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Multimodal transistors as ReLU 
activation functions in physical 
neural network classifiers
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Artificial neural networks (ANNs) providing sophisticated, power-efficient classification are finding 
their way into thin-film electronics. Thin-film technologies require robust, layout-efficient devices 
with facile manufacturability. Here, we show how the multimodal transistor’s (MMT’s) transfer 
characteristic, with linear dependence in saturation, replicates the rectified linear unit (ReLU) 
activation function of convolutional ANNs (CNNs). Using MATLAB, we evaluate CNN performance 
using systematically distorted ReLU functions, then substitute measured and simulated MMT transfer 
characteristics as proxies for ReLU. High classification accuracy is maintained, despite large variations 
in geometrical and electrical parameters, as CNNs use the same activation functions for training and 
classification.

Current systems using CMOS, digital technologies with von Neumann architectures, are not best suited to 
support a massive increase in computing power demands driven by AI development1–3. Unconventional and 
analog computation approaches have emerged as an appealing alternative to CMOS and digital systems, due to 
the promise of increased energy efficiency and reduced circuit complexity4–11.

In contrast with mature ULSI CMOS technologies, thin-film, large-area circuits have numerous challenges, 
limiting the success of complex circuits realized at reasonable cost12,13. The main challenge restricting cost-
effective development is the thin-film transistor (TFT), a device that comprises the backbone of many large area 
electronics (LAE). TFT drain current is severely prone electrode misalignments, which occur during manufactur-
ing, resulting in a high degree of device-to-device nonuniformity. While uniformity of operation is a requirement 
for array-based LAE12, this has not limited the interest of exploring TFTs in edge processing alongside other 
thin-film architectures3,14–16. In this context, analog implementations of signal processing functions are particu-
larly attractive, especially if the TFTs utilized are energy-efficient, as well as robust against variations during 
manufacturing and operation12. Moreover, complex circuit functions that can be performed in a compact, energy 
efficient footprint could further complement already attractive edge computing strategies, such as memristive 
neural networks3,15. Most common approaches to accelerate deep learning use novel nanoelectronic technolo-
gies to implement weights (synapses) in artificial neural networks17. Comparably much less attention has been 
given to efficient implementations of activation functions, which could present significant design and efficiency 
challenges when implemented with conventional CMOS. Such exceptionally efficient decision and classification 
circuits would be of great functional, economic and social benefit when included in thin-film edge processing 
units as part of e.g. multi-sensor, distributed or wearable electronics18.

The multimodal transistor (MMT)19 (Fig. 1a, b) is a TFT with superior functionality, robustness and energy 
efficiency, especially in analog and mixed-signal applications. Notably, it can be designed with a linear depend-
ence between input voltage and output current even when operating in saturation19, making it highly suited to 
operation as a rectified linear unit (ReLU)20, as this function is immediately achievable19. The ReLU function, 
defined as max(0, x), where x is the input variable, is one of the most used activation functions (AFs) in artificial 
neural networks (ANNs).

The performance of ANN analog accelerators (physical NNs) depends on not only the quality of the training 
and the precision of physical analog weights (e.g. memristors)7, but also, to some extent, on the accuracy of the 
AF. Typically, AFs are implemented with operational amplifiers10, which could limit the scaling perspectives. 
Moreover, while AFs are an important part of the neural network structure, they can also be applied to the gra-
dient during the training process21. Thus, implementation of a robust AF with a single micro/nano-scale device 
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would be highly beneficial for further development of ANN accelerators based on non-CMOS analog devices 
and in-memory computing concepts.

Here, we investigate the practicality of using the MMT’s transfer characteristic as a viable ReLU AF for future 
thin-film ANNs with high classification accuracy, despite relatively large process variations expected in such 
technologies. Using MATLAB, we simulate a convolutional neural network20 (CNN, Fig. 2a) operating with 
distortion parameters extrapolated from measured microcrystalline silicon (µ-Si) and simulated amorphous 
silicon (a-Si) MMT transfer curves as ReLU layer AFs (Fig. 2b), in comparison with the performance of MAT-
LAB’s built-in ReLU AF.

Multimodal transistor operation
Unlike other transistors, where a gate electrode in the channel region is responsible for controlling both charge 
injection and switching functions, the MMT uses the properties of a reverse-biased energy barrier at the source 
contact to separate these operational features19. Gate 1 (G1), which overlaps the source, solely controls the mag-
nitude of charge injection in the source-G1 overlap region (SGO). Hence, the G1 transfer characteristic (Fig. 1c) 
resembles that of any transistor, except the drain current dependence on G1 voltage is either exponential or linear, 
depending on design, rather than quadratic19. Gate 2 (G2) controls the channel switching without influencing 
the magnitude of drain current, once the channel is fully accumulated (Fig. 1d), hence the curves flatten and 
resemble output characteristics. The output characteristics themselves are also flat (Fig. 1e), however, this is due 
to the nature of the energy barrier at the source contact controlling the charge injection process19,22,23. As long as 
the semiconductor is thin enough to be completely depleted at the source edge by the drain bias, the device will 
pinch-off at the source and very low saturation voltages VDSAT can be achieved as per Eq. (1)22,24:

where Ci and Cs are the gate insulator and depleted semiconductor capacitances per unit area, and K is the drain 
voltage required to deplete the charges in the accumulation layer at the insulator interface.

The choice of layer geometry and material properties will govern the nature of drain current dependence19,25. 
For high gain devices with exponential drain current dependence, the capacitance divider should yield a ratio 
smaller than 0.1. But in this work, some of the gain and VDSAT is traded-off for constant transconductance19. 
This ability to produce a linear dependence of output on input can be useful for compact analog circuit design, 
such as digital-to-analog conversion19,26, but as the device naturally replicates the ReLU activation function, the 

(1)VDSAT = (VG1 − Vth1)

(

Ci

Ci + Cs

)

+ K

Figure 1.   The multimodal transistor (MMT). (a) Illustrative cross-section and (b) optical micrograph of a 
microcrystalline silicon (µ-Si) multimodal transistor (MMT). Charge dynamics in the source-gate overlap 
(SGO) and source-drain separation (d) regions are controlled by the current control gate (Gate 1), and channel 
gate (Gate 2), respectively19. (c) Simulated amorphous silicon (a-Si) MMT transfer characteristics showing 
Gate 1 (G1) sets drain current magnitude, while Gate 2 (G2) allows or blocks its flow without influencing its 
magnitude. (d) Simulated transfer characteristics for G2 further demonstrating that G2 does not influence 
charge injection processes and thus flatten once the channel is fully accumulated. (e) Output characteristics 
showing low voltage saturation with high output impedance, expected from contact-controlled devices.
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MMT can form a useful tool in the design kit for emerging neural network implementations19, particularly for 
low-cost large area electronics.

Results
MMT electrical measurements (Fig. 3a, b) show typical contact-controlled transistor behavior19,22,23,27, with low-
voltage saturation (Fig. 3b). Most devices demonstrate constant transconductance gm = dID/dVG1 over a significant 
range of the G1 transfer characteristics (Fig. 3a), while operating in saturation. This is in contrast with the usual 
constant gm obtained in conventional field-effect transistors exclusively in the linear region of operation. Several 
of the transfer curves used as practical ReLU implementations in the subsequent analysis are displayed in Fig. 3a.

TCAD simulations (Fig. 3c, d) confirm that the MMT drain current can be made directly proportional to 
G1 voltage19, with correct design. Should the off-current of such devices be many orders of magnitude lower 
than the on-current, the transfer curve would practically match the ReLU definition. Here, we consider several 
device geometries, source contact work functions, electron mobility values, and temperatures, which distort the 
MMT transfer curve away from the ideal ReLU shape (Fig. 2b). We modelled the deviation by assigning suitable 
values to the fitting parameters in Eq. (2).

The distortion was introduced by tuning the contribution of individual parameters (Fig. 2b) responsible for 
scaling (k), vertical translation (u), reverse leakage (a, m), horizontal translation or threshold (t), and polyno-
mial behavior (s) through multiplication with respective distortion factors λ (a number between 0 and 1). The 
parameter values considered for training were larger than any realistic distortion expected from practical MMTs, 
to amplify and discriminate the effects.

As such, the CNN-based experiments were divided into three parts, which differ only in choice of activation 
function. Here, the objective was not to optimize network accuracy, but to investigate how accuracy varies with 
device non-idealities.

Firstly, the accuracy of the network was benchmarked using the default MATLAB ReLU layer, after which, 
distortions were artificially introduced to emulate possible non-idealities of fabricated MMT transfer character-
istics by replacing the default MATLAB ReLU function with a parametrized representation (Fig. 2b and Eq. (2), 
where RT is the total distortion introduced into the ReLU). Table 1 lists the maximum value for each distortion 
parameter and the average accuracy over five classification runs, in which each parameter was enabled indi-
vidually (respective λ factor equaling 1 in Eq. (2). The network was trained for all the combinations of the six 
parameters in Eq. (2), and the results are shown in Supplementary Table S1.

Secondly, the parameters of Eq. (2) were fitted to the measured MMT transfer curves of Fig. 3a by select-
ing best-fit values for the parameters in Eq. (2). Results are shown in Table 2. Device A, which is the closest 
approximation of the ideal ReLU function, produces the highest accuracy. Network performance drops minutely 
when a negative threshold exists (Devices B and D) and deteriorates noticeably for devices with a sharper than 
quadratic increase (s > 1) of drain current with G1 voltage (Devices C and E). This is physically plausible, as MMT 
current can be designed to vary exponentially with G1 voltage, as the field-dependent reverse-bias current of a 
Schottky diode19.

Finally, simulated data (Fig. 3c) produced the results as per Table 3, again based on best-fit values of the 
parameters in Eq. (2). We observe that all simulation conditions lead to very high network accuracy. This is 
most likely due to the fact that the effect of changing individual parameter values, e.g. mobility or insulator 
thickness, largely manifests as a scaling factor rather than a significant distortion of the characteristics (see, for 
example, Fig. 3d).
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Figure 2.   Convolutional neural network (CNN) architecture and ReLU parameter fitting. (a) Schematic 
representation of the CNN architecture and its input dataset (shown here as a screenshot of a subset of the 
MATLAB input data—see “Methods”). The activation functions studied are included in the ReLU layer. (b) 
Graphical representation of the parametrized activation function, “total distorted ReLU” (RT), used in the ReLU 
layer. Distortion was introduced via parameters responsible for: scaling (k), vertical translation (u), reverse 
leakage (a, m), horizontal translation or threshold (t), and polynomial behavior (s).
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Discussion
From Tables 2, 3 and S1, it is evident that MMT-based realizations of the ReLU layer contributes to high-accuracy 
classification. Practical implementations will be prone to device-to-device variations, which may be mitigated by 
training circuits individually to account for variability. The more convenient approach of training the network 
at the design phase needs to take into account practical variations, which create large absolute deviations in 
electrical characteristics. For example, a registration error of several microns in SGO changes k, s and t mini-
mally, whereas changes in carrier mobility or operating temperature leads to unacceptably large variations of k.

From a functional standpoint, the channel gate (G2) and its independent control of current transport could 
bring additional benefits in unconventional intra-layer and inter-layer connectivity for compact implementation 
of classification functions.

Table 1.   Effect of varying each distortion parameter individually to its maximum value on network accuracy.

Distortion parameter and maximum value

CNN accuracy

Average SD

a = 0.2 0.987 0.00181

m = 1 0.747 0.00925

s = 1 0.982 0.00153

t = 1 0.974 0.00864

u = 0.2 0.935 0.02187

k = 3 0.273 0.15191

ReLU reference 0.986 0.00236

Table 2.   Fitting parameter values and obtained network accuracy for five measured devices.

Dev

Distortion parameter CNN accuracy

a m s t u k Avg SD

A 0.020 0.025 0.000 0.050 0.070 0.000 0.9848 0.0033

B 0.010 0.110 0.050 − 0.300 0.090 − 0.290 0.9778 0.0028

C 0.000 0.043 1.450 0.088 0.010 0.080 0.9462 0.0250

D 0.035 0.070 0.250 − 0.240 0.090 − 0.230 0.9817 0.0019

E 0.003 0.005 1.200 − 0.010 0.005 − 0.007 0.9600 0.0072

Figure 3.   MMT characteristics. (a) Normalized transfer characteristics of several µ-Si MMTs showing deviation 
from the ReLU function. Device A (see the “Methods” section) demonstrates directly proportional dependence 
of drain current on G1 voltage. See Ref.19 for G2 transfer curves. (b) Measured output curves indicating low 
saturation voltage. For device geometries, see the “Methods” section. (c) Simulated transfer characteristics for 
a-Si MMTs with different source-G1 overlap (SGO). (d) Normalized curves to illustrate their deviation from the 
ReLU function.
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Conclusion
Using measured and simulated transistor data, we have shown that well-designed multimodal transistors could 
operate robustly as ReLU-type activations in artificial neural networks, achieving practically identical classifica-
tion accuracy as pure ReLU implementations, such as the built-in MATLAB AF. The results confirm the potential 
of MMT devices for thin-film decision and classification circuits integrated with distributed or disposable multi-
parameter sensors. Applications in wellbeing, health, environmental monitoring and smart agriculture abound.

In this initial analysis we have trained the neural network directly with the respective MMT transfer curves. 
On the way to full implementation, the study will continue with more computationally challenging situations, 
which consider device-to-device and operating variations in MMT electrical characteristics. It is expected that by 
closely matching the ReLU function, MMTs could provide a robust implementation of neural network activation 
functions, able to maintain high classification accuracy despite variability.

Methods
Device fabrication and characterization.  Prototype bottom gate MMTs (Fig. 1b) were fabricated at low 
temperature using mainly ICP-CVD techniques (Corial 210-D), performing both SiO2 and µ–Si layers below 
180 °C. The process began with deposition of the current control gate (Gate 1 or G1) in Al (Device A) or polysili-
con (Devices B-E). A 100 nm SiO2 gate insulator was deposited before the Al channel control gate (Gate 2 or G2), 
which was followed by a second 100 nm SiO2 insulator. 40 nm µ-Si was also deposited by the same ICP-CVD 
reactor, followed by 20 nm SiO2 field plate oxide, which was patterned and etched to open contact windows for 
Cr source metal deposition to form Schottky contacts. See Ref.19 for full process details.

MMTs were electrically characterized on a Wentworth probe station connected to a B2902A source/measure 
unit. The transistor’s source was grounded. An additional Weir 413D power supply unit was used to provide 
constant 10 V on G2. MMTs with different geometries (source-G1 overlap and source-drain separation), identi-
fied as (SGO/d), were measured. Device A 54 µm/18 µm; Device B 18 µm/6 µm; Devices C and D 6 µm/6 µm; 
and Device E 18 µm/2 µm.

Device simulation.  MMT simulation with Silvaco Atlas v.5.24.1.R used default material parameters for 
intrinsic a-Si and SiO2.

Starting from a reference device with a source work function WF = 4.67 eV (to create the required Schottky 
barrier), source-G1 overlap SGO = 4 µm, semiconductor and insulator thicknesses ts = ti = 40 nm, respectively, 
electron mobility parameter µn = 20 cm2V-1 s-1 and default defect distribution, at temperature T = 300 K, we 
changed one of the aforementioned quantities (WF, SGO, ts, ti, µn, T) in an exaggerated fashion to reveal variations 
in characteristics. As drain current is not modulated by the channel region, source-drain separation was kept 
constant at d = 4 µm. G2 was self-aligned to the drain. See Ref.19 for detailed simulation and structure parameters.

Table 3.   Fitting parameter values and network accuracy for simulated devices in which one design parameter 
varies; a, u and m are always zero (see complete data in Supplementary Table S1).

Simulation parameter 
and value

Distortion parameter CNN accuracy

s t k Avg SD

SGO (µm)

1 0.000 0.000 0.000 0.9868 0.0029

4 0.000 0.025 0.030 0.9866 0.0020

8 0.000 0.030 0.010 0.9850 0.0010

16 0.030 0.043 0.015 0.9891 0.0013

ts (nm)

20 0.000 0.043 0.030 0.9873 0.0031

40 0.000 0.010 0.000 0.9859 0.0027

80 0.000 0.010 0.000 0.9846 0.0013

ti (nm)

20 0.000 0.000 0.000 0.9847 0.0012

40 0.000 0.020 0.008 0.9870 0.0034

80 0.010 0.043 0.009 0.9854 0.0024

T (K)

300 0.000 0.010 0.000 0.9871 0.0024

320 0.000 0.025 0.008 0.9868 0.0027

340 0.070 0.025 -0.008 0.9849 0.0020

µn (cm2V-1 s-1)

0.2 0.000 0.000 0.000 0.9842 0.0022

2 0.000 0.000 0.000 0.9841 0.0016

20 0.000 0.010 0.000 0.9857 0.0024

200 0.010 0.045 0.030 0.9851 0.0041

WF (eV)

4.62 0.000 0.049 0.045 0.9871 0.0024

4.67 0.000 0.020 0.020 0.9868 0.0027

4.72 0.000 0.008 0.010 0.9849 0.0020
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Artificial neural network simulation.  A CNN with fully connected layers was created using the MAT-
LAB deep learning toolbox and trained with the standard recommended setup28 (Fig. 2a). The network con-
tained 28 × 28 × 1 image input, 24 × 24 × 20 convolution 2D, 24 × 24 × 20 batch normalization, 24 × 24 × 20 ReLU, 
1 × 1 × 10 fully connected, 1 × 1 × 10 softmax, and 1 × 1 × 10 classification layers (Fig. 2a). The CNN was trained to 
recognize handwritten numbers provided in the MATLAB Digits dataset28, containing 10,000 images from the 
Modified National Institute of Standards and Technology (MNIST)29 dataset.

As the network had to be trained numerous times, relatively simple training options were used: 0.01 initial 
learning rate; 232 iterations; 4 max epochs; and included the algorithm stochastic gradient descent with momen-
tum optimizer. The CNN contained a ReLU layer, which was used by the optimizer algorithm to adjust weights 
during training (Fig. 2a). The same activation function was used across training and classification tasks.

Data availability
Data and materials can be obtained via the corresponding author, on request.
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