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A B S T R A C T   

Objective: We evaluated the value of resting-state EEG source biomarkers to characterize mild cognitive 
impairment (MCI) subjects with an Alzheimer’s disease (AD)-like cerebrospinal fluid (CSF) profile and to track 
neurodegeneration throughout the AD continuum. We further applied a resting-state functional MRI (fMRI)- 
driven model of source reconstruction and tested its advantage in terms of AD diagnostic accuracy. 
Methods: Thirty-nine consecutive patients with AD dementia (ADD), 86 amnestic MCI, and 33 healthy subjects 
enter the EEG study. All ADD subjects, 37 out of 86 MCI patients and a distinct group of 53 healthy controls 
further entered the fMRI study. MCI subjects were divided according to the CSF phosphorylated tau/β amyloid- 
42 ratio (MCIpos: ≥ 0.13, MCIneg: < 0.13). Using Exact low-resolution brain electromagnetic tomography 
(eLORETA), EEG lobar current densities were estimated at fixed frequencies and analyzed. To combine the two 
imaging techniques, networks mostly affected by AD pathology were identified using Independent Component 
Analysis applied to fMRI data of ADD subjects. Current density EEG analysis within ICA-based networks at 
selected frequency bands was performed. Afterwards, graph analysis was applied to EEG and fMRI data at ICA- 
based network level. 
Results: ADD patients showed a widespread slowing of spectral density. At a lobar level, MCIpos subjects showed 
a widespread higher theta density than MCIneg and healthy subjects; a lower beta2 density than healthy subjects 
was also found in parietal and occipital lobes. Evaluating EEG sources within the ICA-based networks, alpha2 
band distinguished MCIpos from MCIneg, ADD and healthy subjects with good accuracy. Graph analysis on EEG 
data showed an alteration of connectome configuration at theta frequency in ADD and MCIpos patients and a 
progressive disruption of connectivity at alpha2 frequency throughout the AD continuum. 
Conclusions: Theta frequency is the earliest and most sensitive EEG marker of AD pathology. Furthermore, EEG/ 
fMRI integration highlighted the role of alpha2 band as potential neurodegeneration biomarker.   

Abbreviations: ADD, Alzheimer’s disease dementia; DMN, Default Mode Network; ICA, Independent component analysis; LLC, Linear lagged connectivity; MCI, 
Mild cognitive impairment (pos = pTau/Aβ42≥0.13, neg = pTau/Aβ42<0.13); PVN, Primary Visual Network; RFP, Right Frontal-Parietal Network; RS-EEG, resting- 
state electroencephalogram; RS-fMRI, resting-state functional MRI; VISASS, Visual-Associative Network. 
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1. Introduction 

Alzheimer’s disease (AD) is the most common cause of dementia 
worldwide, accounting for up to 75–80% of cases (Qiu et al., 2009). 
Through the years, the need for an early diagnosis, combined with the 
non-optimum accuracy of pure clinical diagnosis (estimated sensitivity 
of 81% and specificity of 70%) (Knopman et al., 2001), progressively led 
to codifying AD on the basis of in vivo biomarkers of amyloidopathy (A; i. 
e., reduced cerebrospinal fluid [CSF] β amyloid [Aß42] and/or positive 
brain amyloid positron emission tomography scan [PET]), tauopathy (T; 
i.e, increased CSF hyperphosphorylated tau protein [pTau] and/or 
positive brain tau PET), and neurodegeneration (N; i.e., increased CSF 
total tau protein [tTau], positive brain 18F-fluorodeoxyglucose PET 
[FDG-PET], atrophy on brain magnetic resonance imaging [MRI]) (Jack 
et al., 2018). Within this new framework, a patient can be diagnosed 
with AD only in case of both positive A and T biomarkers (A+/T +). 
Most of the considered markers are nevertheless expensive, poorly 
available in clinical practice, and relatively invasive. 

In this context, considering the high cost-effectiveness, availability 
and low invasiveness of the technique, EEG-based biomarkers have been 
extensively investigated in the diagnosis of AD (Cassani et al., 2018; 
Rossini et al., 2020). In the last decade, advanced cortical source map-
ping algorithms have been applied to estimate the location and distri-
bution of active electric current sources within the brain based on the 
potential recorded through scalp electrodes (Rossini et al., 2020; Babi-
loni et al., 2020). Among other algorithms, exact low-resolution brain 
electromagnetic tomography (eLORETA) solutions (Pascual-Marqui, 
2007a) have been previously used and demonstrated to significantly 
correlate with neuropsychological deficits and MRI hippocampal vol-
ume in AD patients (Babiloni et al., 2009, 2013). More recently, new 
advances in resting-state analysis techniques have shown the possibility 
of examining the overall structure of the brain network using graph 
analytical methods and time-series of eLORETA values have been 
implemented in connectomics studies of AD and physiological ageing 
(Rossini et al., 2020; Rubinov and Sporns, 2010; Vecchio et al., 2014, 
2017, 2018). In particular, the functional connected brain network can 
be represented as a graph, consisting of nodes, and edges (or connec-
tions) between regions that are functionally linked; on this basis, it can 
be described by specific parameters of segregation (e.g., clustering co-
efficient) and integration (e.g., characteristic path length) (Rossini et al., 
2020; Rubinov and Sporns, 2010; Vecchio et al., 2014, 2017, 2018). 

Within this context, the aim of our study was to investigate the value 
of 19-channel resting state EEG (RS-EEG) source biomarkers in correctly 
classifying mild cognitive impairment (MCI) patients with an AD-like 
CSF profile (i.e., A+/T + ) (Jack et al., 2018); and tracking the neuro-
degeneration throughout the AD continuum. With the purpose to 
constrain and optimize EEG analysis by capitalizing on the high spatial 
resolution of MRI, we further applied a new model of functional MRI 
(fMRI)-driven EEG cortical source reconstruction and subsequently 
tested its advantage in terms of AD diagnostic accuracy. 

2. Materials and methods 

2.1. Participants 

Thirty-nine patients diagnosed with probable AD dementia (ADD) 
(McKhann et al., 2011) and 86 subjects with amnestic MCI (Albert et al., 
2011) were consecutively recruited at the Neurology Unit, IRCCS San 
Raffaele Scientific Institute (Milan, Italy). Diagnoses were based on an 
extensive clinical-instrumental evaluation, which included medical 
history collection, physical and neurological examination, complete 
neuropsychological evaluation, routine lab, structural neuroimaging 
assessment, brain FDG-PET, and lumbar puncture for CSF biomarkers 
dosage (Aβ42, tTau, pTau). Patients showing relevant psychiatric dis-
orders (including major depression), presence of extensive cerebrovas-
cular disease on routine structural brain images, clinical signs or 

symptoms suggestive for neurodegenerative disorders other than AD, or 
history of epilepsy were excluded. 

According to the new National Institute on Aging and Alzheimer’s 
Association (NIA-AA) research framework, AD should be diagnosed 
when both markers of amyloidopathy and tauopathy are pathologically 
altered (Jack et al., 2018). CSF pTau/Aß42 ratio offers the opportunity 
to consider both markers jointly. As previously described (Santangelo 
et al., 2019), a ratio ≥ 0.13 predicts AD pathology with higher diag-
nostic accuracy than CSF biomarkers taken singularly. In light of this 
finding, we classified 51 out of 86 MCI patients as MCI due to AD based 
on their positive CSF ratio (MCIpos) and 35 as negative cases (MCIneg). 
Moreover, consistently with the clinical diagnosis, all ADD patients 
showed a positive ratio (i.e., ≥ 0.13). 

As part of the research protocol, a 19-channel RS-EEG was acquired 
for all patients at baseline, whereas resting-state fMRI (RS-fMRI) was 
available for all ADD patients and for 37 out of 86 MCI (22 MCIpos and 
15 MCIneg) subjects. 

EEG and fMRI groups of patients were comparable in terms of de-
mographic and clinical data (Table 1 and Supplemental Table 1) and in 
terms of neuropsychological performances (Supplemental Tables 2 and 
3). Among study subjects, the most common chronic pathologies were 
diabetes type 2 and hypertension, both well controlled by medical 
therapy. No patient had liver or kidney insufficiency. 

Two different groups of age- and sex-matched healthy controls were 
also recruited for RS-EEG (33 subjects) and RS-fMRI (53 subjects) 
analysis among friends and spouses of patients and by word of mouth, 
having no history of cognitive impairment or any other neurological 
diseases. A complete neuropsychological battery was obtained for fMRI 
control group, whereas only a Mini-Mental State Examination (MMSE) 
(Folstein et al., 1975) was administered to the EEG controls. No lumbar 
puncture was performed in healthy controls. 

Supplemental Information displays further details on CSF acquisition 
and analysis and on neuropsychological assessments. 

2.2. EEG and MRI acquisition protocols and pre-processing 

19-channel RS-EEGs were recorded for each participant. Using a 3 T 
MR scanner, T1-weighted, T2-weighted, fluid-attenuated inversion re-
covery, and RS-fMRI sequences were obtained. RS-fMRI and RS-EEG 
acquisition protocols and pre-processing have been previously 
described (Caso et al., 2012; Filippi et al., 2020) and are reported in 
Supplemental Information. Experienced observers, blinded to patients’ 
identity, performed both analyses. 

2.3. Aim 1. Profiling of the EEG patterns 

The first goal of this study was to assess EEG patterns in order to 
characterize patients belonging to the AD continuum (Fig. 1-AIM1). 

Current Source Density Analysis. Estimating the current sources from 
activity recorded with electrodes is an ill-posed inverse problem, since 
the number of unknown parameters is greater than the number of known 
parameters. For this purpose we used eLORETA (Pascual-Marqui et al., 
2011; Pascual-Marqui, 2007a), which assesses current densities at 6239 
voxels with zero error localization within the cortical grey matter (GM) 
of a realistic head model co-registered to the MNI and Talairach human 
brain atlases. As previously described (Caso et al., 2012) and reported in 
Supplemental Information, EEG inverse solutions were estimated within 
7 frequency bands (Fig. 1B.1) and subsequently averaged for all voxels 
belonging to each lobe of interest (frontal, central, parietal, temporal 
and occipital) by means of a home-made Matlab routine. Differences in 
ranked eLORETA solutions among subject groups were computed 
applying age-, sex- and education-adjusted ANOVA models, followed by 
post-hoc pairwise comparisons (Bonferroni-corrected for multiple 
comparisons, p < 0.05, SPSS version 23.0). The two frequencies with 
most characteristic patterns of differentiation of study groups were then 
identified. In order to reduce data amount, subsequent analyses in Aim 2 
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were focused only on these two frequencies. 

2.4. Aim 2. fMRI network-driven analysis of RS-EEG data 

One of the main goals of the present study was to evaluate how the 
integration of RS-fMRI ameliorates, by constraining the analysis of 
electrophysiological signals, RS-EEG discrimination among groups. 
With this purpose, the following EEG analyses were driven by the pre-
vious selection of the two frequency bands (Fig. 1B.1) and by fMRI 
networks identified with Independent Component Analysis (ICA) 
(Fig. 1A.1). 

Regional correspondence between MRI and RS-EEG data. MRI GM was 
parcellated into 220 similarly-sized brain regions of interest (ROIs), 
which included cerebral cortex and basal ganglia but excluded the cer-
ebellum. The methodological process has been recently described (Fil-
ippi et al., 2020). Subsequently, using MNI coordinates, the exact 
correspondence of each voxel of eLORETA brain head model with the 
220 MRI brain regions was obtained. 

Definition of fMRI networks (Independent Component Analysis). The 
most informative fMRI networks were identified with ICA (Canu et al., 
2017). Specifically, we applied Independent Component Analysis-based 
Automatic Removal of Motion Artifacts (ICA-AROMA) on pre-processed 
RS-fMRI data in order to identify those independent components (ICs) 
representing motion-related artifacts (McKhann et al., 2011). This 
method calculates a set of spatial and temporal discriminative features 
and a classification procedure identifies ICs representing motion arti-
facts. In particular, the spatial overlap of each component with the edges 
of brain and CSF is evaluated, as well as the frequency content and the 
temporal correlation with realignment parameters of the IC time-series. 
ICs classified as motion-related were removed from the fMRI dataset by 
means of linear regression. Resulting fMRI dataset was then high-pass 
filtered (cut-off frequency of 0.01 Hz) and co-registered to the 

participant’s 3D T1-weighted image using affine boundary-based 
registration as implemented in FLIRT (Albert et al., 2011; Mazzeo 
et al., 2016). Subsequently, the fMRI data were transformed to the 
MNI152 standard space with 4 mm isotropic resolution using non-linear 
registration through FNIRT. The final fMRI data, containing 196 time- 
points for each subject, were temporally concatenated across subjects 
to create a single 4D dataset. This fMRI dataset was then decomposed 
into ICs with a free estimation for the number of components using 
Multivariate Exploratory Linear Optimized Decomposition into Inde-
pendent Components (MELODIC) (Beckmann et al., 2005). In order to 
identify the subject-specific temporal dynamics and spatial maps asso-
ciated with each group IC, a dual regression analysis was applied. 
Among group-IC spatial maps, ICs of interest (default mode network, 
primary visual, right fronto-parietal and visual-associative networks) 
were selected by visual inspection based on previous literature (Smith 
and Nichols, 2009). To be confident with the visual inspection, fMRI 
networks were also spatially correlated to the Shirer functional networks 
(Shirer et al., 2012). This analysis was performed in order to identify the 
most similar ICs to the different networks. Then, a dual-regression 
procedure was performed, which involves: (i) the use of the selected 
group-IC spatial maps in a linear model fit (spatial regression) against 
the single subject fMRI data sets, resulting in matrices describing tem-
poral dynamics for each IC and subject; and (ii) the use of these time- 
course matrices which are entered into a linear model fit (temporal 
regression) against the associated fMRI data set to estimate subject- 
specific spatial maps. Altered connectivity within the selected fMRI 
networks was identified in the ADD group compared with healthy con-
trols using age-, sex-, education- and GM-adjusted ANOVA models, fol-
lowed by a nonparametric permutation tests (5000 permutations, p <
0.05) (Fig. 1A.1). Only networks showing an alteration of connectivity 
were selected for subsequent EEG analysis. Brain regions (i.e., selected 
from the abovementioned 220 ROIs) included for more than 50% of 

Table 1 
Demographic, clinical and biomarker characteristics according to diagnostic group within the RS-EEG analysis.   

HC ADD MCIpos MCIneg p 
ADD 
vs HC 

p MCIpos 
vs HC 

p MCIneg 
vs HC 

p 
ADD vs 
MCIpos 

p 
ADD vs 
MCIneg 

p MCIpos 
vs MCIneg 

N 33 39 51 35  –  –  –  –  –  – 
Age 

[years] 
66.72 ± 1.17 
(49.01–79.74) 

68.59 ± 1.10 
(55.18–81.67) 

72.30 ± 0.73 
(61.34–83.62) 

71.45 ± 1.16 
(55.36–83.50)  

1.00  <0.001  0.02  0.02  0.33  1.00 

Sex 
[women/ 
men] 

15/18 21/18 30/21 10/25  0.47  0.23  0.14  0.06  0.03  0.06 

Education 
[years] 

9.58 ± 0.70 
(5.00–21.00) 

8.97 ± 0.70 
(2.00–18.00) 

9.59 ± 0.60 
(1.00–18.00) 

11.11 ± 0.80 
(1.00–23.00)  

1.00  1.00  0.96  1.00  0.25  0.74 

Disease 
duration 
[months] 

– 35.38 ± 2.34 
(7.03–72.06) 

32.93 ± 3.04 
(6.05–108.09) 

39.45 ± 3.95 
(12.00–108.05)  

–  –  –  1.00  1.00  0.44 

Aβ42 
[ng/ml] 

– 341.70 ± 20.10 
(98.00–572.00) 

383.10 ± 14.70 
(204.00–663.00) 

738.50 ± 40.30 
(202.00–1354.00)  

–  –  –  0.67  <0.001  <0.001 

tTau 
[ng/ml] 

– 559.30 ± 49.30 
(199.00–1389.00) 

467.30 ± 26.60 
(200.00–899.00) 

235.90 ± 18.70 
(69.00–600.00)  

–  –  –  0.15  <0.001  <0.001 

pTau 
[ng/ml] 

– 94.53 ± 6.49 
(44.00–229.00) 

86.08 ± 3.67 
(41.00–163.00) 

49.68 ± 3.17 
(19.00–87.00)  

–  –  –  0.55  <0.001  <0.001 

pTau/Aβ42 – 0.29 ± 0.02 
(0.14–0.75) 

0.24 ± 0.01 
(0.13–0.45) 

0.07 ± 0.01 
(0.04–0.12)  

–  –  –  0.03  <0.001  <0.001 

ADL – 69.69 ± 5.11 
(0.00–100.00) 

97.00 ± 0.91 
(83.34–100.00) 

99.02 ± 0.68 
(83.34–100.00)  

–  –  –  <0.001  <0.001  0.89 

IADL – 90.17 ± 4.05 
(0.00–100.00) 

92.74 ± 2.07 
(50.00–100.00) 

92.66 ± 2.34 
(50.00–100.00)  

–  –  –  1.00  1.00  1.00 

CDRsb – 3.47 ± 0.51 
(0.50–12.00) 

1.19 ± 0.22 
(0.50–7.50) 

1.80 ± 0.21 
(0.50–4.50)  

–  –  –  0.49  0.61  1.00 

MMSE 27.61 ± 0.33 
(21.00–30.00) 

19.46 ± 0.83 
(5.00–28.00) 

25.82 ± 0.34 
(21.00–30.00) 

26.54 ± 0.38 
(20.00–30.00)  

<0.001  0.02  0.03  <0.001  <0.001  1.00 

Values are means ± standard errors (range). Differences of ranked transformed values were assessed through ANOVA models followed by post-hoc pairwise com-
parisons (Bonferroni-corrected for multiple comparisons, p < 0.05, SPSS). Abbreviations: Aβ42 = amyloidogenic beta amyloid, ADD = Alzheimer’s disease dementia, 
ADL = activities of daily living, CDRsb = clinical dementia rating scale sum of boxes, HC = healthy controls, IADL = instrumental activities of daily living, MCI = mild 
cognitive impairment (pos = pTau/Aβ42 ≥ 0.13, neg = pTau/ Aβ42 < 0.13), MMSE = Mini-Mental State Examination, pTau = CSF phosphorylated Tau, tTau = CSF 
total Tau. 
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their volume into the fMRI ICA-based networks (Supplemental Table 4) 
were then considered as ‘ICA-regions’ in the EEG ICA-based network 
current source analysis and in the EEG and fMRI ICA-based network 
graph analysis. 

EEG ICA-based network current source analysis. eLORETA values for 
the two selected frequencies (see Aim 1) were extracted from voxels 
belonging to the ICA-regions. All voxel values were compared among 
groups using age-, sex- and education-adjusted ANOVA models (FDR- 
corrected, p < 0.05, SPSS version 23.0) (Fig. 1B.2). The percentage of 
statistically significant voxels was calculated per each network. 

EEG and fMRI ICA-based network graph analysis. EEG and fMRI graph 
analysis were performed considering only ICA-regions in all study sub-
jects. Initially, concerning EEG graph analysis, Linear Lagged Connec-
tivity (LLC) was computed considering the 220 ROIs in patient groups 
and matched healthy controls (Fig. 1B.2) (Pascual-Marqui et al., 2011; 
Pascual-Marqui, 2007b). For the functional brain network construction 
undirected, weighted graphs were obtained by computing LLC at the two 
selected frequency bands. In particular, mean multivariate time series 
were extracted from the 220 ROIs by averaging the signal from all voxels 
within each region (see Supplemental Information). Concurrently, un-
directed, weighted graphs describing fMRI connectivity were also ob-
tained in patient groups and matched healthy controls, considering the 

220 ROIs; the methodological approach has been recently described 
(Fig. 1A.2) (Filippi et al., 2020). 

Basal ganglia ROIs were excluded from the analysis because of the 
lack of correspondence between fMRI and EEG data. Moreover, to avoid 
considering spurious functional connections, EEG and fMRI functional 
interactions were required to be present in a structural connectivity 
matrix of an independent healthy control sample (N = 90, mean age 
62.3 ± 8.07 years, 51 women/39 men), i.e., we measured functional 
interactions only where an anatomical connection between two areas 
occurs in the independent healthy control sample, as recently described 
(Filippi et al., 2020). These healthy controls were considered only for the 
construction of the structural architecture (Filippi et al., 2020). 

Topographical metrics, including nodal strength, characteristic path 
length, local efficiency and clustering coefficient were then explored 
using the Brain Connectivity Matlab toolbox (http://www. 
brain-connectivity-toolbox.net) only within ICA-regions (Fig. 1A.2 and 
1B.2) (Sporns et al., 2004). All the remaining ROIs considered in the LLC 
and fMRI matrices were excluded from further analysis. Rank- 
transformed metrics were then compared between groups using age-, 
sex- and education-adjusted ANOVA models, followed by post-hoc 
pairwise comparisons, Bonferroni-corrected for multiple comparisons 
(p < 0.05, SPSS version 23.0). 

Fig. 1. RS-fMRI and EEG analysis pipeline. Preprocessing of RS-fMRI data (A) and RS-EEG data (B) were applied for patient groups and healthy controls. To delineate 
EEG patterns within the AD continuum (AIM 1), current source density analysis was computed on EEG data (B.1) identifying the most informative frequency bands. 
Subsequently, fMRI-driven analysis was performed on RS-EEG data (AIM 2). Firstly, independent component analysis was performed on fMRI data (A.1) in order to 
select the most informative functional networks. Subsequently, network current source analysis was applied on RS-EEG data within the selected networks and 
frequencies (B.2). Furthermore, RS-fMRI and EEG graph theoretical analyses were performed only within the fMRI networks (A.2) and frequency bands (only for EEG 
analysis) (B.2). AIM 3: EEG Diagnostic performance driven by fMRI was tested (B.3). Abbreviations: BOLD = blood-oxygen-level-dependent; RS-EEG = resting-state 
electroencephalogram; RS-fMRI = resting-state functional magnetic resonance imaging. 
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2.5. Aim 3. Testing EEG diagnostic performance driven by fMRI 

To investigate the advantage of fMRI network-driven RS-EEG source 
analysis in distinguishing MCIpos from MCIneg patients, binomial lo-
gistic regression models were computed for the frequency band with 
lobar highest statistical power of differentiation, both at lobar and at 
ICA-based network level, and accuracy of each model was calculated 
(SPSS version 23.0) (Fig. 1B.3). Specifically, the belonging to either 
MCIpos or MCIneg group was introduced as dependent variable in the 
models, whereas current density values within each lobe or ICA-based 
network were singularly implemented as predictive variable, together 
with age, sex and education. Receiver operating characteristic (ROC) 
curves for lobar and fMRI ICA-based network prediction models were 
subsequently built, and accuracy, sensitivity and specificity were 
calculated. Finally, in order to compare the performance of EEG alone (i. 
e., at lobar level) and driven by fMRI (i.e., at ICA-based network level), 
we used the single-tailed Hanley-McNeil area under the curve (AUC) test 
(Hanley and McNeil, 1983). 

3. Results 

3.1. Aim 1. Profiling of the EEG patterns 

ADD vs other groups. After current source analysis, ADD patients 
showed higher delta density in central, parietal and occipital lobes 

relative to both MCI groups and controls, and in temporal lobes in 
comparison to healthy and MCIneg subjects (Fig. 2A). Similarly, ADD 
showed an increased current density in the theta band within all lobes 
when compared to controls, and in central, parietal and occipital regions 
in comparison to MCIneg subjects, whereas no differences were found 
when compared to MCIpos patients. Moreover, in ADD patients, alpha1 
density appeared decreased in all lobes relative to MCIpos subjects, and 
in temporal and occipital regions when compared to controls. 
Conversely, a diffuse lower alpha2 current density was detected in ADD 
relatively to all other groups. Density at beta1 resulted significantly 
lower in parietal and occipital lobes in ADD when compared to MCIneg 
subjects and controls. Finally, occipital beta2 density was lower in ADD 
than in healthy subjects. 

MCIpos vs MCIneg. MCIpos patients showed greater theta density in 
central, parietal, temporal and occipital lobes relative to MCIneg sub-
jects (Fig. 2A). 

MCIpos vs healthy controls. MCIpos patients showed a significantly 
greater theta density in all lobes (Fig. 2A). They also showed lower beta2 
density in parietal and occipital lobes. 

MCIneg vs healthy controls. The analysis revealed no significant dif-
ferences (Fig. 2A). 

3.2. Aim 2. fMRI network-driven analysis of RS-EEG data 

Since theta band could diffusely differentiate MCIpos from MCIneg 

Fig. 2. Lobar (A) and network (B) current source density analysis on EEG data. A) Mean values of lobar current density at the different frequencies are reported for 
MCIpos (A), MCIneg (B), ADD (C) and controls (D). Significant comparisons reported in the boxes are referred to age-, sex- and education-adjusted ANOVA models of 
rank transformed values, followed by post-hoc pairwise comparisons (Bonferroni-corrected for multiple comparisons, p value < 0.05). Error bars are shown. 
Lengthened boxes mark the two selected frequencies for the subsequent EEG analysis. B) Percentage of voxels within each selected RS-fMRI network. Only com-
parisons showing significant differences in at least one network are reported per each freuency band (p value < 0.05). P value refers to age-, sex- and education- 
adjusted ANOVA models (FDR-corrected, p < 0.05) of rank transformed values. Abbreviations: ADD = Alzheimer’s disease dementia; DMN = default mode 
network; MCIneg = Mild cognitive impairment with pTau/Aß42 < 0.13; MCIpos = Mild cognitive impairment with pTau/Aß42 ≥ 0.13; PVN = primary visual 
network; RFP = right frontal-parietal network; VISASS = visual-associative network. 
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patients, and alpha2 band distinguished ADD from all other groups in all 
lobes, both frequencies were considered for subsequent analyses in Aim 
2 (Fig. 2A). Furthermore, with regards to the selection of fMRI networks, 
ICA was performed. A decreased fMRI connectivity in ADD patients 
relative to controls was detected within the four networks, including 
only posterior regions of the brain. The default-mode network (DMN) 
showed an alteration of connectivity in the left posterior cingulate 
cortex, in the right midcingulate cortex, in the left angular cortex, as 
well as in the middle temporal gyrus and in the precuneus, bilaterally; 
anterior regions of DMN were instead mainly spared. The connectivity 
within the right frontal-parietal network (RFP) was mainly altered in the 
right middle occipital gyrus and cuneus, as well as in right inferior pa-
rietal gyrus and angular gyrus; also in this case, anterior regions of this 
network appeared substantially preserved. A reduced connectivity was 
found also in the primary visual network (PVN) within the lingual and 
the calcarine cortex bilaterally, within the right occipital and temporal 
middle gyri and the left fusiform gyrus. Finally, the visual-associative 
network (VISASS) was affected within the calcarine cortex bilaterally, 
the right lingual gyrus and the bilateral middle and inferior occipital and 
fusiform gyri (Fig. 3). 

ADD vs other groups. Source analysis within fMRI ICA-based networks 
showed a widespread significant increase in theta density in ADD 

patients compared to healthy controls, in 100% of DMN (932/932 
voxels), in 94% of PVN (701/742 voxels), in 89.9% of RFP (841/935 
voxels) and in 100% of VISASS (554/554 voxels). Theta frequency band 
also differentiated ADD from MCIneg patients in 90.2% of DMN, in 58% 
of PVN, in 26.2% of RFP and in 89.9% of VISASS, whereas no differences 
were found when comparing ADD and MCIpos patients. The analysis 
also showed a lower alpha2 density in ADD patients than in healthy 
subjects (DMN: 100%, PVN: 91%, RFP: 65.2%, VISASS: 100%), MCIpos 
patients (DMN: 90.7%, PVN: 91.5%, RFP: 99.6%, VISASS: 78.7%), and 
MCIneg patients (100% of all four networks analyzed) (Fig. 2B). 

EEG ICA-based network graph analysis in theta band showed a 
higher nodal strength, local efficiency and clustering coefficient, in 
addition to a shorter path length, in ADD patients when compared to 
controls in DMN, PVN and VISASS (Fig. 4 and Supplemental Table 5). 
Similar results were obtained (including also RFP) when considering the 
ADD vs MCIneg comparison. No differences were detected between ADD 
and MCIpos patients. Regarding alpha2 frequency band, the analysis 
revealed a lower nodal strength and clustering coefficient in RFP 
network of ADD patients compared with controls (Fig. 4 and Supple-
mental Table 5), whereas the comparison with MCIneg and MCIpos 
patients showed no significant differences. Furthermore, graph analysis 
of RS-fMRI data showed similarly less well-ordered brain networks in 

Fig. 3. Independent Component Analysis (ICA) showing decreased functional connectivity in Alzheimer’s disease dementia patients compared with controls. First 
line shows the selected fMRI ICA-based networks (highlighted in light blue). Second and third lines report three dimensional rendered brains illustrating altered 
patterns of functional connectivity in Alzheimer’s disease dementia (ADD) patients compared with controls (p < 0.05 FDR-corrected) within networks: a) default 
mode network (left posterior cingulate cortex, right midcingulate cortex, left angular cortex and middle temporal gyrus and precuneus bilaterally), b) primary visual 
network (lingual and calcarine cortex bilaterally, right occipital and temporal middle gyrus and left fusiform gyrus), c) right frontal-parietal network (right middle 
occipital gyrus and cuneus, so as in right inferior parietal gyrus and angular gyrus) and d) visual associative network (calcarine cortex bilaterally, right lingual gyrus 
and bilateral middle and inferior occipital gyri and bilateral fusiform gyri). (For interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.) 
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ADD subjects when compared with both controls and MCIneg patients, 
exhibiting alterations in DMN, PVN, RFP and VISASS (lower nodal 
strength, local efficiency and clustering coefficient and longer path 
length). 

MCIpos vs MCIneg. Source analysis showed a significant greater theta 
density in MCIpos in 83.6% of DMN, in 69.8% of PVN, in 29.2% of RFP 
and in 95.3% of VISASS (Fig. 2B). Within the alpha2 band, MCIpos 
subjects showed lower current density in 42% of DMN, 54.9% of PVN, in 
30 voxels out of 935 in RFP and in 81.6% of VISASS. 

EEG ICA-based network graph analysis showed no statistical differ-
ences between MCIpos and MCIneg in the two selected frequencies 
(Fig. 4 and Supplemental Table 5). On RS-fMRI graph analysis, MCIpos 
subjects showed longer path length within VISASS relative to MCIneg. 

MCIpos vs healthy controls. eLORETA source analysis within selected 
fMRI networks showed a significant greater theta current density in 
MCIpos in 100% of DMN, PVN, RFP and VISASS (Fig. 2B). In addition, 
lower alpha2 density was found only in VISASS (66.7%). 

EEG ICA-based network graph analysis showed no statistical differ-
ences between the two groups at theta and alpha2 frequency bands 
(Fig. 4 and Supplemental Table 5). Concerning RS-fMRI graph analysis, 

MCIpos patients showed lower nodal strength, local efficiency and 
clustering coefficient only within the VISASS. Moreover, a lower local 
efficiency was found in MCIpos within the DMN relative to controls. 

MCIneg vs healthy controls. No significant differences were found by 
source analysis and EEG and RS-fMRI graph analysis (Fig. 2B, Fig. 4 and 
Supplemental Table 5). 

3.3. Aim 3. Testing EEG diagnostic performance driven by fMRI 

MCIpos were differentiated from MCIneg patients at lobar level by 
theta band only. Therefore, Aim 3 analysis was performed at this fre-
quency band. Table 2 shows accuracy, sensitivity and specificity ob-
tained from the ROC-curve analysis applied to lobes and ICA-based 
networks. Accuracy was over the acceptance level of 70% in all cases. 
After the application of Hanley-McNeil AUC test no statistically signifi-
cant differences were found (p-value = 0.17). 

4. Discussion 

Our study explored the accuracy of RS-EEG-based biomarkers in the 

Fig. 4. RS-fMRI and EEG graph analysis properties within fMRI networks. Violin plots of clustering coefficient and path length of selected networks (the two most 
significant metrics) are shown for patient groups and healthy controls. Both graph metrics were calculated based on the Linear Lagged Connectivity for alpha2 and 
theta frequency bands from RS-EEG data (on the top of the figure) and based on Pearson’s Correlation Coefficient from RS-fMRI data (on the bottom of the figure). 
Boxplots are reported within violin plots. The horizontal lines in each box plot represents, from the bottom to the top, the 25th percentile, the median and 75th 
percentile. Whiskers represent the minimum and maximum values. All the dots outside the confidence interval are considered as outliers. Significant comparisons are 
reported (p values < 0.05). P values refer to age, sex and education-adjusted ANOVA models of rank transformed values, followed by post-hoc pairwise comparisons 
(Bonferroni-corrected for multiple comparisons). ●: ADD vs Controls; *: ADD vs MCIneg; ■: MCIpos vs Controls; ▴: MCIpos vs MCIneg. Abbreviations: ADD =
Alzheimer’s disease dementia, DMN = default mode network, MCI = mild cognitive impairment (pos = pTau/Aß42 ≥ 0.13, neg = pTau/Aß42 < 0.13), PVN =
primary visual network, RFP = right frontal-parietal network, VISASS = visual-associative network. 
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early diagnosis of AD and in tracking the progression of neuro-
degeneration throughout the AD continuum. Many aspects support the 
usefulness of EEG recordings in the study of AD patients: non- 
invasiveness, speed of execution, low cost and large availability. More-
over, acquisition in resting-state conditions does not require external 
stimuli and necessitates therefore only minimal compliance. With the 
intent of exploiting MRI high spatial resolution and optimizing EEG 
analysis, we further developed a novel fMRI-driven EEG source recon-
struction model. By applying ICA on fMRI data, resting-state networks 
showing altered functional connectivity in our ADD sample were iden-
tified, and corresponding eLORETA inverse solutions were then 
computed and extracted. To our knowledge, in the recent scenario of 
fMRI-driven EEG analysis for the study of brain function, our model is 
unique (Jorge et al., 2014). 

The comparison of eLORETA solutions at lobar level confirmed the 
trend towards a general slowing of oscillatory neural activity as a 
consequence of AD pathology (Caso et al., 2012; Babiloni et al., 2016; 
Jovicich et al., 2019). Even years before clinical symptoms appear, 
indeed, amyloid and tau deposition affects synaptic function (de Wilde 
et al., 2016), determining a progressive disruption of inter-neuronal 
connections and a subsequent slowing of oscillatory activity (D’Am-
elio and Rossini, 2012). Our analysis of lobar EEG cortical sources, in 
particular, suggests that theta band may be consistently altered already 
in the prodromal phases of AD clinical syndrome, thus emerging as early 
hallmark of AD pathology. We observed indeed that both MCIpos and 
ADD patients shared a widespread and comparable increase in theta 
density relative to both MCIneg and healthy controls (Fig. 2A). On the 
contrary, MCIpos and ADD subjects were characterized by a decrease in 
beta2 density when compared to healthy controls, even if limited to the 
occipital lobe (Fig. 2A). ADD, but not MCIpos, was further associated 
with a widespread augmentation of delta power, reasonably stemming 
from a longer duration of the disease (Babiloni et al., 2013). The rare 
previous studies focusing on profiling EEG activity in AD and its rela-
tionship with CSF biomarkers seem to corroborate our findings in theta 
band; decreased Aß42 has been shown to significantly correlate with 
theta global field power (i.e., a measure of global strength of scalp po-
tential fields) in a population of mild AD and MCI patients (Smailovic 
et al., 2018), and with the logarithms of theta current density over the 
temporal regions in AD subjects (Hata et al., 2017). 

The current source analysis at lobar level also outlined in ADD pa-
tients a widespread reduction of alpha2 current density, hallmark of 
resting-state wakefulness (Laufs et al., 2003) and underlying several 
cognitive functions (namely, attentive and mnestic skills) (Schurmann 
and Basar, 2001; Stam et al., 1999). This finding is in line with previous 
reports (Gianotti et al., 2007; Babiloni et al., 2013; Choi et al., 2019). 
Looking at Fig. 2A, furthermore, it is possible to appreciate a visual trend 
of progressive alteration of alpha2 power density over the posterior 

regions among patient groups belonging to the AD continuum (ADD <
MCIpos < healthy controls), suggesting novel insights into the patho-
physiological meaning of alpha2 band. 

The ICA applied to fMRI data in ADD compared to healthy subjects, 
revealed an alteration of fMRI connectivity mostly confined in posterior 
regions in all the networks (Fig. 3), quite preserving anterior regions of 
DMN and RFP, consistently with previous literature (Canu et al., 2017; 
Jovicich et al., 2019; Zhou et al., 2017; Agosta et al., 2014; Zhang et al., 
2010; Xie and He, 2011). 

Subsequent EEG analysis of current sources extracted from fMRI ICA- 
based networks corroborated theta discriminative nature of AD pa-
thology, regardless of severity stage (Fig. 2B). ADD and MCIpos patients, 
indeed, showed a higher theta current density than both MCIneg and 
healthy subjects. Consistently with the results of the ICA applied to fMRI 
data, results of both lobar and ICA-based network eLORETA analyses 
seem to indicate that the major disruption of electrical sources lays in 
the posterior regions of the brain, typically more involved by AD pa-
thology since its initial stages; the widest theta alteration in MCIpos 
patients with respect to MCIneg and healthy subjects was indeed 
observed in parietal and occipital lobes and in VISASS and DMN (Fig. 2), 
which mainly extend within parietal, occipital and temporal regions 
(Supplemental Table 4). On the contrary, either none or minimal dif-
ferences were found in frontal lobes and in RFP when comparing MCIneg 
with ADD and MCIpos patients. This seems to be driven by two factors: 
first, the increase of theta density was relatively modest in frontal re-
gions of patients with AD (both MCI and ADD) (Fig. 2A); secondly, 
MCIneg subjects showed an increase in theta density in the anterior 
regions, comparable to that of patients with AD (Fig. 2A). Consistently, 
MCIpos patients were slightly (i.e., non-significantly) more impaired in 
‘posterior’ cognitive functions (i.e., mnestic and visuo-spatial skills) 
than MCIneg subjects, whereas frontal (i.e., attentive and executive) 
skills of two MCI groups substantially overlap (Supplemental Table 2). 
On the contrary, the lack of difference in theta density between ADD and 
MCIpos groups despite their differences in cognitive performances 
seems to confirm that theta alteration might develop early during AD 
pathology and that it should be considered a marker of pathology, rather 
than of disease progression. 

Moreover, the fMRI-driven analysis revealed that the alpha2 band 
could significantly differentiate ADD from MCIpos patients and MCIpos 
from healthy subjects, confirming its potential role as a neuro-
degeneration biomarker of AD pathology, only visually guessed at lobar 
level (Fig. 2). Consistently, one of the abovementioned studies, which 
analyzed the relationship between EEG activity and CSF biomarkers in 
AD patients (Hata et al., 2017), showed a negative correlation between 
source connectivity in alpha2 band in the right posterior temporal re-
gions and the CSF tTau level, recently included in the class of neuro-
degeneration biomarkers (Jack et al., 2018). However, a clarification 
must be done; looking at Fig. 2A, it can be appreciated how in frontal 
lobes MCIpos patients showed a greater difference from ADD patients 
than healthy subjects did. Concurrently, in Fig. 2B, significant differ-
ences in RFP were wider in the MCIpos vs ADD comparison than in the 
healthy controls vs ADD one. We can speculate that this finding might be 
at least partially justified by the “anteriorization” of alpha electrical field 
due to AD pathology described in previous studies (Smailovic and Jelic, 
2019), which could result in a transient augmentation of alpha2 sources 
within frontal regions in prodromal phases of AD. In support of this 
hypothesis, Fig. 2B clearly shows that the largest alpha2 decrease when 
comparing MCIpos patients with MCIneg and with healthy subjects was 
found within VISASS and PVN, both extending within posterior regions 
(i.e., where, in normal condition, the strongest sources of alpha fre-
quency band lay) (Smailovic and Jelic, 2019). 

Moving to graph analysis applied to fMRI-driven eLORETA solutions 
in theta band, ADD patients showed a significant higher degree of 
apparent network efficiency (i.e., higher segregation metrics and shorter 
path length) when compared to both controls and MCIneg patients 
(Fig. 4 and Supplemental Table 5). The same phenomenon was true for 

Table 2 
Accuracy, Sensitivity and Specificity of EEG current source analysis at lobar and 
network level.  

Comparison Frequency 
band 

Lobes/ 
Networks 

Accuracy Sensitivity Specificity 

MCIpos 
vs 
MCIneg 

Theta Central 75.40% 
75.70% 
74.50% 
75.80% 

71.40% 
71.40% 
71.40% 
71.40% 

70.60% 
70.60% 
70.60% 
70.60% 

Parietal 
Temporal 
Occipital 
DMN 76.80% 

76.60% 
75.80% 
76.60% 

71.40% 
74.30% 
71.40% 
74.30% 

70.60% 
70.60% 
70.60% 
68.60% 

PVN 
RFP 
VISASS 

Values are reported as Accuracy, Sensitivity and Specificity calculated on 
receiver operating characteristic curves (comprehensive of age, sex and educa-
tion). Abbreviations: DMN = Default Mode Network, MCI = mild cognitive 
impairment (pos = pTau/ Aβ42 ≥ 0.13, neg = pTau/Aβ42 < 0.13), PVN =
Primary Visual Network, RFP = Right Frontal-Parietal Network, VISASS = Vi-
sual-Associative Network. 
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MCIpos subjects, yet not meeting full statistical significance, probably 
due to greater value variance. These findings sound counterintuitive; 
however, it is reasonable to assume that the described transition towards 
more ordered connectivity at theta frequency might be a consequence of 
the described general slowing of electrical activity due to AD pathology 
and clinical benefit of such phenomenon should be doubted. Indeed, 
previous studies that have assessed the EEG complexity of AD patients 
by both linear and nonlinear approaches found that the EEG of AD pa-
tients were more regular than age-matched controls within theta fre-
quency band, which is in line with our findings (Ifeachor E., 2018; Cai 
et al., 2018). 

A widespread alteration of network configuration within ADD pa-
tients was also observed in alpha2 band, but with an opposite trend of 
decreasing segregation metrics and increasing path length. Even if not 
being fully significant, probably due to the strict statistical process, a 
visual inspection of Fig. 4 allows moreover to depict MCIpos group as an 
intermediate stage of alteration between ADD and healthy subjects; this 
reasonably reflects a progressive transition toward a random reconfi-
guration of brain connectome in alpha2 frequency (Xie and He, 2011). 
Future studies with a larger sample and a longitudinal design should 
lead to the full statistical significance. 

Previous EEG studies exploring AD brain connectomics showed 
discordant results, basically due to different methodological ap-
proaches, which complicates the comparability of obtained results 
(Vecchio et al., 2017; Xie and He, 2011; Lazarou et al., 2020; Tijms et al., 
2013). Among others, for instance, one study applied linear lagged 
coherence to eLORETA solutions extracted from a population of AD, MCI 
and healthy subjects, describing network reconfiguration profiles which 
are only partially in line with our findings (Vecchio et al., 2014, 2015); 
in parallel with an increased normalized clustering coefficient in theta 
band in MCI and AD patients, indeed, they also described an increased 
normalized path length. As previously described (Tijms et al., 2013), 
though, an increased unnormalized path length can be associated with a 
decreased normalized path, which makes the interpretation of results 
ambiguous. Further methodological differences (e.g., patient classifica-
tion and matrices construction) may at least partially account for 
discordant results. 

Moving to RS-fMRI graph analysis, ADD patients showed a severe 
alteration of graph properties in all considered networks, whereas 
MCIpos patients were characterized by a less profound connectivity 
impairment. These findings are in line with a large body of previous 
literature (Filippi et al., 2020; Agosta et al., 2012; Jones et al., 2016; 
delEtoile and Adeli, 2017). 

Our study has at least two main limitations: first, we recruited two 
different groups of healthy subjects for fMRI and EEG analysis, which 
might have led to biases in the analysis, albeit limited. Moreover, con-
trols who entered the EEG analysis did not perform a complete neuro-
psychological assessment; they underwent nevertheless an accurate 
medical history collection and a complete neurological examination, 
which excluded the presence of past or present neurological diseases, 
together with a MMSE (Folstein et al., 1975), showing significantly 
higher scores than other study groups. 

The identification of early biomarkers of AD pathology that could 
help distinguish MCI patients in urgent need of therapies is of great 
interest in the recent scenario. We found that the most accurate EEG 
biomarker differentiating MCIpos from MCIneg patients was repre-
sented by the increase in theta band density, reaching a good diagnostic 
accuracy (over 70%) both at lobar level (75.8% in occipital lobe) and 
when the analysis was driven by fMRI ICA-based networks (76.8% in 
DMN – Table 2). Despite the slight increase in accuracy, though, Hanley- 
McNeil test did not find a full statistically significant difference between 
lobar and network AUCs. Concurrently, fMRI-driven EEG analysis 
allowed highlighting the role of alpha2 band density as neuro-
degeneration biomarker by correlating it with disease progression. 
Furthermore, graph analysis applied to both eLORETA solutions and 
fMRI data showed a characteristic disruption of connectivity measures 

in patients with AD. Future studies focusing on a greater sample and 
with a longitudinal design are required to further explore the role of 
fMRI-driven EEG source estimation analysis in the diagnostic workup of 
AD pathology. 
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