symptomatic trees, and

sulfur (82.4 mg/Kg) was slightly higher in soil of asymptomatic trees (Table 1). Organic matter,

total nitrogen, and elements such as phosphorus, potassium, magnesium, and boron were at

low concentrations in the experimental orchard area.

Weather data in the vicinity of the experimental orchard

Temperatures (maximum, average, and minimum), precipitation, and relative humidity values

were collected for three weather stations (Phelps, Farmington-, and Sodus, New York) from

Fig 2. Composition of the bulk soil collected across the experimental apple orchard in a ‘HoneyCrisp’ block with rapid apple decline. (A) Physical

properties and (B) Chemical composition of soil samples ranging from the highest (blue) to the lowest (red) order.

https://doi.org/10.1371/journal.pone.0213293.g002
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2013 to 2017 (Fig 3; S1 Table). Temperatures showed similar trends in 2013 and 2014. Mini-

mum and maximum temperatures were -20.6˚C and 26.1˚C in 2013 and -22.2˚C and 27.7˚C

in 2014 during the winter months (October to April). Summer (May to September) maximum

and minimum temperature were 33˚C and -0.4˚C in 2013 and 31.6˚C and 1.3˚C in 2014,

respectively. Abnormally cold temperatures were observed in December 2014 to March 2015.

A record minimum temperature of -23.9˚C was noted in February 2015. Also, the number of

extremely cold days with temperatures below -10˚C was comparatively much higher in winter

of 2014 and 2015 (S2 Table). In contrast, abnormal warming was registered throughout 2016,

represented by an unusually warm winter and a hot summer (S1 Table). Temperatures ranged

from a minimum of -15.1˚C and an average of -3˚C in January to a maximum of 34.2˚C and

and average of 23.1˚C in August of 2016. Slightly warmer weather was also noticed in 2017.

Analysis of weather data for total rainfall indicated alternate rainfall patterns over the five

year period. Precipitation peaks (above 120 mm) were generally observed from May to August

(S2 Fig). Summers of 2013 and 2015 had relatively higher rainfall than other years. Highest

rainfall was documented in June 2015 (177.1 mm) followed by 174.9 mm in October 2017.

Average rainfall decreased in 2014 and the rainfall season shifted from June to October in 2016

and 2017, which resulted in a drier pre-harvest season (S2 Fig). Severe drought was also

reported in 2016. Relative humidity correlated with precipitation data.

Internal necrotic symptoms across the graft union

The presence of abnormal wood and potential signs of pathogen and insect damage were

examined at three different positions above and below the graft union. Dark brown wood dis-

coloration was observed in all cross-sections, but the proportion and sites of internal decay/

damage varied across the three sampling points (Fig 4). Wood decay was predominantly pres-

ent below the graft union (p< 0.01) (Fig 4). The main decay symptoms of dark brown wood

discoloration represented more than 50% of the total area in cross-sections DW-1, DW-2, and

DW-3. Visual inspection of the necrotic lesions also indicated that symptoms initiated in the

bark or near the vascular cambium of the rootstock and tended to move towards the heart-

wood. In contrast, no or minimal internal decay was observed in the cross-sections above the

graft union (UP+1, UP+2, and UP+3) (Fig 4), suggesting that damage started at the graft

union and moved inwards and then upwards in the declining trees.

Visual observations showed the presence of spongy and white rot-like decay in the cross-

sections (Fig 5A). Spongy decay was present in 82% of cross-sections below the graft union,

Table 1. Physicochemical properties and nutrient profiles from 0–20 cm topsoil in a commercial apple orchard in Wayne County, NY from RAD asymptomatic

and symptomatic apple trees.

Moisture pH Aluminum Calcium Copper Iron Potassium

(%) (mg/Kg)

Asymptomatic 0.72 ± 0.11 6.8 ± 0.04 10.0 ± 5.9 1839.6 ± 273.6 0.43 ± 0.07 1.57 ± 0.6 90.0 ± 0.13

Symptomatic 0.69 ± 0.1 6.85 ± 0.4 10.48 ± 7.1 1713.39 ± 252.5 0.42 ± 0.05 1.63 ± 0.8 83.39 ± 19.3

T test 0.4089 0.2189 0.0944 0.7081 0.083 0.1293 0.7207

P value (P < 0,05) 0.6948 0.833 0.9274 0.5018 0.9361 0.9007 0.4945

Magnesium Manganese Molybdenum Sodium Phosphorus Sulfur Zinc

(mg/Kg)

Asymptomatic 102.2 ± 29.3 8.5 ± 1.24 0.15 ± 0.01 43.4 ± 6.3 3.5 ± 0.3 80.3 ± 31.7 0.9 ± 0.06

Symptomatic 105.19 ± 41.7 7.13 ± 1.2 0.14 ± 0.01 43.17 ± 10.9 3.17 ± 0.7 82.39 ± 47.6 0.84 ± 0.1

T test 0.1162 1.81 1 0.0443 0.7685 0.0656 0.7943

P value (P < 0.05) 0.9108 0.1133 0.3506 0.9659 0.4673 0.9495 0.4531

https://doi.org/10.1371/journal.pone.0213293.t001
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and in 8% of the tree trunk; whereas white rot-like decay was present in 77% of the cross-sec-

tions below the graft union and exclusively in UP+1 (4% of the tree trunk samples). Co-occur-

rence of spongy and white rot-like decay were observed in 44% of cross-sections below the

graft union, and 61% of the rootstock samples tested displayed cracks in the bark and in the

internal wood (Fig 5B). Wood boring insects were not detected in the rootstock or scion

wood.

Detection of viruses in symptomatic and asymptomatic apple trees

Out of the 58 shoot and root samples collected from symptomatic and asymptomatic trees, 11

were positive for apple stem pitting virus (ASPV) and/or apple chlorotic leafspot virus

(ACLSV) in DAS-ELISA test (Table 2). Shoots of asymptomatic trees were also found to be

infected with ASGV while none of the shoots of symptomatic trees carried any of the viruses

tested. DAS-ELISA also showed the presence of ASPV and ACLSV in two root samples of

asymptomatic trees, and the co-occurrence of ASGV and ACLSV in two root samples of symp-

tomatic trees.

Bacterial and fungal classes in symptomatic and asymptomatic apple trees

High-throughput sequencing was used to identify the bacterial and fungal communities in

symptomatic and asymptomatic apple trees. A total of 640 bacterial OTUs were detected from

the 16S sequencing of shoot, root, soil, and rhizosphere samples (S1 File). The maximum

Fig 3. Maximum, average, and minimum, temperatures (A), precipitation and relative humidity (B) obtained from the weather

stations located at Phelps, Farmington, and Sodus, New York from 2013 to 2017.

https://doi.org/10.1371/journal.pone.0213293.g003
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number of OTUs was identified in rhizosphere (n = 637) followed by soil (n = 506) and root

(n = 367) samples. Shoot samples had the minimum, 17 OTUs. Only 16 OTUs (2.5%) were

shared between all samples (S3 Fig). However, the percentage of shared OTUs between soil

and rhizosphere samples and between shoot and root samples were comparatively much

higher. All shoot OTUs were present in the root samples and 78.9% of OTUs from the soil and

rhizosphere samples were identical (S3 Fig). The distinction between plant tissues and soil-rhi-

zosphere was also apparent from the Shannon diversity index of the bacterial communities in

these samples. Shoot and root samples had low Shannon diversity indices of 2.31 and 2.75,

respectively. In contrast, rhizosphere and soil samples had comparatively higher diversity, with

Shannon index values of 8.94 and 9.35, respectively. This was also evident from the multivari-

ate analysis of diversity fractions from shoot, root, soil, and rhizosphere. There was a clear sep-

aration between the plant samples from soil-rhizosphere samples (Fig 6A), indicating that the

bacterial communities in the plant tissues were considerably different from the soil and

rhizosphere.

The 640 OTUs represented 35 broad classes of bacteria (Fig 6B; S1 File). Cyanobacteria and

proteobacteria were prominent bacterial classes in the shoot and root samples and together

constituted about 99.8% and 98% of the total identified OTUs (S1 File). The root samples, in

addition to the shoot-abundant classes, showed high enrichment of bacteroidetes and firmi-

cutes categories. Relatively different sets of bacterial classes were abundant in soil and rhizo-

sphere samples. Proteobacteria, acidobacteria, and actinobacteria were dominant in soil

Fig 4. Scion and rootstock cross sections from ‘HoneyCrisp’ apple trees grafted onto M.9 (clone NIC 29) with

rapid apple decline. Three cuts of 5 cm were made above and below the graft union at the scion-rootstock junction.

The following discoloration scale was used to estimate healthy and pigmented necrotic wood area in symptomatic

apple trees: DS = 1, external wood discoloration, DS = 2, internal wood discoloration, DS = 3, co-occurrence of

external and internal wood discoloration, DS = 4, edge-shaped discoloration (<50%), DS = 5, edge-shaped

discoloration (>50%), and DS = 6, circular discoloration.

https://doi.org/10.1371/journal.pone.0213293.g004

Potential causes of rapid decline of established apple trees

PLOS ONE | https://doi.org/10.1371/journal.pone.0213293 March 6, 2019 10 / 19

https://doi.org/10.1371/journal.pone.0213293.g004
https://doi.org/10.1371/journal.pone.0213293


samples, whereas bacteroidetes, cloroflexi, gemmatimonadetes, and verrucomicrobia classes,

in addition to soil-abundant bacterial classes, were enriched in the rhizosphere (S1 File). Pro-

teobacteria constituted about 31.9% of soil bacteria, whereas both acidobacteria and actinobac-

teria constituted about 17% of the total bacterial fractions in soil. Proteobacteria were also

Fig 5. Visual symptoms of wood decay in declined apple trees. (A) Wood cross-sections showing rot-like decay

around the graft union, (B) Cracks in the bark and internal wood from declined apple trees.

https://doi.org/10.1371/journal.pone.0213293.g005

Table 2. Detection of different viruses in root and shoot tissue of asymptomatic and symptomatic apple trees.

Number of Positive samples

Tissue Status Total Samples ASGV ASPV ACLSV ToRSV APMV TRSV

Shoots Asymptomatic 16 - 5 - - - -

Symptomatic 13 - - - - - -

Roots Asymptomatic 16 2 2 - - -

Symptomatic 13 - 2 2 - - -

Here, ASGV = Apple stem grooving virus, ASPV = Apple stem pitting virus, ACLSV = Apple chlorotic leafspot virus, ToRSV = Tomato ringspot virus, APMV = Apple

mosaic virus, and TRSV = Tobacco ringspot virus.

https://doi.org/10.1371/journal.pone.0213293.t002
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comparatively higher (40.6%) than acidobacteria (9.8%) and actinobacteria (18.6%) in the

rhizosphere.

To discern the role of bacteria in RAD, we analyzed the differential abundance of identified

bacterial OTUs in symptomatic and asymptomatic samples from the shoot, root, soil, and rhi-

zosphere using a Kruskal-Wallis test. The symptomatic and asymptomatic samples were com-

pared separately to determine the significantly abundant classes among them. No significant

difference in abundance of bacterial classes was observed between symptomatic and asymp-

tomatic samples from shoot, soil, and rhizosphere. Only root samples showed differential

abundance for two OTUs related to alphaproteobacteria, which belongs to rickettsiales at a

higher taxonomic level (Fig 6C).

Fungal ITS sequences detected many fungal classes in the shoot, root, soil, and rhizosphere

samples (S2 File). Rhizosphere samples had the most fungal classes, followed by root samples.

Shoot and soil had comparatively less variation in fungi. An analysis of diversity index indi-

cated no clear distinction between samples from the two plant tissues, soil, and rhizosphere

(Fig 7A). A total of 18 fungal classes were identified, mainly representing the Basidiomycota

and Ascomycota fungal populations in these samples (Fig 7B). Soil and shoot samples showed

the presence of only Ascomycota, whereas root and rhizosphere had both Ascomycota and

Basidiomycota fungus groups. The Ascomycota sub-classes dothideomycetes, leotiomycetes,

Fig 6. Analysis of bacterial communities in root, shoot, soil, and rhizosphere samples from asymptomatic and symptomatic ‘HoneyCrisp’ apple trees as identified

by sequencing 16S regions. (A) Biplot from principal component analysis of the diversity indices obtained from 16S analysis of different samples, (B) Abundance of

different bacterial classes in the rhizosphere, soil, root, and shoot samples, (C) Bacterial classes that show a significantly differential abundance between healthy and

declined apple trees.

https://doi.org/10.1371/journal.pone.0213293.g006
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and sordariomycetes were present in all samples except shoot, which did not show presence of

sordariomycetes sub-class (S2 File). In addition, Ascomycota sub-class saccharomycetes was

detected only in root and rhizosphere samples. Basiodiomycota had a single sub-class, agarico-

mycetes, in both root and rhizosphere samples. We also compared the fungal class enrichment

in symptomatic and asymptomatic apple trees. However, differential abundance analysis

showed no significant enrichment for any fungal class between the symptomatic and asymp-

tomatic samples from shoot, root, soil, and rhizosphere.

Discussion

Tree decline/death is often caused by diseases such as rootstock fire blight, phytophthora root

and crown rots, or apple replant disease, or abiotic factors like soil wetness, extreme cold,

spring and fall freezes, or drought, as well as injuries to trunk, graft union, crown and roots by

rodents or insect borers. However, rapid or sudden decline of established apple trees (RAD), a

recent concern to the apple industry, is diagnosed when symptoms do not match any of the

above. We addressed this concern by conducting a comprehensive study to identify the role of

soil nutrition, weather conditions, fungal and bacterial communities, as well as viruses in rapid

decline of established ‘HoneyCrisp’ trees grafted onto the rootstock M.9 (clone NIC 29). Anal-

ysis of weather variables indicated abnormal trends at the experimental orchard site over the

five-year growth period with December 2014, January, February and March 2015 being excep-

tionally cold. According to National Climate Report from the National Oceanic and Atmo-

sphoric Administration (NOAA) National Centers for Environmental Information of the US,

February 2015 was the third-coldest February on record in the region since 1934. In 2015,

there were heavy rains between June-July followed by a severe drought in 2016 during the

apple growing season. A severe temperature drop followed by a moderately warmer winter

may have caused direct damage to apple trees or indirectly made them more susceptible to

biotic and abiotic stresses [8, 9]. Both significant loss of trees and decrease in yield have previ-

ously occurred due to freezing temperatures in the United States and Canada [7, 42–45]. Cold

injury symptoms become apparent in the spring following a hard winter with trees exhibiting

stunted growth, wilting, and death. Rainfall data also indicated one drought instance in the

area in 2016. Although no study has linked RAD with drought, general water stress can cause

severe damage by reducing tree growth, root damage, and senescence [12–16, 46]. The occur-

rence of severe cold followed by drought, or either individually, might not directly cause RAD,

but could have weakened the trees and led to the proliferation of insects and infection by

opportunistic pathogens. Although the general soil fertility status was not optimal for commer-

cial apple production [47], differences between soil nutrition profiles from symptomatic and

asymptomatic apple trees were not significant, ruling out any potential role of nutritional

stress in RAD in the experimental orchard. The concentrations of organic matter, total nitro-

gen, phosphorus, potassium, magnesium, and boron were all low in the experimental orchard

area. Meanwhile, sulfur concentration was nearly two-fold over the recommended amount

[47]. Nutritional differences might not directly contribute, but can exacerbate the impact of

other stress factors such as weather extremes, insects, and pathogens, therefore increasing the

chances of decline of apple trees. In some rootstock and scion combinations, a weak graft

union can be impacted under extreme abiotic stresses, leading to a slow collapse of the tree.

Also, rootstocks with shallow root-systems in high density plantings may have limited access

to nutrients and water and thus be unable to support the heavy crop, foliage, and biomass

under extreme weather, leading to decline and death of trees. The negative effect can be exac-

erbated in soils with poor water holding capacity.
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The presence of necrotic lesions and wood decay were among the potential signs of declin-

ing apple trees in the orchard. These symptoms followed a specific dispersion pattern from

bark or vascular cambium towards the heartwood. Also, the wood decay and discoloration

mainly occurred below the graft union and progressed downwards. These observations indi-

cated that the rootstock seems to be the originating point of the decline. Previous reports have

implicated incompatibility between rootstock and scion as a potential trigger for RAD [2].

Poor vascular connections, phloem degeneration, and vascular discontinuity [48] can cause

such graft incompatibility. However, the pattern of wood rot and discoloration in the trees

examined in this study appears to be different from that seen with scion-rootstock incompati-

bility, which is generally equally dispersed above and below the graft union. The exact cause of

necrotic lesions and discoloration only in rootstock wood is yet unclear, but it could involve

multiple pathogens in RAD. Some microbes can also cause root rots and internal clotting of

vascular tissues that lead to tree decline and ultimately death [22, 49, 50]. Rootstock fire blight

caused by Erwinia amylovora and root or crown rot caused by Phytophthora and Pythium spe-

cies can lead to tree death by infecting the root system. However, we did not identify symp-

toms or pathogens of common soil-borne root diseases or apple rootstock blight in any of the

declining ‘HoneyCrisp’ trees.

Apple pathogenic viruses can potentially result in decline of trees with similar symptoms as

observed for RAD. Tree decline from latent viruses, usually transmitted by grafting and top

working, is an emerging commercial problem [4]. There were no differences between healthy-

looking and declined plants for the presence of the stem pitting, stem grooving, apple chlorotic

leaf spot, or apple mosaic, the most common latent viruses of apples. Tomato ringspot virus,

which can be involved in apple tree decline and death, was not found in any of the declining

Fig 7. Analysis of fungal communities in root, shoot, soil, and rhizosphere samples from asymptomatic and symptomatic ‘HoneyCrisp’ apple trees as identified

by sequencing ITS regions. (A) Biplot from principal component analysis of the diversity indices obtained from ITS sequence analysis of various samples, (B)

Abundance of different fungal classes in the rhizosphere, soil, root, and shoot samples.

https://doi.org/10.1371/journal.pone.0213293.g007
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‘HoneyCrisp’ trees. Similarly, tobacco ringspot virus was not identified in this study. Fungal

pathogens cause several soil-borne diseases in tree crops, resulting in symptoms similar to

those observed in declining apple trees. For example, a vascular fungus, Ceratocystis fimbriate
can kill mango trees two months after the initial infection, causing mango sudden decline or

mango wilt [51]. In our study, several classes of bacterial and fungal communities were present

in root, shoot, soil, and rhizosphere samples from apple trees. Similar bacterial and fungal clas-

ses have been detected previously in different apple tissues and soil types [38, 52–53]. For

instance, both Basidiomycota and Ascomycota fungus classes were detected in microbiomes of

the shoots and soil samples in apple trees [38, 53]. Similarly, bacterial classes related to proteo-

bacteria, actinobacteria, and acidobacteria were also detected in these studies. These probably

represent the most common bacterial and fungal classes in apple orchards from New York

soils. However, future studies can more clearly define the enrichment of these microbiome

populations in the apple cultivation area. Differential abundance analysis of ITS sequences of

shoot, root, soil, and rhizosphere samples showed no significant enrichment of any fungal spe-

cies in RAD affected apple trees. However, 16S sequencing identified a single bacterial class,

‘alphaproteobacteria-rickettsiales’, with differential abundance in the roots of healthy-looking

and declined apple trees. These bacteria types were less abundant in the declined samples. The

relative abundance of proteobacteria usually declines in water-limiting soils [54–56], suggest-

ing a difference in the moisture level in roots of healthy-looking and declined trees. However,

it is difficult to determine at this point whether roots from declining apple trees endured low

moisture at the time of sampling or low moisture resulted from the severe drought in 2016.

Nonetheless, these observations indicate the role of water-limiting conditions towards the

rapid decline of apple trees. This can provide a focus for future RAD research to further

explore the roles of soil and plant water status, taking into consideration the drought tolerance

of different rootstocks and their susceptibility to rapid decline. Moreover, differences in root

system architecture of the rootstocks can also be studied under extreme water stress conditions

in different soil types for its role in RAD. For instance, shallow rooted rootstocks can be at a

disadvantage in non-irrigated orchards with a low water table, whereas rootstocks with deeper

and more vigorous roots may be more tolerant to drought stress conditions. Parasitic nema-

todes such as root lesion, root knot, and dagger nematodes can also infect the root system of

apple trees, resulting in leaf chlorosis, stunted growth of trees and poor yields. However, we

did not evaluate the presence of pathogenic nematodes in RAD affected orchards. RAD symp-

toms are distinct from those of apple replant disease. A complex of multiple species of fungi

and oomycetes including Rhizoctonia, Phytophthora, and Pythium species, and root lesion

nematodes causes apple replant disease [31], characterized by reduced productivity in orchards

repeatedly planted with the same or closely related fruit trees. Symptoms of replant disease,

including uneven or stunted growth of trees with short internodes, are visible shortly after

planting new trees. When a tree is uprooted, discolored roots, root tip necrosis, and reduced

root biomass can be seen. Young trees may die within the first year. Many will survive but

overall fruit production and quality are reduced [57].

In conclusion, we did not find any statistically significant differences in soil and weather

profiles of healthy-looking and declined trees. Similarly, no particular fungi and viruses were

associated with the symptomatic trees. A single class of proteobacteria showed differential

abundance between symptomatic and asymptomatic samples, suggesting a possible role of

water-limiting conditions. Similarly, the role of different opportunistic or previously unknown

pathogens should not be excluded. We speculate that the onset of RAD symptoms is much

later than the actual cause of the decline. The findings in this study, however, will require fur-

ther validation in different declining orchards that have diverse scion-rootstock combinations

and different soil types and weather conditions.
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S1 Fig. The ‘HoneyCrisp’ orchard block with rapid apple decline (RAD) selected for this

study in Wayne County, NY. The arrows identify row numbers in the orchard block (A).

Schematic distribution of asymptomatic (green) and RAD symptomatic (yellow) apple ‘Hon-

eyCrisp’ trees in the study orchard (B-C). Samples from three sets of trees (two asymptomatic

neighboring one symptomatic) were collected in row R2, and 10 asymptomatic and 10 symp-

tomatic trees were randomly selected in row R3.
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S2 Fig. The five-year average rainfall data for the ‘HoneyCrisp’ orchard block with rapid

apple decline (RAD). Twelve month precipitation (mm) data was obtained for Phelps, Far-

mington, and Sodus, New York from 2013 to 2017.

(TIFF)

S3 Fig. Venn-diagram showing the percentage of shared and unique bacterial communi-

ties. The analysis was conducted in rhizosphere, soil, root, and shoot samples from asymptom-

atic and symptomatic samples. Different colors represent the number of unique and shared

bacterial communities between root, shoot, rhizosphere, and soil.
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S1 Table. Weather dataset obtained from 2013 to 2017 from Network for Environment

and Weather Applications (NEWA). Data represent the mean values of monthly observations

obtained from the weather stations located in Phelps, Farmington, and Sodus, New York.
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S2 Table. Temperatures over the four winter months (December-March) over five years at

three locations near the studied orchards. The average temperature was obtained for all four

months. The number of extreme cold days were calculated by counting number of days with

temperatures below -10˚C.
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S1 File. Different bacterial classes detected by 16S sequencing. Analysis was conducted

using rhizosphere, soil, root, and shoot samples from asymptomatic and symptomatic ‘Honey-

Crips’ trees.
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S2 File. Different fungus classes detected by ITS sequencing. Analysis was conducted using

rhizosphere, soil, root, and shoot samples from asymptomatic and symptomatic ‘HoneyCrisp’

trees.
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Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host

Microbe. 2015; 17: 392–403. https://doi.org/10.1016/j.chom.2015.01.011 PMID: 25732064

36. Jiang J, Song Z, Yang X, Mao Z, Nie X, Guo H, Peng X. Microbial community analysis of apple rhizo-

sphere around Bohai Gulf. Sci. Rep. 2017; 7: 8918. https://doi.org/10.1038/s41598-017-08398-9

PMID: 28827532

37. Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ. Assembly and eco-

logical function of the root microbiome across angiosperm plant species. Proc. Natl. Aca. Sci. USA.

2017; 115: E1157–E1165.

38. Liu J, Abdelfattah A, Norelli J, Burchard E, Schena L, Droby S, Wisniewski M. Apple endophytic micro-

biota of different rootstock/scion combinations suggests a genotype-specific influence. Microbiome

2018; 6:18. https://doi.org/10.1186/s40168-018-0403-x PMID: 29374490

39. Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z. Wheat microbiome bacteria can reduce viru-

lence of a plant pathogenic fungus by altering histone acetylation. Nature Communications 2018; 9:

3429. https://doi.org/10.1038/s41467-018-05683-7 PMID: 30143616

40. Carroll J, Weigle T, Petzoldt C. The network for environment and weather applications (NEWA). New

York Fruit Quarterly. 2011; 19, 5–9.

41. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina seqeucne data. Bioinfor-

matics 2014; 30: 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404

42. Caprio JM, Quamme HA. Weather conditions associated with apple production in the Okanagan Valley

of British Columbia. Can. J. Plant Sci. 1999; 79, 129–137.

43. Rochette P, Bélanger G, Castonguay Y, Bootsma A, Mongrain D. Climate change and winter damage

to fruit trees in eastern Canada. Can. J. Plant Sci. 2004; 84, 1113–1125.

Potential causes of rapid decline of established apple trees

PLOS ONE | https://doi.org/10.1371/journal.pone.0213293 March 6, 2019 18 / 19

https://doi.org/10.1186/s12985-018-0998-3
https://doi.org/10.1186/s12985-018-0998-3
http://www.ncbi.nlm.nih.gov/pubmed/29764461
https://doi.org/10.1186/gb-2013-14-6-209
https://doi.org/10.1186/gb-2013-14-6-209
http://www.ncbi.nlm.nih.gov/pubmed/23805896
https://doi.org/10.1128/AEM.71.9.4951-4959.2005
http://www.ncbi.nlm.nih.gov/pubmed/16151072
https://doi.org/10.1128/MMBR.00050-14
https://doi.org/10.1128/MMBR.00050-14
http://www.ncbi.nlm.nih.gov/pubmed/26136581
https://doi.org/10.1016/j.tplants.2012.04.001
http://www.ncbi.nlm.nih.gov/pubmed/22564542
https://doi.org/10.1038/ismej.2016.65
http://www.ncbi.nlm.nih.gov/pubmed/27168143
https://doi.org/10.3389/fpls.2014.00216
http://www.ncbi.nlm.nih.gov/pubmed/24904612
https://doi.org/10.3389/fmicb.2015.01137
http://www.ncbi.nlm.nih.gov/pubmed/26579076
https://doi.org/10.1016/j.chom.2015.01.011
http://www.ncbi.nlm.nih.gov/pubmed/25732064
https://doi.org/10.1038/s41598-017-08398-9
http://www.ncbi.nlm.nih.gov/pubmed/28827532
https://doi.org/10.1186/s40168-018-0403-x
http://www.ncbi.nlm.nih.gov/pubmed/29374490
https://doi.org/10.1038/s41467-018-05683-7
http://www.ncbi.nlm.nih.gov/pubmed/30143616
https://doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
https://doi.org/10.1371/journal.pone.0213293


44. Gu L, Hanson PJ, Post WM, Kaiser DP, Yang B, Nemani R, Pallardy SG, Meyers T. The 2007 Eastern

US Spring Freeze: Increased Cold Damage in a Warming World? BioScience 2008; 58, 253–262.

45. Quamme HA, Cannon AJ, Neilsen D, Caprio JM, Taylor WG. The potential impact of climate change on

the occurrence of winter freeze events in six fruit crops grown in the Okanagan Valley. Can. J. Plant Sci.

2010; 90, 85–93.

46. Atkinson CJ, Else MA, Taylor L, Dover CJ. Root and stem hydraulic conductivity as determinants of

growth potential in grafted trees of apple (Malus pumila Mill.). J. Exp. Bot. 2003; 54, 1221–1229. PMID:

12654873

47. Hanson E. Fertilizing Fruit Crops. Extension Bulletin 1996; E-852. Michigan State University, E. Lan-

sing, MI.

48. Dolgun O, Yildirim A, Polat M, Yildirim F, Akin A. Apple graft formation in relation to growth rate features

of rootstocks. African J. Agr. Res. 2009; 4, 530–534.

49. Utkhede RS, Smith EM. Phytophthora and Pythium species associated with root rot of young apple

trees and their control. Soil Biology and Biochemistry 1991; 23: 1059–1063.

50. Norelli J, Aldwinckle H, Momol T, Johnson B, DeMarree A, Reddy MVB. Fire blight of apple rootstocks.

New York Fruit Quarterly 2000; 8: 5–8.

51. Galdino TV, Kumar S, Oliveira LS, Alfenas AC, Neven LG, Al-Sadi AM, Picanço MC. Mapping global

potential risk of mango sudden decline disease caused by Ceratocystis fimbriata. PloS One. 2016; 14,

11: e0159450.

52. Chou MY, Vanden HJ, Bell TH, Panke-Buisse K, Kao-Kniffin. Vineyard under-vine floor management

alters soil microbial composition, while the fruit microbiome shows no corresponding shifts. Sci Rep.

2018; 8, 11039. https://doi.org/10.1038/s41598-018-29346-1 PMID: 30038291

53. Nicola L, Turco E, Albanese D, Donati C, Thalheimer M, Pindo M, Insam H, Cavalieri D, Pertot I. Fumi-

gation with dazomet modifies soil microbiota in apple orchards affected by replant disease. Applied Soil

Ecology. 2017; 113, 71–79.

54. Bouskill NJ, Lim HC, Borglin S, Salve R, Wood TE, Silver WL et al. Pre-exposure to drought increases

the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 2013; 7, 384–

394. https://doi.org/10.1038/ismej.2012.113 PMID: 23151641

55. Barnard RL, Osborne CA, Firestone MK. Responses of soil bacterial and fungal communities to

extreme desiccation and rewetting. ISME J. 2013; 7, 2229–2241. https://doi.org/10.1038/ismej.2013.

104 PMID: 23823489

56. Acosta-Martı́nez V, Cotton J, Gardner T, Moore-Kucera J, Zak J, Wester D et al. Predominant bacterial

and fungal assemblages in agricultural soils during a record drought/heat wave and linkages to enzyme

activities of biogeochemical cycling. Appl. Soil Ecol. 2014; 84, 69–82.

57. Mazzola M, Andrews PK, Reganold JP, Levesque CA. Frequency, virulence, and metalaxyl sensitivity

of Pythium spp. isolated from apple roots under conventional and organic production systems. Plant

Disease. 2002; 86: 669–75.

Potential causes of rapid decline of established apple trees

PLOS ONE | https://doi.org/10.1371/journal.pone.0213293 March 6, 2019 19 / 19

http://www.ncbi.nlm.nih.gov/pubmed/12654873
https://doi.org/10.1038/s41598-018-29346-1
http://www.ncbi.nlm.nih.gov/pubmed/30038291
https://doi.org/10.1038/ismej.2012.113
http://www.ncbi.nlm.nih.gov/pubmed/23151641
https://doi.org/10.1038/ismej.2013.104
https://doi.org/10.1038/ismej.2013.104
http://www.ncbi.nlm.nih.gov/pubmed/23823489
https://doi.org/10.1371/journal.pone.0213293

