
Vol. 30 no. 17 2014, pages 2537–2539
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu311

Data and text mining Advance Access publication May 2, 2014

Bioclojure: a functional library for the manipulation of biological

sequences
Jordan Plieskatt1,2, Gabriel Rinaldi1,2, Paul J. Brindley1,2, Xinying Jia3, Jeremy Potriquet3,
Jeffrey Bethony3 and Jason Mulvenna3,4,*
1Department of Microbiology, Immunology and Tropical Medicine, 2Research Center for Neglected Diseases of Poverty,
School of Medicine and Health Sciences, George Washington University, Washington, DC, 20052, USA, 3QIMR
Berghofer Medical Research Institute, Infectious Disease and Cancer and 4The University of Queensland, School of
Biomedical Sciences, Brisbane, Queensland, 4072, Australia

Associate Editor: Jonathan Wren

ABSTRACT

Motivation: BioClojure is an open-source library for the manipulation

of biological sequence data written in the language Clojure. BioClojure

aims to provide a functional framework for the processing of biological

sequence data that provides simple mechanisms for concurrency and

lazy evaluation of large datasets.

Results: BioClojure provides parsers and accessors for a range of

biological sequence formats, including UniProtXML, Genbank XML,

FASTA and FASTQ. In addition, it provides wrappers for key analysis

programs, including BLAST, SignalP, TMHMM and InterProScan,

and parsers for analyzing their output. All interfaces leverage

Clojure’s functional style and emphasize laziness and composability,

so that BioClojure, and user-defined, functions can be chained into

simple pipelines that are thread-safe and seamlessly integrate lazy

evaluation.

Availability and implementation: BioClojure is distributed under the

Lesser GPL, and the source code is freely available from GitHub

(https://github.com/s312569/clj-biosequence).

Contact: jason.mulvenna@qimrberghofer.edu.au or jason.mulvenna@

qimr.edu.au

Received on January 16, 2014; revised on April 4, 2014; accepted on

April 25, 2014

1 INTRODUCTION

Functional programming is a programming style that treats

computation as the evaluation of mathematical functions

(Hudak, 1989). In its purest form, functional programming re-

moves the need for variable assignment by using immutable

data structures that eliminate the use of state and side effects

(Backus, 1978). This ensures that functions will always return

the same value given the same input. This greatly simplifies

debugging and testing, as individual functions can be assessed

in isolation regardless of a global state. Immutability also

greatly simplifies concurrency and facilitates leveraging of

multi-core computing facilities with little or no modifications

to functionally written code. Accordingly, as a programming

style, functional programming offers advantages for software

development, including (i) brevity, (ii) simple handling of

concurrency and (iii) seamless integration of lazy evaluation,

simplifying the handling of large datasets. Clojure is a Lisp
variant that encourages a functional style of programming by

providing immutable data structures, functions as first-class ob-

jects and uses recursive iteration as opposed to state-based

looping (Hickey, 2008). Clojure is built on the Java virtual

machine (JVM), and thus, applications developed using

BioClojure can be compiled into Java byte code and ran on

any platform that runs the JVM. Moreover, libraries con-
structed using Clojure can be called in Java programs and,

conversely, Java classes and methods can be called from

Clojure programs, making available a large number of third-

party Java libraries. BioClojure aims to leverage the tools pro-

vided by Clojure to provide a functional interface with biolo-

gical sequence data and associated programs. BioClojure is

similar in intent to other bioinformatics packages such as
BioPerl (Stajich et al., 2002), BioPython (Cock et al., 2009),

Bio++ (Dutheil et al., 2006) and BioJava (Prlić et al., 2012)

but differs from these bioinformatics software libraries in its

embrace of the functional style. With the decreasing cost of

biological analyses, for example, next-generation sequencing,

biologists are dealing with greater amounts of data, and

BioClojure is an attempt to provide tools, emphasizing concur-

rency and lazy evaluation, for manipulating these data.

2 METHODS

BioClojure source code and extensive documentation are available via

GitHub (https://github.com/s312569/clj-biosequence). The library is

available as a Java jar file from Clojars (https://clojars.org/clj-biose

quence) and can be easily incorporated into Clojure projects using lein

(http://leiningen.org/). BioClojure is organized into name-spaces (mod-

ules), each either providing access to a particular sequence format, pro-

viding a wrapper to key programs, BLAST and SignalP, or providing

other functionality, for example, indexing and biological alphabets. When

designing functions contained within BioClojure, efforts have been made

to maintain laziness and composability. This, in combination with the

Clojure threading macros, facilitates the construction of analysis pipelines

that can process sizeable files using minimal memory.

2.1 The core module

The core module provides core functions such as DNA and protein

alphabets as well as translation, key accessors and file functions. More*To whom correspondence should be addressed.

� The Author 2014. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://github.com/s312569/clj-biosequence
mailto:jason.mulvenna@qimrberghofer.edu.au
mailto:jason.mulvenna@qimr.edu.au
mailto:jason.mulvenna@qimr.edu.au
-
a
b
c
very 
run 
and 
,
this 
is 
https://github.com/s312569/clj-biosequence
https://clojars.org/clj-biosequence
https://clojars.org/clj-biosequence
http://leiningen.org/
ing
,
XPath error Undefined namespace prefix


importantly, it establishes a framework for parsing sequence files using

the functions ‘bs-reader’ and ‘biosequence-seq’. Almost every module in

BioClojure implements these functions to access its particular sequence

format or type of data. When used in combination with the in-built

Clojure macro ‘with-open’, these functions provide lazy access to on-

disk data. For example, a simple pipeline to translate a file of nucleotide

sequences in six-reading frames would use these functions in the following

way:

user4(with-open [r (bs-reader fasta-file)]

(-44(biosequence-seq r)

(mapcat #(six-frame-translation %))

realized?))

false

This code provides a lazy sequence of FASTA protein sequences rep-

resenting the six-frame translation of nucleotide sequences from ‘FASTA-

file’. The final call to ‘realized?’ merely illustrates the lazy nature of the

calculation. The resulting sequences can be sent to the file using the

BioClojure function ‘biosequence-4file’ or further processed using

BioClojure and/or user-defined functions. The use of immutable objects

and stateless iteration can lead to simple and easily understandable code.

A simple example of this is the following code, which returns counts for

biological process GO terms from secreted proteins in the UniProt

Human proteome dataset:

(with-open [r (bs-reader up-hs-proteome)]

(-44(biosequence-seq r)

(filter #(some (fn [x] (= “Secreted”

(:text x)))

(subcellular-location %)))

(mapcat bp-go-terms)

frequencies))

{“neurotrophin TRK receptor signaling pathway”

36, . . ..

The defined interfaces of BioClojure are designed to be lazy and com-

posable in this way, and thus, more complex examples of these simple

lazily evaluated pipelines can be developed.

2.2 Sequence formats

At present, BioClojure supports sequence data formatted as Uniprot

XML, Genbank XML FASTA and FASTQ. For each format, apart

from parsers, BioClojure provides accessors specific to that format (see

https://github.com/s312569/clj-biosequence for detailed documentation).

BioClojure also provides functions for remote searching and sequence

retrieval from UniProt and GenBank. For mapping of identification

numbers, BioClojure provides the ‘id-convert’ function that uses the

UniProt accession mapping service to convert accession numbers from

one database format to another. Integration of diverse file formats with

the structure provided by the core module is implemented using Clojure

protocols; therefore, implementation of modules for new formats is facile,

with additional formats, in particular GFF and GTF, expected to be

supported in the near future.

2.3 Application wrappers

In addition to sequence data, BioClojure also provides wrappers for

running BLAST, SignalP, THMHH and Interproscan as well as parsers

for their output. Once again, integration of these tools with BioClojure

emphasizes lazy evaluation and composability, which simplifies integra-

tion of the tools with other parts of BioClojure.

2.4 Persistence

The ‘index’ module provides functions for producing compressed and

indexed files. An indexed file implements ‘biosequence-seq’ and thus

can be used the same way as described above, but without the require-

ment for using ‘with-open’ or ‘bs-reader’. Indexed files also provide rapid

random access to indexed sequences using the ‘get-biosequence’ function.

2.5 Concurrency

One of the primary motivations for using Clojure is the built-in support

for concurrent operations. One simple example of this support is the

‘pmap’ function. The Clojure function ‘map’ serially applies a function

to a list of inputs, returning a list of the outputs, and ‘pmap’ performs the

same operations using multiple threads. If the computational cost of the

applied function outweighs the coordination costs, significant perform-

ance gains are possible, as shown below using the SwissProt database:

user4(time (with-open [r (bs-reader swissprot)]

(last (map protein-charge

(biosequence-seq r)))))

“Elapsed time: 101232.610534 msecs”

5.778330187793381

user4(time (with-open [r (bs-reader swissprot)]

(last (pmap protein-charge

(biosequence-seq r)))))

“Elapsed time: 30552.548286 msecs”

5.778330187793381

In practice, ‘pmap’ initiates a limited number of threads, based on the

number of cores; therefore, for large datasets, or asynchronous calls, a

finer-grained control over the number of threads and their behavior can

be obtained using Clojure’s software transactional memory, agent and

atom systems.

3 CONCLUSION

BioClojure is a functional software library specifically designed

for parsing and processing biological sequence data. It provides a

lazy and thread-safe framework for accessing and streaming

these data while using minimal amounts of memory. Presently,

we extensively use the library for the annotation of nucleotide

and peptide sequences arising from next-generation sequencing

and the proteomic analysis of complex protein mixtures. We plan

to extend the functionality of the library by incorporating mod-

ules for phylogenetic and proteomic analyses, and we welcome

contributions from the community.

Funding: National Health and Medical Research Council,

Australia (grant number 1051627), as well as award

R01CA155297 from the National Cancer Institute.

Conflict of Interest: none declared.

2538

J.Plieskatt et al.

very 
illustrating 
Using 
,
-
,
https://github.com/s312569/clj-biosequence
which 
and so
`
`
`
serially 
, 
so 
very 
finer 
behaviour
this 
extensively 
soon 
This research was supported using funding from the 


REFERENCES

Backus,J. (1978) Can programming be liberated from the von Neumann style?: a

functional style and its algebra of programs. Commun. ACM, 21, 613–641.

Cock,P.J. et al. (2009) Biopython: freely available Python tools for computational

molecular biology and bioinformatics. Bioinformatics, 25, 1422–1423.

Dutheil,J. et al. (2006) Bio++: a set of C++ libraries for sequence analysis, phylo-

genetics, molecular evolution and population genetics. BMC Bioinformatics, 7,

188.

Hickey,R. (2008) The clojure programming language. In: Proceedings of the 2008

symposium on Dynamic languages. p.1. ACM, New York, NY.

Hudak,P. (1989) Conception, evolution, and application of functional programming

languages. ACM Comput. Surv. (CSUR), 21, 359–411.

Prlić,A. et al. (2012) Biojava: an open-source framework for bioinformatics in 2012.

Bioinformatics, 28, 2693–2695.

Stajich,J.E. et al. (2002) The bioperl toolkit: Perl modules for the life sciences.

Genome Res., 12, 1611–1618.

2539

A functional library for the manipulation of biological sequences


