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Leptin and insulin signaling in dopaminergic neurons:
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The central actions of leptin and insulin are essential for the regulation of energy and glucose
homeostasis. In addition to the crucial effects on the hypothalamus, emerging evidence
suggests that the leptin and insulin signaling can act on other brain regions to mediate
the reward value of nutrients. Recent studies have indicated the midbrain dopaminergic
neurons as a potential site for leptin’ and insulin’s actions on mediating the feeding behaviors
and therefore affecting the energy balance. Although molecular details about the integrative
roles of leptin and insulin in this subset of neurons remain to be investigated, substantial
body of evidence by far imply that the signaling pathways regulated by leptin and insulin
may play an essential role in the regulation of energy balance through the control of food-
associated reward. This review therefore describes the convergence of energy regulation
and reward system, particularly focusing on leptin and insulin signaling in the midbrain
dopaminergic neurons.
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INTRODUCTION
Obesity, a multifactorial metabolic disorder that leads to many
adverse health consequences, has reached epidemic proportions
globally with more than 500 million adults being obese as of 2008
(Frühbeck et al., 2013). Obesity occurs as a result of genetic, behav-
ioral, environmental, physiological, social, and cultural factors.
Among the listed causes, behavioral and environmental factors
have been described as the major contributors to the dramatic
increase in obesity in the past two decades. The fundamental
etiology of obesity is an energy imbalance between calorie con-
sumption and energy expenditure with relatively higher food
consumption (Racette et al., 2003; Nguyen and El-Serag, 2010).
Drive for food consumption is a multiple process which is not
only caused by nutritional status of the body but is also affected
by the food palatability (the rewarding aspect of food) and other
environmental and social factors. Increased energy intake due to
excessive consumption of palatable food has contributed to the
rise of obesity. It is well established that the hypothalamus plays
a central role in regulation of energy balance and food intake
to maintain the body’s physiological requirements. An extensive
body of evidence has demonstrated that endocrine regulators such
as insulin and leptin mainly act on the hypothalamus of the central
nervous system (CNS) to regulate food intake and body weight.
In addition, expression of leptin and insulin receptors in other
regions of the brain such as the doparminergic (DA) neurons
suggests that the two hormones exert their effects in other areas
outside of the hypothalamus. The neuronal circuit of DA neurons
mediating reward, motivational and hedonic mechanisms in the
CNS is also involved in the regulation of many aspects of feeding

behavior and energy homeostasis. Indeed, accumulating evidence
has indicated that leptin and insulin act on the midbrain DA neu-
rons mediating feeding behaviors and therefore affecting energy
balance (Fulton et al., 2006; Homme et al., 2006; Figlewicz et al.,
2008; Leinninger et al., 2009, 2011; Morton et al., 2009; Opland
et al., 2010; Bruijnzeel et al., 2011; Domingos et al., 2011; Mebel
et al., 2012). In this review, we seek to focus on the energy home-
ostasis role of insulin and leptin particularly in the midbrain DA
reward circuit system.

INSULIN AND LEPTIN IN CONTROL OF ENERGY BALANCE IN
CNS
Studies on the infusion of insulin into the brain have opened the
view that peripheral hormones can act on the brain to regulate
food intake and body weight (Woods et al., 1979; Porte and Woods,
1981; Brief and Davis, 1984; Schwartz et al., 1992; Chavez et al.,
1995, 1996; Air et al., 2002). Leptin, the adipose-derived hormone,
was identified in the mid-1990 and it was shown to exert its actions
mainly in the CNS (Zhang et al., 1994; Halaas et al., 1995). Since
then, various studies have been carried out to elucidate the role
of leptin in energy homeostasis particularly in the brain giving
further insight into its role in obesity. Moreover, expression of
insulin and leptin receptors throughout the brain confirmed, at
least partially, the functional signaling of these hormones in the
CNS (Havrankova et al., 1978; Gammeltoft et al., 1984; Zahniser
et al., 1984; Werther et al., 1987; Unger et al., 1991; Kar et al., 1993;
Huang et al., 1996; Couce et al., 1997; De Matteis and Cinti, 1998;
Elmquist et al., 1998; Shioda et al., 1998; Burguera et al., 2000;
Funahashi et al., 2003; Leshan et al., 2006). Various studies have
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also demonstrated the role of insulin and leptin signaling on
glucose homeostasis in the brain. These studies employed differ-
ent experimental models such as insulin receptor knock out and
db/db mice, and Zucker fa/fa rats which lack leptin receptors in
both CNS and periphery (Chua et al., 1996; Bruning et al., 2000;
Koch et al., 2008). In addition neuron-specific leptin receptor
knockout mice provided obvious evidence on the role of lep-
tin action in the CNS (Balthasar et al., 2004; van de Wall et al.,
2008).

The hypothalamic nuclei where both insulin and leptin recep-
tors are strongly and widely expressed have been described as the
key site for insulin and leptin actions in the CNS (McGowan
et al., 1992; Satoh et al., 1997; Ring and Zeltser, 2010). It has
been suggested that both insulin and leptin act on two function-
ally opposite groups of neurons in the arcuate nucleus (ARC) of
the hypothalamus to provide negative feedback for food intake
and energy balance. Leptin and insulin inhibit orexigenic neu-
rons expressing neuropeptide Y (NPY)/agouti-related protein
(AgRP), neuropeptides that are known to stimulate food intake
and reduce energy expenditure. Conversely, they activate pro-
opiomelanocortin (POMC)/cocaine and amphetamine related
transcript (CART) neurons. Anorexic neurons expressing POMC,
a protein precursor which is processed to melanocortins including
α-melanocyte stimulating hormone (α-MSH), reduce food intake
and increase energy expenditure (Schwartz et al., 2000; Morton
et al., 2006; Belgardt and Bruning, 2010; Figlewicz and Sipols,
2010).

Other hypothalamic nuclei such as paraventricular nucleus
(PVN) and lateral hypothalamic area (LHA) may directly or indi-
rectly mediate the effects of insulin and leptin since these regions
receive innervations from both NPY/AgRP and POMC/CART
neurons and also express insulin and leptin receptors. The
melanocortin receptors 3 and 4 (MC3/4R) and NPY receptors
which respond to the anorexigenic effects of α-MSH and the orex-
igenic effects of NPY/AgRP, respectively, are expressed abundantly
in the PVN and LHA (Mountjoy et al., 1994; Parker and Herzog,
1999). In addition, these neurons project to other brain regions
that mediate the perception of satiety (e.g., the nucleus of the
solitary tract, NTS, in the hindbrain) and the reward system (the
mesolimbic DA system; Morton et al., 2006, for review). Recent
studies showed that neurotensins-containing neurons in the LHA
innervate to the local orexin neurons and the ventral tegmental
area (VTA) of the DA system (Leinninger et al., 2011). Leptin was
shown to act on the leptin receptor-expressing neurons in the
LHA to control orexin and the mesolimbic DA system and con-
tribute to the control of energy balance (Leinninger et al., 2009,
2011).

INSULIN AND LEPTIN ACTIONS ON THE REWARD SYSTEM
TO MODULATE ENERGY HOMEOSTASIS
The broad expression of insulin and leptin receptors in several
CNS regions raised the question about their functions beyond the
hypothalamus (Havrankova et al., 1978; Unger et al., 1991; Huang
et al., 1996; Guan et al., 1997; Elmquist et al., 1998; Figlewicz et al.,
2003; Funahashi et al., 2003; Fulton et al., 2006; Homme et al.,
2006). Among these regions, the DA neuron system, which plays
an important role in the regulation of reward and motivational

behaviors, emerged as a potential target for insulin and leptin
actions. The mesolimbic DA neurons project from the VTA and
substantia nigra (SN) to the nucleus accumbens (NAc) and have
been implicated in the rewarding and motivating aspects of food
intake (Berridge, 1996; Saper et al., 2002; Kelley et al., 2005b; Wise,
2006). One of the factors contributing to increased incidences of
obesity is diet composition especially in this modern era where
most people opt for processed or instant foods. Given that the
reward system directly or indirectly regulates feeding behaviors,
there is therefore an increased interest in studies focusing on the
role of the reward circuit and the DA neurons in modulating
feeding behaviors and energy homeostasis (Figlewicz and Sipols,
2010).

Intra-cerebroventricular insulin injection decreased lever rates
for sucrose solution, decreased sucrose self-administration
(Figlewicz et al., 2006, 2008) and reversed conditioned place pref-
erence (CPP) with high fat diet (Figlewicz et al., 2004). CPP
measures the ability of an animal to respond to the reward-
ing aspects of food and reduced CPP by insulin hence suggests
that this hormone can modulate reward-related feeding behav-
ior (Palmiter, 2007). Specifically, a recent study showed that
direct administration of insulin into the VTA reduced food intake
and repressed feeding of sweetened high-fat diet in the sated
condition (hedonic feeding; Bruijnzeel et al., 2011; Mebel et al.,
2012). Importantly, deletion of the insulin signaling in the cat-
echolaminergic neurons resulted in increased sucrose sensitivity
and an obese phenotype (Könner et al., 2011). However, cat-
echolaminergic neurons represent both the dopaminergic and
the norepinephrinergic neurotransmitter activities. Therefore, the
exact mechanism underlying the effect of insulin signaling on
hedonic and reward feeding behavior cannot be deduced solely
from the observations made in catecholaminergic neurons. In
an attempt to identify the mechanism of insulin signaling in DA
system, the dopamine re-uptake transporter (DAT) has emerged
as a potential cellular target for insulin action. DAT transports
DA from the synapse back to the nerve terminal, hence decreas-
ing dopamine activity (Jaber et al., 1997). Insulin increased DAT
mRNA level and activity, this could lead to enhanced clearance of
dopamine from the synapse and therefore reducing DA signaling
(Figlewicz and Sipols, 2010, for review). To gain further mecha-
nistic insight into the effect of insulin on the DA signaling, there
is need to carry out more studies using an experimental model in
which the insulin signaling has been disrupted specifically in the
DA neurons.

Pharmacological studies have indicated that leptin also mod-
ulates behaviors associated with dopamine reward circuit. Leptin
decreased lateral hypothalamic self-stimulation as well as sucrose
self-administration and sucrose CPP (Figlewicz et al., 2001, 2004,
2006; Shalev et al., 2001). Moreover, leptin declined drug seeking
behaviors caused by food deprivation (Shalev et al., 2001; Hao
et al., 2004). In addition, direct leptin injection into the VTA
reduced food intake (Homme et al., 2006; Morton et al., 2009;
Bruijnzeel et al., 2011). These findings imply that leptin pro-
vides negative effects on DA reward neurons resulting in food
intake reduction. Further evidence shows that leptin suppressed
the mesolimbic DA signaling by decreasing the DA neuronal fir-
ing frequency and subsequently reducing DA levels in the NAc
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(Krügel et al., 2003; Homme et al., 2006). In addition, presynaptic
leptin action can suppress excitatory synaptic transmission into
DA neurons in VTA (Thompson and Borgland, 2013). Moreover,
similar to the effects observed in insulin signaling, decreased DA
concentrations by leptin could be attributed to increased DAT
activity (Perry et al., 2010). However, investigations on the func-
tion of mesolimbic DA system in leptin-deficient animals showed
opposite findings in that the DA signaling originating from the
VTA was reduced. Ob/ob mice contained less tyrosine hydrox-
ylase, the rate-limiting enzyme for DA synthesis, and showed
decreased DA content in the VTA and NAc (Fulton et al., 2006;
Roseberry et al., 2007). In addition, dopamine 2 (D2) recep-
tor binding decreased in the VTA of these mice and this was
reversed by leptin treatment (Pfaffly et al., 2010). It is diffi-
cult to explain the discrepancies observed in ob/ob mice but it
is possible that chronic leptin deficiency stimulates other com-
pensatory mechanisms, for example, chronic leptin deficiency
might lead to changes in normal intracellular signaling pathways
and activate a feedback regulatory loop that might be respon-
sible for regulating DA content and function and ultimately
decreasing the function of DA neurons (Opland et al., 2010, for
review).

Genetic techniques using viral-mediated RNA to knock down
the leptin receptor in the VTA also showed increase in food intake
and sensitivity for highly palatable food highly suggesting the
crucial role of leptin in VTA in modulation of feeding behavior
and energy homeostasis (Homme et al., 2006; Davis et al., 2011).
Consistently, recent studies using optogenetic approach to activate
DA neurons and quantify the reward value of nutrients strongly
confirmed the negative effects of leptin on the reward value via
reduction in DA signaling (Domingos et al., 2011). However, DA
neurons-specific knockdown of leptin receptor using cre-loxP sys-
tem (LeprDAT−Cre) showed no change in body weight or food
intake (Liu et al., 2011). This could be because disrupting the lep-
tin signaling only in a small subset of leptin receptor-expressing
neurons in VTA in LeprDAT−Cre mice might not be sufficient
to affect energy balance and this loss might be compensated by
other leptin receptor neurons in the other brain regions. There-
fore, further investigation using different genetic approaches with
higher sensitivity such as tissue-specific re-activation of leptin
receptor signaling only in dopaminergic neurons might be help-
ful to assess the role of leptin receptor signaling in this reward
circuit.

As mentioned above, LHA has been suggested as a target for
leptin action to modulate the reward circuit. In addition, it has
been suggested that the group of neuron in the LHA project to the
mesolimbic regions to control DA action and reward (DiLeone
et al., 2003; Harris et al., 2005; Kelley et al., 2005a; Opland et al.,
2010). Among these, two populations of neurons have been
identified: melanin concentrating hormone (MCH) and orexin
expressing neurons. These neurons are known to project to the
NAc and VTA, respectively, to promote feeding and modulate
reward (Qu et al., 1996; Mieda and Yanagisawa, 2002; Georgescu
et al., 2005). However, leptin is known to inhibit orexin and
MCH activities in this circuitry (Qu et al., 1996; Yamanaka et al.,
2003). Interestingly, LHA also consists of neurons expressing lep-
tin receptors which are distinct from MCH and orexin neurons

and innervate to the VTA. Moreover, leptin acts on these neu-
rons to modulate the mesolimbic DA system and decrease feeding
(Leinninger et al., 2009). Recent studies demonstrated that major-
ity of leptin receptor neurons in LHA contain neurotensins (Nts)
and leptin receptors in Nts neurons project to the VTA and local
orexin neurons but not MCH neurons to mediate the physiolog-
ical action of leptin on orexin neurons and the mesolimbic DA
system (Leinninger et al., 2011).

INSULIN AND LEPTIN SIGNALING PATHWAYS IN CNS
Studies in the hypothalamus have provided a basis for under-
standing the molecular mechanism of insulin and leptin in the
CNS even though the entire mechanism remains to be eluci-
dated. The CNS insulin signaling is quite similar to that in
peripheral organs. Insulin binds to and activates its receptor, a
tyrosine kinase with autophosphorylating activity, and receptor
activation leads to phosphorylation of insulin receptor sub-
strate (IRS)/phosphatidylinositol 3-OH kinase (PI3K) pathway
(Hadari et al., 1992). The catalytic subunit p110 of PI3K com-
plex converts phosphatidylinositol-4,5-biphosphate (PIP2) into
phosphatidylinositol-3,4,5-triphosphate (PIP3) to phosphorylate
and activate downstream Akt/PKB (Niswender et al., 2003). This
Akt activation in turn phosphorylates forkhead transcription
factor O1 (FoxO1) which functions, especially in ARC, as a tran-
scriptional suppressor of POMC gene and as a transcriptional
activator of AgRP gene (Kitamura et al., 2006; Ren et al., 2012).
Phosphorylated form of FoxO1 is subsequently excluded to the
cytoplasm, allowing binding of transcriptional stimulators such
as pSTAT3 to the POMC promoter. At the same time, FoxO1-
mediated AgRP expression is inhibited (Plum et al., 2006; Varela
and Horvath, 2012, for reviews; Figure 1A). However, unlike the
peripheral insulin signaling in which IRS1 protein plays an essen-
tial role in insulin signal transduction, it has been suggested that
the IRS2 is a major player involved in CNS insulin action on
energy homeostasis regulation (Davis et al., 2004; Kubota et al.,
2004; Porte et al., 2005, for review). IRS1 is sparsely expressed in
the ventral hypothalamus and IRS1-deficient mice do not express
abnormal metabolic phenotype (Araki et al., 1994; Tamemoto
et al., 1994). On the other hand, IRS2 is abundant in the ARC
and tyrosine phosphorylation of IRS2 is associated with increased
PIP3, indicating the activation of PI3K/Akt downstream pathway
mainly through IRS2 (Niswender and Schwartz, 2003; Torsoni
et al., 2003). In support of this notion, mice lacking IRS2 showed
increased food intake and fat mass and impaired reproductive
activity (Burks et al., 2000).

Leptin binding to its receptor triggers IRS phosphorylation and
also activate PI3K activity (Niswender and Schwartz, 2003). How-
ever, leptin receptor does not have intrinsic tyrosine kinase activity
and requires JAK-STAT binding for full activation (Sweeney,
2002, for review). Leptin binding to its receptor allows JAKs in
juxtaposition to phosphorylate and activate each other. In addi-
tion, recent report revealed that Rho-kinase 1 (ROCK1) plays
a critical role in leptin signaling by phosphorylating JAK2 via a
direct ROCK1-JAK2 interaction (Huang et al., 2012; Figure 1A).
Phosphorylation of leptin receptor allows association of STAT,
a substrate for JAK. After its dissociation form leptin recep-
tor, STAT is phosphorylated and forms active dimers. Activated
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FIGURE 1 | Signaling pathways of leptin and insulin in the CNS.

(A) Leptin and insulin pathways converge on IRS/PI3K/Akt axis in arcuate
nucleus of the hypothalamus. Binding of insulin and leptin to their receptors
leads to the phosphorylation of IRS2 which activates PI3K to facilitate the
phosphorylation of Akt by PDK. Akt activation finally phosphorylates and
excludes FoxO1 from nucleus to inactivate it. FoxO1 is known as a repressor
of POMC expression, but as an activator of AgRP expression. Expression of
POMC and AgRP is also regulated by JAK/STAT3 pathway. Once leptin binds
to its receptor, STAT3 is phosphorylated by JAK and is dimerized. The active

dimeric form of STAT3 translocates to the nucleus where it inhibits AgRP
and activates POMC expression. (B) Schematic diagram of insulin and leptin
signaling in DA neurons. InR, insulin receptor; LepR, leptin receptor; IRS,
insulin receptor substrate; PIP2, phosphatidylinositol-4,5-biphosphate;
ROCK1, Rho-kinase 1; PIP3, phosphatidylinositol-3,4,5-triphosphate; PI3K,
phosphatidylinositol 3-OH kinase; PDK1, phosphoinositide-dependent
kinase-1; Akt, protein kinase B; FoxO1, forkhead transcription factor O1;
JAK, Janus kinase; STAT3, signal transducer and activator of transcription 3;
POMC, proopiomelanocortin; AgRP, agouti-related protein.

pSTAT3 translocates to the nucleus leading to transcriptional
events such as stimulating POMC and inhibiting AgRP expres-
sion (Leshan et al., 2006; Mesaros et al., 2008; Ernst et al., 2009;
Figure 1).

Although leptin and insulin mediate somewhat independent
neuronal responses, there seems to be a crosstalk between these
two hormones in energy homeostasis in the CNS (Niswender
and Schwartz, 2003; Benomar et al., 2005; Porte et al., 2005).
Specifically, it has been demonstrated that the IRS/PI3K/Akt
axis is important for both insulin and leptin action in CNS
(Niswender et al., 2003; Xu et al., 2005, 2010; Hill et al., 2008;
Figure 1). Moreover, this overlap might also exist in the molecular
pathways that provide negative effects to the insulin and leptin
signaling such as the phosphatase protein tyrosine phosphatase
1B (PTP1B) and the suppressor of cytokine signaling 3 (SOCS3).
PTP1B inhibits both insulin and leptin signaling and mice lacking
PTP1B are more sensitive to both leptin and insulin and resistant to
diet-induced obesity (Elchebly et al., 2000; Zabolotny et al., 2002).
SOCS3 is a known negative regulator of leptin (cytokine in gen-
eral) signaling (Sweeney, 2002). However, SOCS3 can also cause
insulin resistance by modifying insulin receptor and IRS proteins
leading to impaired insulin signaling (Rieusset et al., 2004; Ueki
et al., 2004). The FoxO1, a nuclear transcriptional factor down-
stream of the PI3K/Akt axis which is known to mediate insulin
action, might also be a potential crosstalk in the insulin and leptin
signaling (Altomonte et al., 2004; Barthel et al., 2005). A recent
study pointed out the crucial role of FoxO1 in the mediation
of IRS2/PI3K signaling in LepR-expressing neurons to control
energy balance (Sadagurski et al., 2012). The functional signal-
ing of insulin and leptin, together with the presence of insulin
and leptin receptors, have been confirmed in the VTA (Fulton
et al., 2006; Homme et al., 2006; Iñiguez et al., 2008). PI3K activ-
ity is increased under direct administration of insulin and leptin

into the VTA (Figlewicz et al., 2007). Moreover, IRS2/Akt pathway
in VTA has been shown to modulate rewarding and psychomotor
activating effects of cocaine and opiates (Russo et al., 2007; Iñiguez
et al., 2008). Direct leptin administration into the VTA increased
JAK-STAT signaling and this is essential for the effect of leptin in
the VTA to decrease food intake (Morton et al., 2009). Therefore,
studies on the molecular crosstalk occurring downstream of leptin
and insulin in DA neurons may also be important to understand
specific roles of these signals in mediating energy homeostasis and
reward value of food (Figure 1B).

CONCLUSION
Taken together, both pharmacological and genetic studies demon-
strate that insulin and leptin not only act on hypothalamic regions
but also play important roles in the DA reward system to reg-
ulate feeding behavior and energy balance. Further, leptin and
insulin in DA neurons seem to mediate several neuronal projec-
tions to the other brain regions such as hypothalamus and NAc
that are potentially important for the regulation of feeding and
mood behaviors. At a cellular level, establishing whether leptin
and insulin act on the same or different populations of DA neu-
rons would be important to distinguish their specific functions
in the DA neurons and in other neuronal projections. Therefore,
studies using more advanced techniques such as optogenetics and
pharmacogenetic tools will be beneficial to further understand
the neuronal and molecular mechanisms underlying the effects of
insulin and leptin on this reward system.
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