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Abstract 

Background:  Vaccine information in European electronic health record (EHR) databases is represented using various 
clinical and database-specific coding systems and drug vocabularies. The lack of harmonization constitutes a chal-
lenge in reusing EHR data in collaborative benefit-risk studies about vaccines.

Methods:  We designed an ontology of the properties that are commonly used in vaccine descriptions, called 
Ontology of Vaccine Descriptions (VaccO), with a dictionary for the analysis of multilingual vaccine descriptions. We 
implemented five algorithms for the alignment of vaccine coding systems, i.e., the identification of corresponding 
codes from different coding ystems, based on an analysis of the code descriptors. The algorithms were evaluated by 
comparing their results with manually created alignments in two reference sets including clinical and database-spe-
cific coding systems with multilingual code descriptors.

Results:  The best-performing algorithm represented code descriptors as logical statements about entities in the 
VaccO ontology and used an ontology reasoner to infer common properties and identify corresponding vaccine 
codes. The evaluation demonstrated excellent performance of the approach (F-scores 0.91 and 0.96).

Conclusion:  The VaccO ontology allows the identification, representation, and comparison of heterogeneous 
descriptions of vaccines. The automatic alignment of vaccine coding systems can accelerate the readiness of EHR 
databases in collaborative vaccine studies.
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Background
The ADVANCE project (Accelerated Development of 
VAccine beNe t-risk Collaboration in Europe) is build-
ing systems to provide best evidence to support decision-
making on vaccination in Europe based on the reuse of 
electronic health record (EHR) data [1]. An important 
aspect is the extraction of vaccine exposure data from 
EHR databases across Europe, which use various coding 
systems to represent data. One challenge in reusing EHRs 
is the lack of harmonization between vaccine coding sys-
tems in EHR databases.

Vaccines are described in medical coding systems on 
different levels: as a product, as a pharmacologic group, 
or by characteristics in an ontology. The level of descrip-
tion determines which additional information is avail-
able about the recorded vaccine. First, a vaccine can 
be indicated on the level of individual products using 
its commercial or generic name or using a code from a 
normalized drug or vaccine terminology. Drug termi-
nologies unify different names of vaccines and provide 
many product properties, e.g., ingredients and authoriza-
tions. Several such drug terminologies exist: The Article 
57 database (Art57 DB) from the European Medicines 
Agency provides information about medical products 
authorized in Europe, including their composition, indi-
cations, and authorization details [2]. RxNorm from the 
US National Library of Medicine, and the National Drug 
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Codes from the Food and Drug Administration (FDA) 
have a comparable scope of information for therapeutic 
drugs and vaccines authorized in the United States [3, 4].

Second, a vaccine can be recorded more generally by its 
pharmacologic group, which is common in coding sys-
tems. A code is defined by a short textual phrase – the 
code descriptor – that refers to the vaccine properties 
that are shared between group members, e.g., the disease 
or pathogen that a vaccine seeks to prevent (‘Influenza 
vaccines’ or ‘H1N1 vaccines’), or the vaccine strategy 
(‘attenuated vaccines’ or ‘inactivated vaccines’; we use the 
same property names as Plotkin where applicable [5]). 
Some coding systems possess a taxonomic hierarchy that 
subordinates codes representing more specific vaccine 
groups to codes representing more general groups. Only 
the information stated in the code descriptor and implied 
by the hierarchy is available about a recorded vaccine. 
Vaccine codes are defined in several medical coding sys-
tems including diagnosis coding systems (e.g., SNOMED 
Clinical Terms (SNOMED-CT) [6], Read-2 codes [7, 8], 
or Medical Subject Headings (MeSH) [9]), drug classifi-
cation systems (e.g., Anatomical Therapeutic Chemical 
Classification System (ATC) [10]), and custom coding 
systems that may be specific to a particular EHR database 
and often using non-English code descriptors [11]. Some 
coding systems comprise codes in a taxonomic hierarchy 
and codes for individual vaccines (e.g., the National Drug 
File Reference Terminology (NDF-RT) [12, 13] and Brit-
ish National Formulary (BNF) [14]).

Third, vaccines can be represented by statements in an 
ontology. An ontology is an unambiguous definition of 
the entities and relations in a domain (‘the explicit speci-
fication of a conceptualization’) [15, 16]. Individuals and 
collections in a domain are represented by classes that 
are defined by common properties of the belonging indi-
viduals. The classes in the domain of vaccines may rep-
resent vaccines (individual products and vaccine groups), 
immunization targets, ingredients, manufacturers, and 
market authorizations. Properties of a vaccine can be 
inferred from the information available in the ontology. 
The Vaccine Investigation and Online Netwok (VIOLIN) 
maintains the Vaccine Ontology (VO), to date the most 
comprehensive ontology of immunological information 
about vaccines, with the objectives of standardizing data 
and enabling computer-assisted reasoning about vac-
cines in the United States and Canada [17]. VIOLIN pro-
vides several tools to access information about vaccines, 
including vaccine components, mechanisms, vaccine 
design, and literature [18, 19].

Currently, vaccine benefit-risk studies that utilize vac-
cine information from EHR databases with different 
coding systems have to go through a tedious manual 
semantic harmonization process to align the codes [20]. 

An automatic alignment of vaccine coding systems would 
accelerate the readiness to obtain information from the 
EHR databases for vaccine benefit-risk studies.

Various approaches have been proposed for aligning 
ontologies in general [21], medical coding systems [22–
27], and drug coding systems [28, 29]. These approaches 
commonly use lexical, instance-based, or hierarchical 
information about codes and classes. However, not all 
approaches are applicable to the alignment of the vac-
cine coding systems used in EHR databases. Lexical tech-
niques create alignments based on lexical comparison of 
code descriptors, which is unsuitable for coding systems 
with descriptors in different languages. For instance-
based techniques, the similarity of two classes is asserted 
by comparing the instances that belong to each class, but 
coding systems usually do not contain information about 
the membership of individual products to vaccine codes. 
Hierarchical techniques employ the taxonomic hierarchy 
of the ontology, but vaccine coding systems used in EHR 
databases are often not hierarchically structured.

Codes in general drug coding systems are commonly 
defined by chemical structure, therapeutic intent, physi-
ologic effect, mechanism of action, and pharmacoki-
netics [30, 31]. The predominant property category for 
defining vaccine classes is the immunization target (cor-
responding to the therapeutic intent), but vaccine strat-
egies (corresponding to the production method) and 
administration routes, which are used in the definitions 
of vaccine codes, are uncommon in general drug coding 
systems. These differences between descriptors in gen-
eral drug coding systems and descriptors in vaccine cod-
ing systems further hamper the transfer of algorithms for 
aligning drug coding systems to vaccine coding systems.

In this article, we describe and evaluate an automatic 
approach to the alignment of vaccine coding systems 
based on their (potentially multilingual) code descrip-
tors. For this purpose we developed the Ontology of 
Vaccine Descriptions (VaccO) that models properties 
used in descriptors of vaccine codes, which contrast to 
the immunological properties of vaccines modelled in 
existing ontologies. Our alignment approach analyses 
code descriptors and represents vaccine properties in 
the VaccO ontology, and applies an ontology reasoner to 
identify codes with corresponding descriptors.

Methods
Construction of the VaccO ontology
A vaccine code in a medical coding system stands for an 
individual vaccine product or for a pharmacologic group 
of vaccines. To prepare the creation of the VaccO ontol-
ogy, we first identified categories of the properties used to 
define the vaccine groups in a number of general, drug-
specific, and custom, database-specific coding systems: 
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SNOMED-CT, Read-2, MeSH, ATC, BNF, and Additional 
Health Data (AHD) from the database of the The Health 
Improvement Network (THIN).

Immunization targets (i.e., vaccine-preventable dis-
eases and their pathogens) were used in all coding sys-
tems for the definition of vaccine codes (Table  1). 
Vaccine-preventable diseases and pathogens may be used 
interchangeably to describe equivalent vaccine groups 
(e.g., ‘Vaccine against cervical cancer’ and ‘Human papil-
lomavirus vaccine’). Vaccine codes were further defined 
based on vaccine strategies, ingredients (including 
adjuvants, excipients, and active ingredients), routes of 
administration, and valences (which can denote the num-
ber of pathogen strains targeted by a vaccine or the num-
ber of components in combination vaccines).

The VaccO ontology is specified using the Web Ontol-
ogy Language (OWL2) [32]. Classes are hierarchically 
structured by the subclass relation (is-a) and their exten-
sion is specified by expressions of description logic (DL) 
describing the properties of the class [33]. For example, 
the class of influenza vaccines can be defined by the DL 
expression Vaccine that immunizes-against Influenza, 
where Vaccine and Influenza refer to other classes and 
immunizes-against is a property1. A class can further 
contain one or more terms to state the meaning of the 
class in free text.

The categories of vaccine properties, vaccines, and vac-
cine products are represented by fundamental classes, 
which lay out the overall structure of the VaccO ontology: 
Vaccine, Valence, Route, Ingredient, Strategy, Disease, 
and Pathogen (see Fig.  1). Classes for pharmacological 
groups and vaccine products are defined as subclasses 
of Vaccine. The other classes in the VaccO ontology and 

their English terms were compiled from the following 
resources (by manual analysis if not stated differently):

•	 Classes for vaccine products and their ingredients 
were extracted from the Art57 DB using a Python 
script.

•	 Common pharmacological vaccine groups and their 
abbreviations (such as ‘DTaP’) were identified in vac-
cine literature [5, 34–37] and a monograph from the 
US Centers for Disease Control and Prevention [38].

•	 Vaccine strategies and terms were extracted from 
descriptions in literature, classes in the VO ontology, 
and vaccine codes in MeSH.

•	 Indications of drugs including immunization targets 
of vaccines are not defined in any publicly available, 
formalized resource to the best of our knowledge. 
We extracted classes for pathogens and diseases, and 
causal relationships between them instead from the 
descriptions of MeSH headings (‘scope notes’). Terms 
were automatically compiled from the codes that the 
Unified Medical Language System [39] links to the 
MeSH headings of pathogens and diseases in the fol-
lowing coding systems: Consumer Health Vocabulary 
(CHV) [40], International Statistical Classification of 
Diseases, 10th Revision, Clinical Revision [41], Medi-
cal Dictionary for Regulatory Activities [42], MeSH, 
the taxonomy of the National Center for Biotechnol-
ogy Information [43], and SNOMED-CT.

•	 Administration routes were identified in the Art57 
DB and the VO ontology, and terms (including com-
mon abbreviations) were compiled from literature 
and a monograph of the FDA [44].

•	 Classes and terms for valences (‘1-valent’ up to 
‘30-valent’) were generated automatically, and com-
mon terms for valence 1-10 were added manually 
(e.g., ‘pentavalent’).

Relations between classes are expressed in OWL2 
using (existential) object properties. An object property 
is defined by its domain and by its range. For example, 

Table 1  Categories of properties used in vaccine descriptions. A check mark ( � ) indicates that a property category (row) is used for 
defining vaccine codes in a coding system (column)

Prop. category SNOMED-CT Read-2 MeSH ATC​ BNF AHD

Pathogen � � � � � �

Disease � � � � � �

Strategy � � � � �

Ingredient � � � �

Route � � � �

Valence � � �

1  To improve readability of the DL expressions, we omit the existential opera-
tor (some) in the notation because no universal object property restrictions 
are used in VaccO. We use that as a synonym of and in the context of property 
restrictions. Class names are capitalized, names of object properties have low-
ercase names, and DL-keywords are underlined.
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the domain of the object property has-ingredient is the 
class Vaccine and its range is the class Ingredient. Other 
object properties in VaccO are immunizes-against 
(relating Vaccine and Active ingredient with Pathogen 
and Disease), has-strategy (relating Vaccine and Active-
ingredient with Strategy), has-valence (relating Vaccine 
with Valence), and has-route (relating Vaccine with 
Route), causes (relating Pathogen with Disease), and 
caused-by (relating Disease with Pathogen). Property 

chains were defined to allow for propagating properties 
from ingredients to containing vaccines, and to unify 
pathogens and diseases as immunization targets when 
they are in a causal relation (Table 2). For example, the 
property chain has-ingredient ◦ immunizes-against ⇒ 
immunizes-against states that if a vaccine has an ingre-
dient that immunizes against a specific target (left-hand 
side), the vaccine immunizes also against the target 
(right-hand side).

Fig. 1  Structure of the core VaccO ontology. Fundamental classes representing property categories are shown as orange boxes. Properties marked 
with an asterisk are propagated along subclass relations (is-a) and containment relations (has-ingredient). Their domains are expanded along the 
same relations. Examples for representing a vaccine product from the Article 57 database (‘Havrix’), and a vaccine group defined by ATC code 
J07BC02 (‘Hepatitis A, inactivated’) are shown with dashed frames. The visualization follows the Graffoo specification [45]

Table 2  Example inferences about compiled vaccine classes using property chains in VaccO: the propagation of the a) immunization 
targets and b) vaccine strategies from the active ingredients to vaccines, and c) the definition of immunization targets interchangeably 
by pathogen and vaccine-preventable diseases

Available information Property chain Inferred information

a) v is-a Vaccine that has-ingredient I. I is-a Active-ingredi-
ent that imm.-against Flu.

has-ingred. ◦ imm.-against ⇒ imm.-against. v is-a Vaccine that imm.-against Flu.

b) v is-a Vaccine that has-ingredient I. I is-a Active-ingredi-
ent that has-strategy Inactivated.

has-ingred. ◦ has-strategy ⇒ has-strategy. v is-a Vaccine that has-strategy Inactivated.

c) v is-a Vaccine that imm.-against Hib. Hib is-a Patho-
gen that causes Cervical-cancer.

imm.-against ◦ causes ⇒ imm.-against. v is-a Vaccine that imm.-against Cervical cancer.
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Representation of vaccine descriptions in VaccO
The representation of vaccine descriptions in VaccO 
involves three steps: The identification of vaccine prop-
erties in the free-text description, the compilation of the 
vaccine properties into logical expressions in the ontol-
ogy, and the normalization of the comprised information 
as property values.

Identification of vaccine properties in free text
The set of all terms assigned to the classes in an ontol-
ogy is called the ontology dictionary. The VaccO ontology 
dictionary constitutes the basis for identifying references 
to its classes in free text. Each occurrence of a term from 
the dictionary in an input text is considered a reference 
to the associated class. We refer to the set of classes iden-
tified in an input text t as C(t). For example, the input text 
t = ‘Live/attenuated inuenza vaccine’ contains references 
to the classes in C(t) = {Influenza,Attenuated}.

We prepared the dictionary of VaccO for multilingual 
input by automatically translating all English terms using 
GoogleTranslate to Spanish, Italian, and Catalan (the lan-
guages of the vaccine code descriptors in the ADVANCE 
data sources) [46]. The multilingual dictionary is stored 
in the Apache Solr text search platform, and a Solr plugin 
for dictionary-based concept identification, Solr Text-
Tagger, is used to identify occurrences of terms from the 
ontology dictionary in free text [47, 48].

Compilation of vaccine properties into the VaccO class
The representation of vaccine descriptions in VaccO is 
based on the compilation of a VaccO class c identified 
in the descriptor to a DL expression describing a vac-
cine, [[c]] . The compilation depends on the category of c 
and corresponds to c itself if it is a vaccine (a class being a 
DL expression), or to the class of vaccines with a specific 
property if c is a vaccine property:

For example, the disease class Tuberculosis is com-
piled to the DL expression Vaccine that immunizes-
against Tuberculosis. A set of classes is compiled into 
the conjunction of the compiled individual classes, 
[[{c1, . . . , cn}]] := [[c1]] and . . . [[cn]].

A textual description t of a vaccine is represented by 
the compiled vaccine class V (t) := [[C(t)]] , defined by the 
result of compiling the classes identified in the descrip-
tion. For example, the vaccine class for the descriptor 

[[c]] :=

c if c is − a Vaccine
Vaccine that has − strategy c if c is − a Strategy
Vaccine that immunizes − against c if c is − a Pathogen or Disease
Vaccine that has − ingredient c if c is − a Ingredient
Vaccine that has − valence c if c is − a Valence
Vaccine that has − route c if c is − a Route

‘Live/attenuated influenza vaccine’ is defined by the DL 
expression Vaccine that immunizes-against Influenza and 
has-strategy Attenuated.

Normalization to property values
The property values P(t) of a vaccine description t are an 
assignment of each object property in VaccO (immunizes-
against, has-route, etc.) to all subclasses of the property 
range that conform to the vaccine description and the infor-
mation available in VaccO. Formally, the property values 
P(t) contain for each property p all subclasses c in the range 
of p, where VaccO � [[C(t)]] ⊑ Vaccine that p c (using the 
notation by Baader [33]). For example, the property values 
for the descriptor ‘DTwP’ are [immunizes-against: {Diphthe-
ria, Tetanus, Pertussis}; has-strategy: {Inactivated}].

The compiled vaccine class links information from the 
vaccine description with information in the VaccO ontol-
ogy. An ontology reasoner is required to access informa-
tion implied by the ontology, and the comparison of two 
compiled vaccine classes can only assess specification, 
generalization, or equivalence. However, the property 
values are an explicit representation of all information 
about a vaccine description implied by the ontology, 
and they can be compared with each other more flexibly 
using similarity measures for sets. Furthermore, equiva-
lent vaccine descriptions based on pathogens (‘Influenza 
virus vaccine’), diseases (‘Flu vaccine’), abbreviations 
(‘IIV3’), or products (‘Influvac’) are normalized to the 
same property value [immunizes-against: {Influenza}].

The representation of vaccine classes and the conver-
sion to property values was implemented in Java using 
the the OWL2 application programming interface and 
the JFact ontology reasoner [49, 50].

Figure  2 summarizes the pipeline for representing a 
textual vaccine description using the VaccO ontology.

Automatic code alignment and evaluation
An alignment between a source coding system and a tar-
get coding system assigns each source code to its closest 
corresponding target code. Our algorithm for creating an 
alignment first scores the similarity between each source 
code and each target code (where 1 indicates maximal 
similarity and 0 indicates no similarity). The target code 
with the highest similarity score is then assigned to the 
source code, provided that the score was larger than a 



Page 6 of 12Becker et al. Journal of Biomedical Semantics           (2022) 13:24 

preset similarity threshold. If the maximum score does 
not reach the threshold, no target code is assigned. If 
multiple target codes have the same maximum similar-
ity score larger than the threshold, all target codes are 
assigned unless the target coding system has a taxonomic 
hierarchy. In that case, only the most general target codes 
with maximum similarity are assigned.

Alignment methods
We evaluated our alignment algorithm using two base-
line similarity methods and three similarity methods 
involving the representation of vaccine descriptions in 
VaccO as described above. Example alignments for the 
VaccO -based methods are shown in Fig. 3.

•	 Method Tokens implemented a simple lexical tech-
nique. Each code descriptor was tokenized, and the 
similarity between two codes was measured by the 
Jaccard coefficient of the two sets of tokens. The 
Jaccard coefficient of two sets s and t is defined as 
|s ∩ t|/|s ∪ t|.

•	 Method Metamap used the MetaMap program to 
identify UMLS concept unique identiers (CUIs) for 
each code descriptor, abstracting over word inflec-
tions and synonyms [51]. MetaMap used a diction-
ary of English terms, and thus can only find concepts 
in English text. Similarity was defined by the Jaccard 
coefficient of the two sets of CUIs.

•	 Method Classes represented a code with descriptor 
t as the set of classes identified in the code descriptor, 
C(t) . Similarity was defined by the Jaccard coefficient 
of the classes of the source code and the classes of the 
target code.

•	 Method Equivalence represented a code with 
descriptor t by the compiled vaccine class, V (t) . Sim-
ilarity between two codes was 1 if their compiled vac-
cine classes are equivalent and 0 otherwise. Assessing 
equivalence involved information implied from the 
VaccO ontology and is checked using the ontology 
reasoner.

•	 Method Properties represented a code with 
descriptor t by its property values, P(t) . The simi-
larity between a source code and target code was 
defined as 0 if the values of property immunizes-
against differed, and by the overlap between the 
property values otherwise. The overlap was defined 

as the Jaccard coefficient between the property val-
ues.

Reference mappings
To evaluate our code alignment algorithm, we used 
two reference sets with manually curated alignments 
(Table  3). The first reference set Vactype used the 
Vactype coding system as a target. Vactype was devel-
oped as a pragmatic solution to harmonize the vaccine 
descriptors in the databases that participated in an 
early vaccine studies of the ADVANCE project [20]. It 
used English descriptors, and currently comprises 43 
codes (for 28 single immunization targets with strat-
egies, and 15 combinations). The Vactype reference 
set used five custom vaccine coding systems with mul-
tilingual descriptors from European EHR databases 
as source coding systems: the Catalonian Information 
System for Research in Primary Care (SIDIAP) with 
Catalan descriptors [52], the Spanish Base de datos 
para la Investigación Farmacoepidemiológica en Aten-
cióon Primaria (BIFAP) with Spanish descriptors [53], 
the Italian paediatric database Pedianet with both Eng-
lish and Italian descriptors [54], and the regional pri-
mary care database of Venetia with Italian descriptors. 
The alignments in the Vactype reference set were 
manually created and validated by the database cus-
todians in a proof-of-concept study of the ADVANCE 
project [20].

The second reference set Atc comprised alignments 
from coding systems in the UMLS to the ATC target 
coding system. As of 2017, the ATC system contained 
114 vaccine codes (with prefix J07). The coding systems 
with the largest number of mappings to ATC vaccine 
codes in the UMLS were used as source coding systems 
in the ATC reference set: Veterans A air National Drug 
File (VANDF), MeSH, CHV, Vaccine Administered 
(CVX), and NDF-RT. We corrected 17 code assign-
ments where the source codes were not assigned to the 
most specific, corresponding ATC code in the UMLS.

Reflexive alignments in which either Vactype or ATC 
was both the source coding system and the target cod-
ing system were included in the evaluation to assess the 
completeness of the intermediate representation used 
by the different similarity methods.

Fig. 2  Pipeline for representing a textual vaccine description t using the VaccO ontology
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Performance measures
The comparison of an automatically generated alignment 
with a reference alignment is based on the number of 

correctly generated assignments (true positive, TP), the 
number of incorrectly generated assignments (false posi-
tive, FP), and the number of reference assignments that 

Fig. 3  Example compilation of the textual descriptors t of vaccine codes X, Y1, Y2, and Y3 into classes in VaccO. Above: VaccO classes are identified 
in the code descriptors (blue boxes in the source and target code descriptors on the left) and compiled into vaccine classes (V(X), V(Y1), ...). Below: 
Representation of the vaccine descriptors in the VaccO similarity methods. The classes identified in the descriptor of code X do not overlap with 
those in the descriptors of codes Y1, Y2, or Y3, and the DL-expressions are not equivalent, resulting in a similarity of 0 for similarity methods Classes 
and Equivalence and a missing alignment for X. However, property values of code X and the target codes overlap, and X is assigned in Properties to 
code Y1, which has maximal similarity with X (Y1: 0.5, Y2: 0.3, Y3: 0)
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were not generated (false negative, FN). The performance 
of a generated alignment was assessed by its precision 
( TP/(TP+ FP) ), recall ( TP/(TP+ FN) ), and F-score 
( 2 ∗ precision ∗ recall / (precision+ recall) ). We also 
report the average performance measures over all source 

coding systems in each reference set (excluding reflexive 
alignments).

Results
The VaccO ontology contained 321 vaccine classes with 
706 terms (Table  4) including 206 classes for vaccine 
products, and 36 for common pharmacological groups 
and auxiliary classes corresponding to immunization tar-
gets (e.g., Pertussis vaccines), administration route (e.g., 
Oral vaccines), and vaccine strategy (e.g., Attenuated 
vaccines). Among the 497 classes for ingredients were 
310 active ingredients, 170 excipients, and 21 adjuvants 
(some ingredients serving multiple roles). Classes for 
nine vaccine strategies with 34 terms were created: Live/
attenuated, Conjugated, Subunit, Inactivated, Polysac-
charide, Recombinant, Synthetic, DNA, and Toxoid. The 
104 classes for pathogens contained 863 English terms. 
Pathogens were categorized by their biological domain in 
56 classes for Bacteria, 42 for Viruses, and 6 for Protozoa, 
including 42 classes for pathogen strains. VaccO defines 
49 classes for diseases with 759 terms, 30 valence classes 
with 71 terms, and 9 classes for administration routes 
with 23 terms.

Automatic code alignment
Table  5 shows the performance results of our align-
ment algorithm with different similarity methods in the 
two reference sets. These results were generated with a 
similarity threshold of 0.1, which had the highest average 
F-score over all alignments when we varied the threshold 
between 0 and 1 in steps of 0.1 (Table 6).

The F-scores of the reflexive alignments were higher 
than 0.99 on the Vactype reference set and higher than 
0.93 on the Atc reference set. The reason for the slightly 
lower performance on the Atc reference set is that codes 
for residual classes cannot be represented in OWL2 (e.g., 

Table 3  Vaccine coding systems, languages, and number of 
source codes in the reference sets

Target Source Language Codes

Vactype Vactype English 43

BIFAP Spanish 761

SIDIAP Catalan 98

Venetia English 21

Pedianet-en English 9

Pedianet-it Italian 9

Atc ATC​ English 114

NDF-RT English 40

CHV English 26

MeSH English 23

VANDF English 18

CVX English 18

Table 4  Number of classes and terms in the VaccO ontology

Fundamental class Classes Terms

Ingredient 497 505

Vaccine 321 706

Pathogen 104 863

Disease 49 759

Valence 30 71

Strategy 9 35

Route 9 23

Total 1,019 2,962

Table 5  F-scores of our alignment algorithms with a threshold of 0.1

Reference set: Vactype

Method Vactype Venetia Pedia Pedia-it SIDIAP BIFAP Average CI

Tokens 1.000 0.652 1.000 0.364 0.305 0.372 0.539 0.355-0.805

Metamap 1.000 0.316 1.000 0.364 0.336 0.491 0.501 0.344-0.771

Classes 0.988 0.711 1.000 1.000 0.895 0.739 0.869 0.728-0.948

Equivalence 1.000 0.545 1.000 0.800 0.786 0.666 0.759 0.620-0.877

Properties 0.988 0.756 1.000 1.000 0.918 0.856 0.906 0.808-0.971

Reference set: ATC​

Method ATC​ MeSH CHV CVX NDF-RT NDF Average CI

Tokens 0.991 0.696 0.717 0.581 0.889 0.882 0.753 0.654-0.849

Metamap 0.932 0.533 0.808 0.966 0.780 0.788 0.775 0.634-0.893

Classes 0.960 0.435 0.667 0.848 0.667 0.595 0.642 0.513-0.739

Equivalence 0.950 0.755 0.842 1.000 0.905 0.914 0.883 0.804-0.945

Properties 0.947 0.930 0.920 1.000 0.974 0.970 0.959 0.928-0.983
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J07BX with descriptor ‘Other viral vaccines’) and some 
ATC codes are defined without reference to specific vac-
cine properties (e.g., J07 for ‘VACCINES’, J07BC20 for 
‘Combinations’). Overall, the reflexive mapping results 
indicated that the intermediate representations are capa-
ble of representing the descriptors of the target coding 
systems.

The baseline methods Tokens and Metamap per-
formed poorly in the Vactype reference set with non-
English descriptors because they were not designed to 
deal with multilingual input. On the Atc reference set, 
with only English code descriptors, their performance 
was higher. The other three methods, which used the 
multilingual VaccO dictionary, performed better on the 
Vactype reference set, with method Properties per-
forming best for each source coding system (average 
F-score 0.91).

The performance was generally higher on the Atc 
reference set than on the Vactype reference set. Only 
method Classes performed better in the Vactype refer-
ence set, because a large variety of properties was used in 
the code descriptors for the same vaccine groups in the 
Atc reference set (e.g., ‘Flu vaccine’ vs. ‘Influenza virus 
vaccine’). These different descriptors were represented 
by different sets of VaccO classes, resulting in little simi-
larity. The performance of methods Equivalence and 

Properties was less vulnerable to the variety of descrip-
tions. Overall, method Properties performed best 
(average F-score 0.96) in the Atc reference set.

With a threshold of 0.1, the F-score of method Prop-
erties averaged over all alignments in both reference 
sets was 0.93, with a precision of 0.94 and a recall of 
0.92. A threshold of 0.0 decreased precision to 0.81 and 
increased recall to 0.95 (F-score 0.85). A threshold of 1.0 
increased precision to 0.97 and decreased recall to 0.78 
(F-score 0.86).

Error analysis
We analysed the errors made by method Properties 
(with a similarity threshold of 0.1) to identify remaining 
problems. For each pair of source and target coding sys-
tems, we considered all alignment errors. If there were 
more than 10 FP or FN errors we sampled 10 FP errors 
and 10 FN errors. The causes of a total of 64 errors were 
analysed and categorized.

The largest error source was the incorrect identifica-
tion of classes in the code descriptors, mostly in the 
multilingual Vactype reference set (Table  7). These 
errors were caused by missing or ambiguous terms in 
the ontology dictionary. A second source of error in the 
Vactype reference set, was the lack of contextual knowl-
edge in VaccO about the availability of vaccines. This 

Table 6  Performance measures of our alignment algorithms with varying thresholds (micro-average on both reference sets)

Method Measure 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Classes F-score 0.643 0.756 0.755 0.744 0.719 0.715 0.734 0.722 0.728 0.717 0.713

Precision 0.592 0.745 0.745 0.746 0.747 0.756 0.923 0.939 0.967 0.970 0.968

Recall 0.816 0.771 0.770 0.751 0.716 0.709 0.644 0.629 0.624 0.604 0.599

Metamap F-score 0.504 0.638 0.492 0.453 0.441 0.432 0.377 0.367 0.370 0.370 0.370

Precision 0.487 0.793 0.798 0.800 0.818 0.814 0.861 0.926 0.943 0.943 0.943

Recall 0.828 0.590 0.426 0.381 0.367 0.357 0.285 0.279 0.277 0.277 0.277

Properties F-score 0.847 0.932 0.932 0.932 0.920 0.920 0.879 0.875 0.870 0.857 0.857

Precision 0.812 0.944 0.944 0.946 0.947 0.947 0.949 0.958 0.962 0.968 0.968

Recall 0.952 0.923 0.923 0.921 0.897 0.897 0.828 0.813 0.802 0.781 0.781

Tokens F-score 0.557 0.646 0.631 0.634 0.370 0.346 0.249 0.160 0.160 0.160 0.160

Precision 0.538 0.788 0.845 0.895 0.877 0.888 0.952 0.950 0.933 0.933 0.933

Recall 0.834 0.618 0.591 0.576 0.269 0.244 0.156 0.094 0.094 0.094 0.094

Table 7  Error analysis of automatic code alignment using the Properties method with a threshold of 0.1

Vactype Atc
FN FP FN FP Total %

Incorrect class identification 14 6 4 1 25 39.0

Lack of contextual knowledge 7 14 0 0 21 32.8

Incomplete representation 1 0 12 5 18 28.1
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knowledge had been used in creating the Vactype refer-
ence alignments, e.g., knowledge that only acellular vac-
cines are authorized was used to assign the source code 
of ‘Pertussis vaccine’ to the target code ‘Acellular pertus-
sis vaccines’. The lack of contextual knowledge gave rise 
to the low performance of all methods in the Venetia 
source coding system. Thirdly, incomplete representation 
in the similarity method was a large error source in the 
Atc reference set. This includes errors where two target 
codes are semantically identical (e.g., ATC codes J07B 
for ‘Viral vaccines’ and J07BX for ‘Other viral vaccines’), 
where properties in the code descriptor do not corre-
spond to classes in VaccO (J07AH06 for ‘meningococcus 
B, outer membrane vesicle vaccine’), or where codes are 
not defined based on specific vaccine properties (J07 for 
‘VACCINES’, J07BC20 for ‘combinations’).

Web applications
Three web applications accompany the VaccO ontology. 
Application Analyse allows the user to enter a vaccine 
description and displays the identified classes, compiled 
DL-expression, and property values (similar to Fig.  3). 
Application Selector analyses a user-provided vaccine 
coding system, and enables the user to select codes based 
on their VaccO vaccine properties. Application Align-
ment allows the user to upload two arbitrary vaccine 
coding systems and generates and displays an alignment 
between them using the algorithm described above.

Discussion
This article described VaccO, an application ontology for 
representing vaccine descriptions, and an algorithm for 
the automatic alignment of vaccine codes between gen-
eral clinical and database-specific vaccine coding systems 
using multilingual code descriptors.

The alignment of vaccine coding systems presents three 
major difficulties: multilingual code descriptors, the use 
of different properties to describe the equivalent vaccine 
classes (e.g., by disease as in ‘Flu vaccine’ or by pathogen 
as in ‘Influenza virus vaccine’), and differing granulari-
ties of the source and target coding system. Our refer-
ence sets presented these difficulties by comprising code 
descriptors in English, Spanish, Italian, and Catalan, and 
contained general medical coding systems, drug coding 
systems, and custom database coding systems. The bal-
ance between precision and recall of the Properties 
method can be shifted by changing the similarity thresh-
old. A lower threshold that increases recall can help 
when the automatically generated alignments are sub-
sequently manually validated, as removing false-positive 
alignments generally is less effort than manually detect-
ing missing false-negative alignments.

The Properties method allowed the creation of align-
ments between coding systems using different languages 
using its multilingual dictionary. The method is robust 
to differing conceptualizations and granularities in the 
vaccine coding systems through the use of ontology rea-
soning and the normalization of properties. The lack of 
contextual (e.g., country-specific) knowledge in VaccO, 
incompleteness in representing or differentiating certain 
codes in the ontology, and incompleteness of the diction-
ary were the main error sources in the approach.

The accuracy of the VaccO ontology aims to match the 
accuracy of the vaccine descriptions in coding systems 
to best serve the purpose of creating code alignments. 
Furthermore, the VaccO ontology is agnostic of any spe-
cific vaccine coding system and designed to represent 
the descriptors of any vaccine coding system. This is why 
the ontology does not define any vaccine codes at all, but 
only auxiliary classes, classes representing common vac-
cine abbreviations, and vaccine products. Vaccine prod-
ucts are included in VaccO to derive their properties 
when comparing code descriptors based of products with 
descriptors of pharmacological groups. VaccO focuses on 
European vaccines with its integration of the Art57 DB. 
Integration of other vaccine vocabularies could be used 
to change the geographical focus (e.g., RxNorm [55] for 
the United States or databases implementing ISO stand-
ard for the Identification of Medicinal Products (IDMP) 
[56]).

The presented VaccO ontology and the VO ontology 
[17] are both models of the domain of vaccines. The two 
ontologies, however, are designed from different points of 
view: VO models vaccine products and their immunolog-
ical properties, whereas VaccO models properties used 
to describe vaccines in coding systems. Classes in VaccO 
and VO coincide where vaccine descriptions correspond 
to immunological properties of vaccine products, e.g., 
with respect to pathogens and ingredients. Differences 
between VaccO and VO result from the following devia-
tions in vaccine descriptions from the immunological 
properties of vaccine products:

•	 Vaccine descriptions can be based on derived prop-
erties, which are not represented in VO (e.g., diseases 
and vaccine strategies derived from pathogens and 
ingredients, respectively).

•	 A vaccine immunizes against a pathogen, whereas 
vaccine descriptions may use pathogens and their 
corresponding vaccine-preventable diseases inter-
changeably. This ambiguity conflicts in VO with the 
definition of the property used for immunization 
targets, vaccine-immunization-against-microbe. The 
ambiguity is resolved in VaccO by incorporating 
diseases and relating them to their pathogens, per-
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mitting both pathogens and diseases in the range of 
property immunizes-against, and making diseases 
and their pathogens interchangeable using OWL2’s 
property chains.

•	 Vaccine descriptions imprecisely attach properties to 
vaccines, e.g., a vaccine can be described by a strat-
egy, whereas the strategy is actually a property of one 
of its active ingredient. VaccO models equivalences 
between such imprecise descriptions again using 
property chains.

The therapeutic role of a drug is usually treated as an 
intent in biomedical ontologies. However, the differentia-
tion between the intended and factual therapeutic role is 
unessential for representing descriptors of vaccine cod-
ing systems (e.g., all 2018 flu vaccines are categorized 
as Influenza vaccine even if not all instances immunize 
against the disease), and the property immunizes-against 
represents only the intended therapeutic role.

VaccO was designed as an application-ontology for 
our code alignment algorithm. The algorithm did not 
require the integration of VaccO with other ontologies 
such as VO or an upper-level ontology. But VaccO is 
based on the OWL2 standard, which facilitates a tech-
nically simple integration with other ontologies when 
required.

Conclusion
The proposed method Properties for aligning vaccine 
coding systems performed excellently on a wide range 
of vaccine coding systems using different languages, 
which suggests broad applicability of the approach. 
The alignment method demonstrated the use of an 
application ontology to identify and represent vaccine 
descriptions, and the use of an ontology reasoner to 
comparing them. The automatic alignment of vaccine 
coding systems can accelerate the readiness of EHR 
databases in collaborative vaccine studies. The use of 
VaccO for the extraction of vaccine-related information 
from other free-text resources, e.g., scientific literature, 
spontaneous reports, or public news, requires further 
investigation.
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