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Abstract: Functional clinical nutrition is an integrative science; it uses dietary strategies, functional
foods and medicinal plants, as well as combinations thereof. Both functional foods and medicinal
plants, whether associated or not, form nutraceuticals, which can bring benefits to health, in addition
to being included in the prevention and treatment of diseases. Some functional food effects from
Avena sativa L. (oats), Linum usitatissimum L. (brown flaxseed), Glycine max L. (soya) and Moringa
oleifera have been proposed for nutritional disorders through in vitro and in vivo tests. A formulation
called a bioactive food compound (BFC) showed efficiency in the association of oats, flaxseed and
soy for dyslipidemia and obesity. In this review, we discuss the effects of BFC in other nutritional
disorders, as well as the beneficial effects of M. oleifera in obesity, cardiovascular disease, diabetes
mellitus type 2, metabolic syndrome, intestinal inflammatory diseases/colorectal carcinogenesis and
malnutrition. In addition, we hypothesized that a BFC enriched with M. oleifera could present a
synergistic effect and play a potential benefit in nutritional disorders. The traditional consumption
of M. oleifera preparations can allow associations with other formulations, such as BFC. These
nutraceutical formulations can be easily accepted and can be used in sweet preparations (fruit and/or
vegetable juices, fruit and/or vegetable vitamins, porridges, yogurt, cream, mousses or fruit salads,
cakes and cookies) or savory (vegetable purees, soups, broths and various sauces), cooked or not.
These formulations can be low-cost and easy-to-use. The association of bioactive food substances in
dietary formulations can facilitate adherence to consumption and, thus, contribute to the planning of
future nutritional interventions for the prevention and adjuvant treatment of the clinical conditions
presented in this study. This can be extended to the general population. However, an investigation
through clinical studies is needed to prove applicability in humans.

Keywords: oat; flaxseed; soya; M. oleifera; nutraceuticals; non-transmissible chronical diseases;
intestinal inflammatory diseases; malnutrition; intestinal microbiota
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1. Introduction

The growing escalation of non-transmissible chronic diseases (NTCD), intestinal
inflammatory diseases (IID) and malnutrition has raised much concern in the general
public and in public agencies related to nutrition and health. Taking into account that
people affected by such diseases need a better quality of life, dietary intervention based on
functional foods and nutraceutical medicinal plants are very important [1–3].

In this context, functional clinical nutrition arises, which is an integrative science,
meaning it seeks aiming to understand the communication among all biological systems
and to act in the prevention or treatment of organic imbalances. The clinical practice takes
into account genetic and biochemical individuality, whereby functional foods, as well as
medicinal plants and their combination, are utilized as dietary strategies [2,4–8].

Both functional foods and medicinal plants, whether associated or not, form nu-
traceuticals, which can bring benefits to health, besides being included in the prevention
and treatment of diseases. Nutraceuticals contain isolated components, such as dietary
fibers, poly-unsaturated fatty acids (PUFAs), proteins, peptides, amino acids, vitamins and
antioxidant minerals, as well as dietary supplements consumed in different forms [1,9–11].

Nutraceuticals based on functional foods exert favorable effects, combining substances
with bioactive activities, besides influencing health maintenance and correcting metabolic
disorders, reducing the risk of diseases [12–14]. Nutraceuticals derived from medicinal
plants utilize the pharmacological basis of botanical species, also with therapeutical coadju-
vant purposes, and can be combined with functional foods, as part of a single nutraceutical
formulation [15].

Non-Transmissible Chronic Diseases (NTCDs) (obesity, cardiovascular disease and
diabetes mellitus type 2 (DM2)), metabolic syndrome (MS), IID (intestinal inflammatory
diseases)/colorectal carcinogenesis (CRC) and malnutrition have a close relationship with
the metabolic–nutritional state (Figure 1).
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Figure 1. The nutritional and phytochemical composition of a bioactive food compound (BFC),
M. oleifera and a BFC enriched with M. oleifera in NTCDs, IID and malnutrition.

Some effects from functional foods, such as Avena sativa L. (oats), Linum usitatissimum L.
(brown flaxseed), Glycine max L. (soya) and Moringa oleifera, have been presented for nutri-
tional disorders through in vitro and in vivo tests [16–20], NCT04314258 (Tables 1 and 2).
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In the literature, there is vast knowledge of the benefits of these functional foods. However,
a formulation, called a bioactive food compound (BFC), showed efficiency in the association
of oats, flaxseed and soy for dyslipidemia and obesity [17,18].

Table 1. BFC and M. oleifera nutraceutical bioactivity in clinical trials.

Physiological and Metabolic Effects Population/Treatment Time/Applied Dose References

Oat

β-glucans reduced mean LDL-C and TC levels 83 participants, 8 weeks, boxes containing
28 sachets, 3 g β-glucans [21]

Reduced LDL and TC levels 28 RCTs, ≥3 g/day, food products, ≥2 weeks [22]

Reduced glucose, TC, triglycerides and BMI and
waist-hip ratio

30 participants with MS, 37.26 years/8 weeks/
15 g/day fiber intake oat bran [23]

Improved nutritional status
1406 children between 6 and 59 months of age

with uncomplicated SAM/12 weeks/30 g
oat-RUTF

[24]

Flaxseed

GF and FO attenuated systemic inflammation 75 patients with UC, GF (30 g/day) and FO
(10 g/day), 12 weeks [25]

Patients with mild to moderately severe UC 18 years and over, phase 2, FLC, 300 mg FLC,
12 week NCT02201758

Effective in amelioration of some symptoms of
MS and decrease BP and lipid peroxidation

60 participants/aged 30 to 60 years/ 25 mL/d
FO/7 week [26]

Soya

Add genistein FOLFOX or
FOLFOX-Bevacizumab. Efficacy results are

notable

13 participants metastatic colorectal cancer,
7 days, 2 weeks [27]

Reduced risk for overall colorectal cancer
901 participants with colorectal cancer,

2669 participants as control, high intake of total
soy products or dietary isoflavones

[28]

Added genistein to the regimens of FOLFOX or
FOLFOX-Avastin

Participants with metastatic (stage IV) colorectal
cancer, Phase 2 NCT01985763

Soybean fortified meal improved the nutritional
status of the children malnutrition

1546 children aged 6–23 months/1 month of
supplementation/3 meals per day with 40g CSB

per meal
[29]

Nutrition in the management of HIV/AIDS.
Higher total blood protein, blood white protein,
level of blood hemoglobin and higher CD4 cell

count

47 PLWHAs/Nutritional and intervention
Education Program/100 g soybean/day [30]

Moringa oleifera

Decreased postprandial glucose response. M.
oleifera leaf powder could be a hypoglycemic

herbal drug

17 Saharawi diabetics and 10 healthy subjects,
20 g of M. oleifera leaf powder [20]

M. oleifera infusion effect in hot water twice daily
on the blood glucose plasma lipids level and
blood anti-oxidant status. Comparison of the

lipid profiles of both healthy and hyperglycemic
participants

RCS, 18–65 years (adult, older adult),
103 participants—M. oleifera leaves infused NCT04314258
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Table 1. Cont.

Physiological and Metabolic Effects Population/Treatment Time/Applied Dose References

Investigation of the effects of M. oleifera
supplementation on the levels of inflammatory
markers, specifically the hsCRP, hgbA1c level

and clinical outcome in diabetic patients through
a cohort study

56 participants, supplementation of M. oleifera NCT02308683

Potential lowering effect on both SBP and DBP,
postprandial follow-up

41 healthy participants, 120 g of cooked M.
oleifera leaves [31]

Glycemic control and no adverse effects in T2DM.
Tendency on blood pressure reduction in T2DM

Therapy-naïve T2DM with the duration of
diabetes of less than 5 years, 20–70 years, 8 g, day,

40 days of M. oleifera leaf capsules
[32]

Increased insulin secretion, potential agent in the
treatment of type 2 diabetes

10 healthy subjects, 24–34 years, 4 g capsules
M. oleifera leaf powder [33]

Antipyretic effects A CS, an 18-month-old girl, 40 mL of warm
water extract of 5 g [34]

Investigated weight gain and hemoglobin and
vitamin A status

Adolescent girls, 150 gm of Sajna shak/bora
(Moringa) 5 days/week/6 months NCT04156321

Reduction in anemia cases 95 anemic children/200 g/m/M. oleifera leaf
powder/6 months [35]

M. oleifera improved parameters associated with
obese-DM2

24 obese DM2/17 women and 7 men,
20–60y/22w M. oleifera leaves [36]

To evaluate the in vivo bioavailability of key
nutrients and bioactives and biological activities

of the leaves, malnourishment prevention

10 participants/18 Years and older (Adult, Older
Adult)/Healthy males or females/corn Moringa

Diet
NCT04092517

BMI—Body Mass Index; BP – Blood Pressure; CD4—Cluster of Differentiation 4; CS—Case Study; CSB—corn-soy blends; FLC—Flaxseed
Lignan-enriched Complex; FO—Flaxseed Oil; GF—Grounded Flaxseed; HIV/AIDS—Human Immunodeficiency Virus/Acquired Immun-
odeficiency Syndrome; LDL-C—Low Density Lipoproteins—Cholesterol; MS—Metabolic Syndrome; ML M. oleifera leaves; MS—M. oleifera
seeds. PLWHAs—people living with HIV/AIDS; RCS—Randomized Clinical Study; RCT—Randomized Controlled Trials; SAM—Severe
Acute Malnutrition; T2DM—Type 2 Diabetes Mellitus; TC—Total Cholesterol; UC—Ulcerative Colitis; High sensitivity C-reactive protein
(hsCRP); systolic blood pressure (SBP); diastolic blood pressure (DBP); and HbA1c (Hemoglobin A1c).

Table 2. BFC and M. oleifera nutraceutical bioactivity: in vitro and animal model bioassays.

Physiological and Metabolic Effects Population/Treatment Time/Applied Dose References

Oat

Hypolipidemic

Wistar–Lewis male rats—30 days/oat flake
powders: dose of 5 g kg−1 body weight per day.
β-glucan extracted and purified dose of 0.3 g kg−1

body weight per day

[37]

Improved values of antioxidative potential
markers; positive effect on the colon tissue of

healthy rats with LPS-induced enteritis

72 old male Sprague–Dawley rats: Male
Sprague—Dawley rats/6 weeks/84.0% Low

molecular weight oat Beta-glucan
[38]

Flaxseed

Reducing goblet cell depletion, scavenging
oxygen-derived free radicals, reduce neutrophil

infiltration that may be attributed due to
decreasing IFN-γ and TNF-α and increasing IL-17

levels

BALB/c mice induced colitis/6 days/150, 300 and
500 mg/kg/day [39]
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Table 2. Cont.

Physiological and Metabolic Effects Population/Treatment Time/Applied Dose References

Antihyperglycemic effect mediated through
inhibition of ROS

Male Wistar rats/21 days/200 and
400 mg/kg/EELU [40]

Improved glucose utilization; increased
glucose-6-phosphate dehydrogenase; reduction of

PPHG
Male Swiss mice/21 days/2, 1 mg flaxseed powder [41]

Alters the baseline colonic microenvironment of
healthy mice, which may modify subsequent
mucosal microbial defense and injury-repair
responses leading to altered susceptibility to

different gut-associated diseases

C57Bl/6 male mice/3 weeks/10% flaxseed [42]

Soya

Decreased body weight and the plasma TG and
LDL concentrations. Decreased in activity of

mTORC1. Suppressed lipogenesis and
adipogenesis, potential mechanism of soy
isoflavones regulating lipid homeostasis.

64 Male rats/4 weeks/Basal diets + 50 mg/kg;
150 mg/kg; 400 mg/kg doses of soy isoflavones [43]

Reduced the body weight gain and related
biomarkers. Fat deposits, dyslipidemia,

hyperglycemia and fatty liver were ameliorated by
dietary genistein.

Male C57BL/6J mice/(n = 15, 16 weeks) 0.25%
genistein (Study 1) and (n = 75, 18 weeks) 0.2% and
0.067% (Study 2) dose-response effect of genistein

[44]

Altered the microbial composition and modulated
the metabolic pathway of the microbial

metabolism in the colon. Serum levels of IgG and
IgM were significantly increased in FF group pigs

(p < 0.05). FF significantly decreased the
abundances of Bacteroides and Verrucomicrobia in
the duodenum and decreased the abundances of

Bacteroides, Proteobacteria and Verrucomicrobiain
in the colon and significantly increased the

abundances of Firmicutes and Actinobacteria
(p < 0.05). Serum immunity and expression of
genes related to gut immunity were associated

with bacterial strains at the family level

48 growing barrow pigs/2 feeding groups (n = 24
each, UF and FF) [45]

Moringa oleifera

Antioxidant, hypolipidemic and
antiatherosclerotic activities, (p < 0.05) lowered the
cholesterol levels and reduced the atherosclerotic

plaque formation to about 50% and 86%,
respectively

Rabbit/12 weeks/M. oleifera leaf extract [46]

Anti-cancer activity/MDA-MB-231 and HCT-8
cancer cell lines

In vitro/250 mg of extracts were dissolved in
1.0 mL of ethanol [47]

Prevention of cognitive damage due to chronic
hyperglycemia and oxidative stress 88 Wistar rats/14 days/2 e 4% de ML/MS. [48]

Moringa leaf extract reversed hepatic insulin
insensitivity, up-regulation of genes involved in
insulin receptors and glucose uptake in the liver

10 hyperinsulinemic male rats/4 weeks/300 mg
aqueous extract of M. oleifera leaves/kg body

weight.
[49]
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Table 2. Cont.

Physiological and Metabolic Effects Population/Treatment Time/Applied Dose References

Reduction in blood glucose and HbA1c levels and
an elevation in serum insulin and hepatic glycogen

levels.

Wistar rats/60 days/70% M. oleifera leaf extract
(100, 250 and 500 mg/kg b.wt./day) [50]

Regulation of weight gain and inflammation
associated with high-fat-induced-obesity through

gut bacteria modulation.

45 Swiss albino mice/3 months/(200 mg/Kg
M. oleifera leaf extract [51]

BMI—Body Mass Index; EELU—Ethanolic Extract of Seeds of Linum usitatissimum; SAM—Severe Acute Malnutrition; oat-RUTF—oat-
Ready-to-use therapeutic food; PPHG—postprandial hyperglycemia; CSB—corn-soy blends; PLWHAs—people living with HIV/AIDS;
mTORC1—mechanistic target of rapamycin complex 1; MGO—Methylglyoxal; FF—fermented complete commercial soybean meal;
UF—commercial soybean meal; ML M. oleifera leaves; and MS—M. oleifera seeds.

Therefore, our research group intends to discuss the effects of BFC in other nutritional
disorders as well as the beneficial effects of M. oleifera in the previously mentioned clinical
conditions. In addition, we hypothesized that BFC supplementation with M. oleifera could
present a synergistic effect and play a potential benefit in nutritional disorders.

In this narrative review, we used eligibility criteria based on studies on “functional
foods”, (oat, flaxseed, soya and M. oleifera), “obesity”, “cardiovascular disease”, “diabetes
mellitus type 2”, “intestinal inflammatory diseases”, “colorectal carcinogenesis” and “mal-
nutrition”, associated with each other by the Boolean descriptor “AND” and selected from
the Health Sciences Descriptors. A bibliographic search was used for ClinicalTrials.gov,
Cochrane, Europe PMC, the MEDLINE®/PubMED® database, MDPI, Scielo, Science Direct
by Elsevier, Wiley online library, Springer–Nature database, Taylor & Francis, BMC and
Hindawi, conducted, preferably, in 2010 until 2021.

Finally, this review raises the possible applicability of a BFC enriched or not with
M. oleifera to act in important nutritional disorders that affect the world population.

2. Current Status of Knowledge
2.1. Bioactive Food Compound (BFC) and M. oleifera Nutraceuticals

A BFC is a food formulation prepared from functional foods, such as oats (Avena
sativa L.), brown flaxseed (Linum usitatissimum L.) and soya (Glycine max L.) (Table 1).
A patent application has been made for this BFC, which was triturated and homogenized
at a ratio of 2:1:1 [19].

BFC have high nutritional quality, are rich in proteins and PUFAs and have an ade-
quate n-6/n-3 ratio and dietary fibers, such as soluble fibers, which include lignan and
β-glucan [19]. As they presents high versatility, BFC have been used in individuals with
metabolic alteration, demonstrating effective control of the levels of triglycerides and LDL-
cholesterol (low-density lipoproteins) [18]. The hypolipidemic character of BFC was shown
by low atherogenicity and thrombogenicity as well as an adequate ratio between hypo- and
hypercholesterolemia, PUFA: SFA andω6: ω3, thus, demonstrating a high quality index
of the BFC lipid fraction [19]. These results demonstrated the effects of fatty acids on the
cholesterol metabolism and a low risk of developing cardiovascular diseases. BFC showed
a high nutritional content because it has a high protein (24.27%) and fiber (7.98%) content,
with a total energy value (kcal.100 g−1) of 335.25 [19]. In addition, this food formulation
presented positive effects on the reduction of anthropometric parameters [17].

2.2. Moringa oleifera Lamarck

M. oleifera (syn. M. ptereygosperma Gaertn.) is a medicinal plant of the family Moringaceae,
it is native to the sub-Himalayan region in the north of India, Pakistan, Africa, Asia Minor
and Arabia [52,53] and has been introduced in other parts of the world [54]. It is a food
plant with multiple medicinal uses. Medicinal uses of different parts of the plant, including
leaves, roots, stem bark, flowers, pods and seeds, have been reported. Ethnobotanical
studies confirmed M. oleifera’s anti-inflammatory, antihypertensive, diuretic, antimicrobial,

ClinicalTrials.gov
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antioxidant, antidiabetic, antihyperlipidemic, antineoplastic, antipyretic, antiulcer, cardio-
protective and hepatoprotective properties. In vitro and in vivo studies reinforced these
pharmacological properties through the action of the secondary metabolites, including
antioxidant compounds, such as ascorbic acid, flavonoids, phenolics and carotenoids,
present in the plant [55,56].

In addition, M. oleifera has a significant nutritional composition that is high in protein
(about 19–29%), dietary fiber (about 19–37%) with about 205–350 cal/g of energy [57,58].
In addition micronutrients, such as iron, magnesium and folate, as well as vitamins of the
B complex, such as B6, and vitamins A, C and E [57]. The leaves of this plant, as well as the
pods and seeds, have a variety of essential phytochemicals that provide this nutritional
characteristic, such as vitamins A, B, C, D and E, in addition to folic acid, pyridoxine and
nicotinic acid [55,57].

In summary, the functional effects of BFC and M. oleifera may represent potential action
in nutraceutical strategies for the nutritional management of NCDs, IID/CRC [59–61] and
malnutrition [62] Figure 1.

2.3. Effect of Bioactive Food Compound (BFC) and M. oleifera on Non-Transmissible Chronic
Diseases (NTCDs)/Metabolic Syndrome (MS)

Among the NTCDs, obesity is a nutritional disorder, arising from the imbalance
between food intake and energy output, causing excessive body fat. Studies revealed that
the effects of the increased liberation of free fatty acids, inflammatory cytokines (interleukin
6 and TNF-α (tumoral necrosis factor alfa)), NF-κB (nuclear factor kappa B) and other
byproducts of adipocytes, generated by the excess of adiposity, are due to the concentration
of abdominal or central fat [63]. Obesity, now considered a worldwide crisis, is strongly
associated with the risk of MS, DM2, cardiovascular diseases and cancer [64].

Therefore, dietary resources are necessary to help in the treatment of the effects and
consequences of obesity. Nutritional recommendations are beneficial, such as the daily
intake of soluble fibers, especially β-glucan, found in high concentrations in oat bran.
The intake of fibers provides a convenient solution for the risk coming from obesity, as
their solubility interferes with satiety. In addition, the constitution of β-glucan includes
molecules of glucose with the bonds β-(1-3) and β-(1-4), which establish physicochemical
properties that can act in the reduction of systemic arterial pressure, serum glucose, total
cholesterol and fractions and triglycerides as well as increase the fraction of High-Density
Lipoprotein (HDL-c) [65–70].

It is believed that the hypolipemiant effect of oats is related to the high viscosity, which
can interfere with the uptake of biliary acids, lowering the rate of intestinal cholesterol
uptake [71,72], thus, reducing the quantity of chylomicrons and, as a consequence, reducing
the circulating cholesterol [73]. Furthermore, the effects of normalization of the lipidic
profile of soluble fibers, such as β-glucan, are associated with their capacity to raise the
level of fermentation in the colon, producing short-chain fatty acids (SCFA) [74], which
indirectly reduce blood cholesterol by inhibiting the hepatic synthesis of cholesterol [75].

Oats also act on lipidic alterations arising from the elevation of insulin, as reported
by El Rabey, Al-Seeni and Amer (2013) [76] and Aleixandre and Miguel (2016) [77]. In this
case, there was a lower secretion of post-prandial insulin, which can result in reduced
lipogenesis [78]. Insulin is responsible for the activation of the enzyme HMG-CoA reductase
(3-hydroxy-3-methyl-glutaric-CoA reductase or HMGR), whose reduction can involve less
synthesis of cholesterol [75] and a lower level of circulating triglycerides [73].

Another deleterious consequence of obesity is the alteration in the glycemic profile,
characterizing a chronic state of hyperglycemia and a weak sensitivity to insulin. The usage
of oats contributes to the maintenance of the seric glucose levels, majorly attributed to its
high content of soluble fibers [79–81]. The fiber β-glucan is the one mainly responsible
for anti-hyperglycemic and hypoglycemic effects. This feature is due to the capacity of
β-glucan to enhance intestinal viscosity and diminish glucose uptake [80,81]. Furthermore,
the anti-hyperglycemic and hypoglycemic properties of this soluble fiber are also attributed
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to its high content of chromium (Cr)—a mineral that acts as an insulin enhancer and,
consequently, improves blood glucose levels [82].

The intake of flaxseed can also repair damage in the lipidic and glycemic profile, as it is
a functional food with a high PUFA content [83]. PUFAs can contribute to reducing specific
inflammatory markers and cytokines, ensuring a general improvement of the endothelial
function and, consequent, cardioprotective [84,85] and anti-hyperglycemic effects [86–88].

One of the mechanisms that can explain this function is the catabolic capacity pro-
moted by eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) that culminates in
the reduction of the lipoproteins containing the apolipoprotein B-100 (ApoB). In addition,
both suppress the production of hepatic ApoB, stimulate the plasmatic depuration of
triglycerides via lipoprotein lipase (LPL), raise Very Low-Density Lipoprotein (VLDL-c),
reduce the synthesis of LDL-cholesterol and attenuate postprandial lipemia [89].

The lipidic characteristic of flaxseed, which is one of the best food sources of essential
FAs, with a richness of phenolic and antioxidant compounds [90,91], makes this functional
food an excellent daily dietary alternative. According to Kuang (2020) [92], the effect of
biscuits with flaxseed meal supplement, consumed at approximately 100 g per day, is
sufficient to obtain the metabolic benefits on body weight, BMI and TG for overweight and
obese individuals.

Flaxseed has a high content of soluble fibers, above all lignan, which contributes even
more to the normalization of the lipidic profile. The effect is attributed to the capacity of
this fiber to modulate 7-α-hydroxylase and acyl-CoA cholesterol transferase, involved in
the regulation of liver cholesterol and its conversion into biliary acids, contributing to a
higher depletion of cholesterol [75].

The soluble fibers of flaxseed also allow intestinal glucose uptake to be delayed, which
can attenuate the need for insulin production and, as a consequence, diminish its synthesis.
Another mechanism involved in the normalization of the glycemic profile is related to the
fact that lignan suppresses the gene expression of phosphoenolpyruvate carboxykinase
(PEPCK), which is related to the production of glucose, through gluconeogenesis, helping
in glycemic control. The effects of regularization of the glycemic profile have also been
attributed to PUFAs found in brown flaxseed [88].

Considering the lipidic and glycemic consequences of obesity, soya also exerts ben-
eficial effects. These effects are mainly attributed to the rich content of isoflavone, fibers,
oligosaccharides, phytosterols, lectins and phytic acid in this legume [93–97]. The effect on
weight control is more pronounced due to isoflavone, which has chemical structures similar
to endogenous estrogens, resulting in the inhibition of lipogenesis and adipogenesis [96,98].

Studies also showed that soya contains bioactive peptides, which exert hypolipidemic,
anti-hypertensive, antioxidant and anti-inflammatory activities, thus demonstrating their
broad physiological function [99,100]. For example, the hypocholesterolemic peptide can
act as a competitive inhibitor of the major rate-limiting enzyme in cholesterol biosynthesis—
3-hydroxy-3-methylglutaryl CoA reductase (HMGR). It can also increase LDL uptake in
the sterol regulatory element-binding protein 2 (SREBP2) pathway [99]. The excellent
applications and responses of soya on the normalization of the lipidic profile [101] have led
to its approval through a health claim proving its use in reducing the risk of NTCDs [102]
and, moreover, CVD [99], as can be explained by the reduction of cholesterol due the
formation of insoluble complexes by soy saponins. The insoluble complexes can form
mixed micelles that inhibit the resorption of bile acids in the terminal ileum [103].

The functional effects of soya are also extrapolated to the nutritional management of
the glycemic profile, since soya can act in increasing sensitivity to insulin and its production
by beta-pancreatic cells, in addition to inhibiting intestinal glucose uptake [93]. In this case,
specifically, isoflavone has the capacity to reduce the loss of beta cells of the pancreatic islets
and also presents a high antioxidant effect. This effect, especially from genistein, inhibits
tyrosine kinase (PTK), the protein involved in potential alterations in insulin secretion. The
isoflavones also appear to regulate postprandial glycemia by blocking the activity of the
enzymes α-amylase and α-glycosidase, in vitro [102].
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This takes advantage of the effects of oats, flaxseed and soya on the normalization
of the lipidic and glycemic profile, through their chemical and nutritional composition,
providing strategies for the nutritional management and prevention of obesity, DM2,
dyslipidemia/CVD and MS [61,104–107]. These functional foods and their different
bioactive properties related to NTCDs can be associated with the nutrients present in
M. oleifera, which presents excellent nutritional potential and broad pharmacological prop-
erties [20,31,108,109]

The chemical components present in M. oleifera are fundamental for health mainte-
nance or improvement. The plant has been applied in lipid profile adjustment [110] in
an animal model and demonstrated a reduction in the total cholesterol, triglycerides and
LDL-c; hence, it can be used as an effective alternative in cases of dyslipidemia [111]. The
hypolipidemic effect of M. oleifera can be attributed to the lower biosynthesis of cholesterol
through the inhibition of HMG Co-A reductase (3-hydroxy-3-methyl-glutaric-CoA reduc-
tase or HMGR), the enzyme that regulates the levels of serum and tissue cholesterol. The
capacity of M. oleifera to improve the lipid profile can be justified due to its high content of
phenolic compounds, especially flavonoids, like rutin, quercetin and kaempferol, which
also contribute to reducing the intestinal absorption of cholesterol [112].

In addition, M. oleifera also has β-sitosterol, a phytosterol with a cholesterol-like
structure, except for the substitution of an additional C-24 alkyl group and/or a C-22
double bond. Studies have demonstrated that β-sitosterol can lower serum cholesterol
levels by reabsorbing endogenous cholesterol, increasing its excretion in feces as neutral
steroids [113]. Other beneficial effects of phytosterols include anti-inflammatory and
antipyretic properties [114,115].

The functional effects of M. oleifera extend to the strategies for the nutritional man-
agement of DM2, taking advantage of its anti-hyperglycemic properties [116,117] as well
as its antioxidant potential [118,119]. Therefore, M. oleifera is widely used in human and
animal studies, whose primary scope is to determine the anti-hyperglycemic effects of
the plant and at the same time its antioxidant property through evaluation of the activity
of enzymes, such as SOD (superoxide dismutase), CAT (catalase) and GSH (glutathione
peroxidase) [48,88,116,117,120]

The anti-hyperglycemic effect of M. oleifera can be attributed to its capacity to enhance
the action of insulin [50,117]. This is because the plant has considerable quantities of
bioactive phytochemicals (quercetin, kaempferol, chlorogenic acid and alkaloids), which
act in synergy, increasing the secretion of insulin and leading to a better use of glucose by
the tissues through blockage of hepatic gluconeogenesis [50].

Considering the pronounced bioactive effects of these functional foods and M. oleifera,
as well as the risk factors related to visceral fat, hypertension, low levels of HDL-c and high
levels of triglycerides and glucose, configuring MS [121–123], two nutraceutical options,
BFC and M. oleifera, can be recommendable.

2.4. Alternative Therapies and/or Prophylactics for Intestinal Inflammatory Diseases (IID):
Bioactive Food Compound (BFC) and M. oleifera

In addition to NTCDs, IIDs are also characterized by inflammatory processes. The par-
ticularity of these intestinal diseases involve prolonged inflammation of the digestive
tract [124]. In this case, the nutraceutical strategies of BFC and M. oleifera can also intervene
in the prevention and or nutritional treatment of celiac disease, ulcerative colitis, Chron’s
disease, irritable bowel syndrome and even cancer, specifically CRC, one of the most
worrying IIDs [60]. However, clinical trials are needed to prove this hypothesis.

The long-term dietary ingestion of oats or oat bran can confer beneficial outcomes
on IIDs [125–127]. In celiac disease, for example, oats can be considered an excellent
therapeutic nutritional indication, as they are nutritive and safe for a gluten-free diet [128].
However, oats should be chosen with caution, since contamination from other sources of
cereals is the main problem faced by celiac patients [129].

The primary mechanism of action justifying the use of oats in the nutritional manage-
ment of IIDs, including celiac disease, is regulating the bowel transit time and increasing
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the production of butyrate and/or other SCFAs by the intestinal microbiota, ensuring
improved inflammatory and oxidant processes [129].

Considering that IIDs have, as their main pathologic characteristic, a severe inflam-
matory context, the prolonged consumption of brown flaxseed determines the increase of
PUFAs, such as n-3, which is associated with a lower incidence of ulcerative colitis [25,130].
That is because PUFAs inhibit the synthesis of prostaglandins (PG) and leukotrienes
(LT) via arachidonic FA. They also inhibit angiogenesis and adaptive immunological re-
sponses [131].

Furthermore, taking advantage of the antioxidant properties of flaxseed, there is a
reduction in the severity of ulcerative colitis, with a reduction in goblet cell depletion,
inflammation and scavenging ROS (reactive oxygen species) [39,132]. The reduction of the
inflammatory process can be justified by the capacity of brown flaxseed to lower the TNF-α
levels. The minimization of the oxidative process can be related to the fact that this seed
acts in the inhibition of nitric oxide, through iNOS (nitric oxide inducible synthase), with
negative regulation of IFN-γ (interferon-gamma) and TNF-α and an increase of interleukin
17 (IL-17) [39].

Considering the reduction of inflammation and oxidative stress, both highly present in
IIDs, studies revealed that the isoflavones found in soya (in the form of aglycone, which is
bioavailable and rich in daidzein) have an effect on intestinal immunity, since they diminish
the inflammation and colon tissue damage, thus, avoiding colitis [133,134]. In addition,
the moderate ingestion of isoflavones in the diet can be beneficial in remission cases of
ulcerative colitis, as shown in an animal model [135].

The anti-inflammatory, immunomodulator and antioxidant properties of M. oleifera are
also attributed to the content of phenolic compounds, especially bisphenols and flavonoids,
whose positive effects on IIDs were reported in an animal model [136]. However, there is
a clinical trial evaluating the effects of M. oleifera leaves on the blood antioxidant status.
Lipid profiles and the blood glucose level will be evaluated (NCT04314258). The anti-
inflammatory/antioxidant effect of M. oleifera is mediated by the transcription factor Nrf2
(nuclear factor erythroid 2–related factor 2). In addition, the plant can lower nitric acid,
through iNOS, TNF-α, myeloperoxidase (MPO) and proinflammatory interleukin, such as
interleukin IL-6, all markers of inflammatory/oxidative processes [137].

The contribution of the functional foods composing BFC and M. oleifera can occur
by means of chemopreventive and or chemotherapeutic properties, with anticarcinogenic
and antiangiogenic effects [59]. Thus, the use of BFC and M. oleifera in the nutritional
management of CRC can be justifiable due to the high content of soluble fibers, lignan
and β-glucan present in flaxseed and oats [59,81,138]. Clinical trials are encouraged to
confirm this hypothesis. These soluble fibers have high prebiotic potential, modifying
the composition of the intestinal microbiota [139] and, when undergoing a fermentative
process by anaerobic bacteria in the colon, they ensure the synthesis of SCFA [139,140].
These FAs can contribute to lowering the pH of the intestinal lumen for the elimination of
toxins and proliferation of colon epithelial cells [139] and enhance an effect of prevention
and reduction of a possible inflammatory process that would lead to the development of
lesions [59].

In turn, soya is used in the prevention and nutritional treatment of CRC, justified by
its high content of isoflavone, specifically genistein, daidzein and enterolactone. These
substances can inhibit angiogenesis, diminish cell proliferation and increase the apoptosis
of cancer cells [27,28,141].

M. oleifera also has antitumoral/antiproliferative properties, since this species can
act on the induction of apoptosis of tumoral cells. The mechanism of action of M. oleifera
appears to be related to blocking the progression of the tumoral G2/M cycle. That effect
can be attributed to the plant-rich chemical composition with various anti-cancer com-
pounds, namely eugenol, isopropyl isothiocynate, D-allose and hexadeconoic acid ethyl
ester, with long chain hydrocarbons, a sugar moiety and an aromatic ring [47]. Other
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antitumoral/antiproliferative mechanisms of M. oleifera include the capacity to increase
oxidative stress and produce an alteration in the cell tumoral cycle, due to apoptosis [142].

2.5. Nutraceuticals for Malnutrition: Bioactive Food Compound (BFC) and M. oleifera

The investigation and understanding of the effects presented by the food formulation
BFC and M. oleifera can also direct their application in situations where malnutrition is
evident in hypercatabolic diseases, which leads to alterations of body composition and
physiological functions caused by clinical conditions, which can cause a loss of appetite or
hinder food ingestion [57,62].

To intervene in an adjuvant way in both prevention and treatment of metabolic alter-
ations that can lead to malnutrition, oat and its products stand out, given that numerous
clinical trials demonstrate that foods and supplements with soluble fibers, particularly the
β-glucan fraction, are well accepted and widely consumed [118,143,144].

Flaxseed is another functional food that is important in the nutritional management
of malnutrition, as it is a source of high-quality functional protein in addition to containing
lignans, gum and phenolic compounds. The protein of flaxseed can be used by patients
with malnutrition associated with cancer, burns, liver failure and chronic and acute diarrhea.
The components of flaxseed can be developed into various fortified functional products,
owing to a high impact in the protection and treatment of various chronic diseases [145].

Foods supplemented with soya are used as dietetic formulations for the treatment of
undernourished people [29,30,146]. That is because soya has high nutritional potential, as it
is rich in proteins, carbohydrates and lipids plus minerals, such as potassium, and vitamins,
such as riboflavin, choline, thiamin and pantothenic acid [147]. Soya has been incorporated
in mixtures to prevent malnutrition and to improve the nutritional state of children [148].
The nutritional composition of BFC demonstrated high protein and energetic content and
can be recommended for the condition of malnutrition [19].

M. oleifera is a nutraceutical alternative and a particularly relevant resource against
malnutrition. That is because M. oleifera is rich in macro and micronutrients [57,149–151].
The plant is also considered to be a moderately adequate source of calcium, niacin (B3),
protein, essential amino acids (threonine, valine, methionine, leucine, isoleucine, pheny-
lalanine, histidine, lysine and arginine) and dietary fiber [57,108,149,152].

Due to its expressive nutritional potential, M. oleifera has been used in dietary for-
mulations for the enrichment of everyday food, aiming at replacing nutrients in cases of
malnutrition and anemia [149,153]. Given the phytochemical composition and nutritional
value of M. oleifera demonstrated in vitro and in vivo, the use of this medicinal plant can
positively impact the nutritional status in humans [16,154]. A clinical study showed the
efficiency of M. oleifera leaf powder in improving the nutritional status of people living with
human immunodeficiency virus (PLHIV) [155]. Another study showed the supplementa-
tion of M. oleifera leaf powder, administered in children with malnutrition, demonstrating
the effectiveness in improving nutritional recovery [151]. On the other hand, the consump-
tion of 14 g of M. oleifera did not improve the nutritional status and body composition of
malnourished individuals [108,155–157]. Therefore, further clinical studies are needed to
indicate M. oleifera for malnutrition.

Hence, the impact of incorporation or supplementation of oats, brown flaxseed, soya
and M. oleifera is a critical dietary strategy in controlling malnutrition.

3. Functional Dietary Modulation of the Intestinal Microbiota from the Nutraceuticals
Bioactive Food Compound (BFC) and M. oleifera

The intestinal microbiota is an essential component in the human body ecosystem and
possibly a health modulator. The intestinal and general homeostasis of the organism is
directly linked to the integrity of the intestinal mucosal barrier, thus, avoiding bacterial
translocation. This can impede tissue lesions, infection by pathogens and the development
of diseases [158].

Various studies revealed that functional alterations and changes in the composition of
the gut microbiome are associated with NTCDs and IID, such as obesity [159,160], diabetes
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mellitus [161–164], cardiometabolic disease [165], irritable bowel syndrome [166–168],
CRC [169,170] and malnutrition [171].

Thus, it has been pointed out that, for modulation of the microbiota, it is necessary
to consider geographic, environmental, genetic and dietetic factors, in addition to the
standardization of the analytical procedures. For functional characterization, it is also
necessary to update the catalogues of human intestinal micro-organisms [172,173].

Regarding dietary factors, food habits can be improved by adding nutraceuticals
containing soluble fibers [174], PUFAs [175], isoflavones [43] and medicinal plants. These
induce functional changes and alter the composition of the intestinal microbiota [176], thus,
highlighting the possibility of using nutraceutical BFC and M. oleifera.

Global dietary recommendations emphasize the intake of oats, due to the physico-
chemical properties and physiological responses in promoting health. The efficiency of
the grain is best when associated with a hypolipidic diet, with a low content of saturated
fatty acids, thus, contributing to reducing the risk of NTCDs [174]. The consumption of
oats contributes to the health of the bacterial community of the distal colon, by increasing
the viscosity in the gastrointestinal tract, through β-glucan and resistant starch, one of the
main determinants of favorable metabolic effects [177]. There is evidence suggesting that
oats raise the production of SCFA in the large intestine, triggering the homeostasis of its
microbiota [65,178].

The soluble fiber of oats influences an increase in the relative abundance of potentially
beneficial bacteria, such as bifidobacteria and lactobacilli. It, thus, contributes in the
modulation of the ecological processes that regulate the structure and function of the
community of intestinal microbiome toward a profile of health promotion [179,180].

The modulation of the intestinal microbiota can also occur by using flaxseed, which is
rich in multiple bioactive compounds, especially lignans [181,182], PUFAs and secoisolari-
ciresinol diglucoside (SDG), with anti-inflammatory properties [183]. Lignans, which are
non-steroidal phytoestrogens, are metabolized by intestinal bacteria to access the systemic
circulation in humans [184]. The antioxidant and anti-inflammatory power of flaxseed is
provided by SDG, especially when ground.

SDG liberates secoisolariciresinol (SECO), which produces dihydroxyalododiol by
demethylation by the microbiota and, by dihydroxylation, results in enterodiol and dehy-
drogenation produces enterolactone [182,185,186]. All these metabolic processes occur by
the bio transforming action of intestinal bacteria, such as Ruminococcus bromii and R. lac-
taris [187,188], Lactobacillus casei and L. acidophilus, acting for the digestion of the whole
flaxseed, to increase the bioaccessibility of the enterodiol [189]. The supplementation of
flaxseed in the diet can alter the colon bacteria, with a significant increase of Prevotella
spp. and decrease of Akkermansia muciniphila [42]. Further studies are necessary to better
understand the mechanisms of action of dietary flaxseed in the intestinal microbiome in
healthy or ill people.

Soya also has effects on the population and composition of the intestinal microbiota.
The components of soya, such as isoflavones (daidzein, genistein and glycitein), can in-
crease levels of bifidobacteria and lactobacilli and alter the relationship between Firmicutes
and Bacteroidetes, thereby, diminishing the risk of diseases, leading to beneficial effects
on human health [43]. Foods based on soya can serve as sources of nutrients and energy
that support the growth and maintenance of intestinal bacteria [190,191]. A study on the
supplementation of 20% of soy protein showed an alteration in the bacterial composition
of Firmicutes, with the increase and decrease in abundance of Enterococcus and of the levels
of Ruminococcus and Lactobacillus, respectively [192].

The oligosaccharides and fibers of soya have prebiotic properties and can reach
the colon intact without being digested [193,194]. Soya fibers are the main byproduct
of the fermentation of non-starch polysaccharides by the anaerobic microbiota in the
intestine; they alter the level of SCFAs, such as butyrate [195,196]. There is evidence
that the oligosaccharides and fibers can contribute to favorable effects on the intestinal
microbiota [43]. They also help to increase Bacteroides, Flavonifractor, Barnesiella, Oscillibactor
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and Alistipes and cause a significative drop in the abundance of Ruminococcus, Lactococcus,
Akkermansia, Hydrogenoanaerobacterium and Parabacteroides [197].

M. oleifera contributes to restoring the number of lactobacilli and bifidobacteria in the
cecal portion, thereby, modulating the intestinal microbiota. The phenolic compounds
demonstrated promotion of the growth of probiotics, such as Lactobacillus, and interfering
with the growth inhibition of pathogenic bacteria, such as Escherichia coli [51].

Finally, there is a wide clinical indication for functional foods (oats, flaxseed and
soy) and M. oleifera in nutritional disorders. Therefore, nutritional interventions, such
as BFC and M. oleifera, may constitute viable alternatives in the management of chronic
non-communicable diseases, inflammatory bowel diseases, malnutrition and modulation
of the intestinal microbiota (Figure 2).
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(PTKs); 3- hydroxy-3-methyl-glutaric-CoA reductase (HMGR); Superoxide dismutase (SOD); Catalase
(CAT); Glutathione peroxidase (GSH); Prostaglandins (PG); Leukotrienes (LT); and Reactive oxygen
species (ROS).
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4. Concluding Remarks

BFC contains soluble fibers, polyunsaturated fatty acids, isoflavones, antioxidants,
has a high nutritional value and has an impact on reducing obesity indicators in addition
to adjusting the lipid profile. The BFC composition may also be signaling immunomod-
ulatory effects on the intestinal microbiota, with preventive and therapeutic action for
colorectal cancer. Based on the in vivo and in vitro results, the effects described above
can be attributed to M. oleifera, as well as in blood glucose control, as it is considered an
antidiabetogenic agent.

Considering the traditional consumption of preparations with M. oleifera, it is possible
to favor their association with other formulations, such as BFC. Moreover, these nutraceuti-
cals can be easily accepted and can be used in sweet preparations (fruit and/or vegetable
juices, fruit and/or vegetable vitamins, porridges, yogurt, cream, mousses or fruit salads,
cakes and cookies) or savory (vegetable purees, soups, broths and various sauces), cooked
or not. These formulations can be low-cost and easy-to-use. However, it is suggested that
the association of bioactive food substances in dietary formulations can facilitate adherence
to consumption and, thus, contribute to the planning of future nutritional interventions for
the prevention and adjuvant treatment of the clinical conditions presented in this study
and can be extended to the general population.

Therefore, our review study showed the possible applicability of BFC and M. oleifera in
nutritional disorders. Evidence suggests that the high nutritional values and the presence
of phytochemicals in M. oleifera leaves can potentialize the beneficial effects of BFC. Thus,
we propose BFC enriched with M. oleifera in the management of chronic non-communicable
diseases, inflammatory bowel diseases, malnutrition and modulation of the intestinal
microbiota. However, an investigation through clinical studies is needed to prove its
applicability to BFC as well as BFC enriched with M. oleifera for these nutritional disorders.

5. Patents

Patent application: Instituto Nacional da Propriedade Industrial, Brazil (number BR 10
2013 018,002 5 on 6 June 2013). The BFC was launched by Ministério do Desenvolvimento
e Comércio Exterior, Brazil, August 2015.
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