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The adsorptive capability of superheated steam activated biochar (SSAB) produced from

Colocasia esculenta was investigated for removal of Cu2+, Fe2+ and As5+ from simulated coal

mine wastewater. SSAB was characterized by scanning electron microscopy, Fourier transform
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Table 1 Permissible limits and health risk

Metal ion USEPA (mg/L) WHO (mg/L)

Fe2+ – 0.1

Cu2+ 1.3 1.0

As5+ 0.05 1.5
infrared spectroscopy and Brunauer–Emmett–Teller analyser. Adsorption isotherm indicated

monolayer adsorption which fitted best in Langmuir isotherm model. Thermodynamic study

suggested the removal process to be exothermic, feasible and spontaneous in nature. Adsorption

of Fe2+, Cu2+ and As5+ on to SSAB was found to be governed by pseudo-second order kinetic

model. Efficacy of SSAB in terms of metal desorption, regeneration and reusability for multiple

cycles was studied. Regeneration of metal desorbed SSAB with 1 N sodium hydroxide main-

tained its effectiveness towards multiple metal adsorption cycles. Cost estimation of SSAB pro-

duction substantiated its cost effectiveness as compared to commercially available activated

carbon. Hence, SSAB could be a promising adsorbent for metal ions removal from aqueous

solution.

� 2016 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
Introduction

Increase in metal toxicity due to advancement in industrializa-
tion and excessive exploitation of natural resources has created

a major environmental concern for the past couple of decades.
Natural resources such as groundwater are being contami-
nated due to progressive urbanization which resulted in deple-

tion of portable water in many parts of the world [1,2]. Among
various industries such as tanning, electroplating, smelting,
and wood polishing, mining has been considered as one of
the major sources of metal discharge into natural water sys-

tems [3]. This has been one of the oldest anthropogenic activ-
ities where coal is used as a source of energy. Due to extensive
open cast and underground mining, quality of groundwater

has been affected severely. Generation of leachates and dump-
ing of coal in mining areas have also contributed towards con-
tamination of underground water table thereby deteriorating

its quality [4]. Ores containing metals are transported from
earth crust onto the mine surface and from there it reaches
adjoining water bodies by both anthropogenic and physical
activities [5]. Hence contamination of groundwater has become

a serious environmental issue since it leads to an abrupt
increase in heavy metal concentration within other natural
resources [6]. In human body, some of these heavy metals

are required in trace amounts as daily supplements which
become toxic if the amount exceeds [7]. Severe rules have been
imposed by various authorities on the discharge of heavy met-

als in open topography and water systems [8]. Among several
metal discharges into water bodies, concentrations of iron
(Fe2+), copper (Cu2+) and arsenic (As5+) have been increas-

ing rapidly in groundwater [9–11]. Different organizations
viz. United State Environmental Protection Agency (USEPA),
World Health Organization (WHO), Indian Standard Institu-
tions (ISI), Indian Council of Medical Research (ICMR) and

Central Pollution Control Board (CPCB) which deal with
of Fe2+, Cu2+ and As5+

ISI (mg/L) ICMR (mg

0.3 1.0

0.05 1.5

1.5 0.05
environmental pollution and resources, have prescribed the
permissible limits and harmful effects of these three metal ions
on human health [12–15] which are tabulated in Table 1.

Several methods have already been reported on removal of

Fe2+, Cu2+ and As5+ from aqueous solutions, viz., ion-
exchange [16], membrane filtration [17], reverse osmosis [18],
chemical precipitation [19], and adsorption [20]. Among these

methods, adsorption is considered to be a potential technique
in removal and recovery of metal ions from aqueous solution
[21]. At lower metal concentration, some of these conventional

technologies have been reported to be ineffective whereas
metal removal by adsorption is possible even at a lower con-
centration of 1 mg/L [22,23]. Since adsorption is a metabolism

free process, dried biomass of plants can be effectively used as
adsorbents because they remain unaffected by the toxic effect
of heavy metals [24].

Various adsorbents derived from microbes and plant bio-

masses such as Saccharomyces cerevisiae, Ceratophyllum
demersum, Myriophyllum spicatum, Potamogeton lucens, Salvi-
nia herzogii, and Eichhornia crassipes have been used in metal

removal [25–28]. The cost of using microbe-based biomass is
quite high compared to plant-based biomass. Therefore, more
attention is being paid by researchers on plant biomass since it

can be easily processed with least production cost [29]. Leaves
of Ficus religiosa, coffee beans, coconut shell and coir, jute
stick, cereals, lemon juice derived zinc oxide nanoparticles,
etc., have been used to prepare activated carbon for the

removal of Fe2+, Cu2+ and As5+ from water [30–32]. How-
ever, the metal uptake capability of activated biochar
developed from Colocasia esculenta has not been reported yet.

Therefore, the present study aimed towards preparation
and characterization of superheated steam activated biochar
of C. esculenta roots for its application in Fe2+, Cu2+ and

As5+ removal under the influence of six process parameters
viz. pH, temperature, adsorbent dose, initial metal concentra-
.

/L) CPCB (mg/L) Health risk

1.0 Haemorrhagic necrosis sloughing of mucosal

area in stomach haemochromatosis

1.5 Gastrointestinal disorder, irritation of nose,

mouth, eyes, headache

– Abdominal pain, vomiting, diarrhea,

muscular pain, flushing of skin, skin cancer
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tion, agitation speed and contact time in a series of batch
adsorption studies. Desorption and regeneration of spent
superheated steam activated biochar (SSAB) was also carried

out to assess its reusability. In addition, the cost involved in
SSAB preparation was calculated to account for its cost
effectiveness.

Material and method

Adsorbent preparation

Removal of Cu2+, Fe2+ and As5+ was studied using activated

biochar prepared from the roots of C. esculenta. C. esculenta
commonly known as ‘‘Taro” is a perennial plant which is
widely available in various parts of Asia, Africa and in other

tropical region. It is abundantly available in marshy areas,
ditches, ponds and lakes [33]. Before adsorbent preparation,
the roots were separated from the stem, diced into uniform
shape, washed thoroughly under running tap water and dried

for 2 days under sunlight during the daytime followed by dry-
ing in hot air oven (S.C. Dey Instruments Manufacturer,
Kolkata, India) at night at 100 �C. The roots were initially

sun dried before drying it in hot air oven to prevent it from
decomposition which might affect its adsorption efficiency.

It is important to determine the carbon quantity of a sam-

ple before it is set for carbonization. Determination of carbon
quantity gives a firsthand idea on the amount of carbon which
can be obtained for adsorbent preparation. Total carbon con-

tent, total volatile matter content and ash content of the root
sample were calculated by proximate analysis in accordance
with standard ASTM method [34]. For carbonization, the
dehydrated roots were placed inside a spherical shelled muffle

furnace (Sonuu Instruments Mfg. Co., Kolkata, India) at
350 �C for about 45 min which continued further in the lag
phase for 40 min at same temperature. After lag phase, the

roots were further heated at elevated temperature with an
increase in temperature at 10 �C per minute till it reached
600 �C. From 600 �C, carbonization of the roots was initiated

which lasted for 45 min and further extended to a lag phase at
same temperature for 20 min.

After carbonization the furnace temperature was increased
up to 700 �C with a heating rate of 10 �C per minute for

activation. In our study, physical activation was chosen over
chemical activation because physical activation is more conve-
nient in terms of cost and time since chemical activation by

acids (HCl, H2SO4, etc.) requires more time in pre and post
treatment of the samples [35]. Therefore, the biochar was
steam activated by passing superheated steam under a con-

trolled rate of 1.5 kg/cm2 at 700 �C for 45 min. After 45 min
of steam flow, the lag phase was maintained for 20 min at
700 �C. After completion of the activation process, the acti-

vated sample was ground using an electronic grinder into a
particle size of 450 lm by screening it through standard sieves.
SSAB was then kept inside an air tight container for further
use.

Preparation of stock solution

Stock solutions of the three metal ions viz., Fe2+, Cu2+ and

As5+ were prepared with analytical grade ferrous sulphate
(FeSO4�5H2O), copper sulphate (CuSO4�7H2O) and sodium
arsenate (Na2AsO4) purchased from Merck, Kolkata, India.
1000 mg/L stock solution of each metal ion was prepared with
2.7 g, 2.5 g and 4.16 g of FeSO4�5H2O, CuSO4�7H2O and

Na2AsO4 respectively in 1000 mL of deionized water (obtained
from laboratory setup) in three separate volumetric flasks. The
stock solutions were kept at acidic pH (below 6) to prevent it

from metal precipitation. 1 N hydrochloric acid and 1 N
sodium hydroxide obtained from Merck, Kolkata, India, were
used to maintain the solution pH.

Determination of point of zero charge (pHpzc)

0.5 g of SSAB was added in 30 mL of deionized water and agi-

tated and final pH of the slurry after 24 h was found to be 6.5.
pHpzc of SSAB was determined following the solid addition
method [36]. Initially, pH of 0.01 M KNO3 solution was
adjusted within a pH range of 2–6 followed by addition of

1 g of SSAB. This mixture was agitated properly and final
pH of the solution was obtained after 24 h of incubation.

Batch sorption studies

A series of batch adsorption studies of Fe2+, Cu2+ and As5+

from aqueous solution using activated biochar was carried out

in 100 mL Erlenmeyer flask containing 30 mL of working solu-
tion. Optimization of Fe2+, Cu2+ and As5+ removal was
designed with six different process parameters. Effects of pH
(2–7), temperature (15–40 �C), adsorbent dose (0.2–1.0 g/L),

initial concentration (5–90 mg/L), agitation speed (100–
180 rpm) and contact time (15–2160 min) were studied in order
to determine optimum parametric condition for maximum

removal of these ions from aqueous solutions. All experiments
were conducted in triplicate to reduce maximum error
occurred during execution of the experiment. Concentrations

of Fe2+, Cu2+ and As5+ ions before and after adsorption
were calculated using the mass balance equation (Eq. (1)):

q ¼ ðCi � CFÞ
m

V ð1Þ

where q is maximum metal uptake at equilibrium (mg/g), Ci

and CF are initial and final metal concentrations in the aque-
ous solution (mg/L) respectively, m is mass of the adsorbent

mixed (g) and V is volume of the metal working solution
(L). Percentage of metal ion removal from the aqueous
solution after adsorption was calculated using Eq. (2):

Removal % ¼ ðCi � CFÞ
Ci

� 100 ð2Þ
Analytical methods

Concentrations of Fe2+, Cu2+ and As5+ before and after
adsorption were measured using a UV–Vis spectrophotometer

(REMI UV-2310, Kolkata, India). 1,10-Phenanthroline
method [37] was used to determine Fe2+ concentration. In this
process, hydroxylamine retains iron in its ferrous state.

Sodium acetate used maintains pH of the solution within pH
3–9 because phenanthroline binds best within this range with
ferrous ions forming reddish orange colour complex. Concen-

tration of ferrous ion was determined at 508 nm.
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Polyethyleneimine method [38] was used to determine con-
centration of Cu2+ in the solution because of its ability to
form complex with cuprous ions over a wide range of pH.

Polyethyleneimine is a colourless solution which when added
to copper solution reacts with Cu2+ ions and forms a deep
blue coloured solution which was detected at 275 nm.

Estimation of As5+ was carried out by variamine blue
method [39]. In this method, As5+ is converted to As3+ in
presence of potassium iodate forming iodine in the solution

which reacts with variamine blue forming a blue coloured solu-
tion which was detected at 556 nm.

Desorption and regeneration study

Desorption of metal ions from spent adsorbent was studied to
examine its re-usability. After adsorption of Fe2+, Cu2+ and
As5+ onto SSAB, the spent adsorbent was agitated in a mix-

ture of 1 N HCl, 1 N ethanol, deionized water and tap water
for desorption. After metal adsorption, the spent adsorbents
were separated from aqueous solution by centrifugation at

5000 rpm and dried at 60 �C for about 30 min inside a hot
air oven. About 20 mg of SSAB was mixed in 30 mL of des-
orbing solutions in 100 mL Erlenmeyer flask and agitated for

360 min at 25 �C. The desorbed samples were separated from
aqueous solution by centrifugation and the supernatant
obtained was used to determine desorbed metal ion concentra-
tion as desorption percentage (Dp) using Eq. (3) [40]:

Dp % ¼ md

ma

� �
� 100 ð3Þ

where md is the amount of desorbed metal in mg and ma is the

amount of adsorbed metal in mg.
Regeneration of the desorbed adsorbent was performed to

determine its re-adsorption capability. After desorption, the

adsorbent was washed thoroughly with deionized water to
remove excess of H+ and OH� ions from the sorbent. The
adsorbent was washed with 1 N NaOH for regeneration of
SSAB. Adsorption-desorption cycle was repeated for multiple

times to analyse the maximum removal efficiency of the spent
adsorbent.

Results and discussion

Characterization of the adsorbent

Table 2 represents the proximate analysis of raw biomass and
activated biochar of SSAB. It can be seen that activation of the

raw biomass has affected its physical characteristics by
Table 2 Proximate analysis of raw biomass and activated

biochar.

Properties Results

Raw biomass

weight (%)

Activated biochar

weight (%)

Moisture content 10.5 3.85

Ash content 6.93 3.67

Volatile content 74 20.65

Fixed carbon content 19.07 75.68
improvising its efficiency as adsorbent since activation helps
in increasing the number of pores on adsorbent surface by sub-
tracting maximum amount of functional groups which might

have covered the adsorbent surface. Moisture content, ash
content and volatile matter content decreased due to activa-
tion, thus, increasing total number of pores on the adsorbent

surface. On the other hand, carbon content of SSAB also
increased. Characterization of the activated biochar was
investigated by physical and instrumental methods. Physical

characterization of the adsorbent was analysed in terms of
micro-pore volume, total pore volume and surface area by
physisorption of N2 on to SSAB at normal boiling temperature
(�196.75 �C) in Quanta Chrome Autosorb Automated Gas

Adsorption System (ASORP 2PC 1.05). Nitrogen porosimetry
principle was used to determine the volume adsorbed to des-
orbed ratio on SSAB at different p/p0 to obtain its adsorption

to desorption ratio value. Dubinin-Radushkevich (DR) equa-
tion was applied in deduction of micro pore volume of the
activated biochar [41]. Surface micro-morphology of the

adsorbent was studied in BET surface analyser (SMART
Instruments, India) [25]. Surface area of SSAB was found to
be 102.4 m2/g when the adsorbent was treated with 29.78%

of N2 and 71.25% of He. The same mixture of N2 and He
was used to determine pore volume of the adsorbent. For pore
volume determination, proportion of N2 and He in the gaseous
mixture was changed to 94.96% and 5.04% respectively.

Micro-pore volume and total pore volume of SSAB obtained
were 0.3529 cm3/g and 0.4053 cm3/g respectively. This steam
activated biochar produced from roots of C. esculenta was

further used as an adsorbent in metal removal from aqueous
solution.

SEM analysis of the adsorbent

Surface morphological analysis of the adsorbent before and
after adsorption was performed in a scanning electron micro-

scope (SEM) (JEOL JSM-6030, Kolkata, India). Before
analysis, the samples were coated with palladium (8 nm of
thickness) at an application rate of 30 mA for 30 s. Coating
of sample was done to enhance the conductivity of the sample

under SEM. The sample was coated inside an auto fine coater
(JEOL JFC 1600, JEOL INDIA PVT. Ltd., Kolkata, India)
followed by drying of the sample using infra red (IR) lamp

before it was analysed. SEM images as shown in Fig. 1a–d
of SSAB both before and after adsorption for each of Fe2+,
Cu2+ and As5+ provide a clear image of numerous pores

and greyish crystals of metal ion bonds present on the surface
of SSAB. After superheated steam activation, the adsorbent
surface was modified with irregular clusters of numerous
minute honey comb-like structures making wide space for

adhesion. The honey comb-like structures formed were void
in nature and were filled with metal ions all along the pores
present on the adsorbent surface.

Fourier transform infrared spectrum analysis of the adsorbent

Fourier Transform Infrared (Smart Omni Transmission IS 10

FT-IR Spectrometer, Thermo Fisher Scientific, India) analysis
of SSAB and metal loaded SSAB was conducted to determine
the functional groups present on the adsorbent surface which

might be responsible for Fe2+, Cu2+ and As5+ adsorption.



Fig. 1 SEM image of (a) raw adsorbent and after adsorption of (b) Fe2+ (c) Cu2+ and (d) As5+.
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2 mg of each sample was separately mixed with 100 mg of

potassium bromide and finely ground. The ground powder
was pressed into pellets before the adsorbent was analyzed
[40]. The FT-IR spectrum as shown in Fig. 2 exhibits a good

number of peaks suggesting various functional groups to be
present on the adsorbent surface. When the infrared light
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Fig. 2 FT-IR spectra of SSAB before and after adsorption of

Fe2+, Cu2+ and As5+.
interacts with the molecules present on the sample, the func-

tional groups present on it will stretch, bend and contract.
Thus, specific functional group will absorb infrared radiation
at particular wavelength irrespective of the molecular structure

of the sample [42]. Therefore on the basis of this principle,
specific functional groups present on SSAB responsible for
Fe2+, Cu2+ and As5+ adsorption were studied within the

range of 4000–400 cm�1. Functional groups such as carboxylic
acids, aldehydes and aromatic groups were located within
3400–2400 and 1725–1700 cm�1, 2830–2695 cm�1 and 3100–
3000 cm�1 frequencies respectively. Terminal alkynes were

found within 3330–3200 cm�1 frequency and alcohols and phe-
nols ranging within the stretch of 3500–3640 cm�1 were found
on the surface of raw SSAB.

FTIR spectrum obtained from spent SSAB illustrates shift-
ing of peaks for all three metal ions suggesting bond formation
between the metal ions and adsorbent molecules. In case of

spent adsorbent, there was a shifting of the peaks at
3310 cm�1 (for Fe2+), 3432 cm�1 (for Cu2+) and 3331 cm�1

(for As5+). These shifts are quite typical for complexation of
metal ions by coordination with phenolic groups [43]. The

metal ions formed a bond with medium metal strength forming
a metal-oxide (Me-O) by replacing the H+ ion from the phenol
group. Apart from the phenolic group, complexation with the

carboxylic group was also found. Another shifting occurred at
1677 cm�1, 2463 cm�1 and 2516 cm�1 for Fe2+, Cu2+ and
As5+ respectively suggesting involvement of carboxylic acid

in metal adsorption. During adsorption of metal on to adsor-
bent comprising carboxylic functional group on its surface, it
undergoes chelation either at o-hydroxycarboxylic or at

o-dicarboxylic sites. It has already been reported that the
carboxylic groups present on the adsorbent are responsible
for most of the adsorption of metal ions [44]. Thus FTIR
analysis of raw SSAB and spent SSAB suggests adsorption

of metal ions on to the adsorbent which was facilitated by
the carboxylic and phenolic groups present on it.
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Proposed mechanism of Fe2+, Cu2+ and As5+ adsorption on
SSAB

It is important to understand the inherent mechanism of metal
adsorption onto adsorbent. Solubility of the solute (adsorbate)

and affinity of particular solute ion onto adsorbent are two
important resultant driving forces of an adsorption mecha-
nism. These driving forces may be due to the type of bonding
which exists between an adsorbent and adsorbate. On this

aspect, FTIR analysis helps in understanding the underlying
mechanism of an adsorption process. Apart from the func-
tional groups present on SSAB, the above mentioned process

parameters also played an important role in culminating the
sorptive mechanism. Taking into account, this work presents
a description of Fe2+, Cu2+ and As5+ adsorption on to

SSAB. The FTIR analysis suggests the presence of carboxylic
acids, aldehydes, aromatic groups, terminal alkynes, alcohols
and phenols as functional groups on SSAB. Among these func-

tional groups, carboxylic acid and phenol were found to be
responsible for adsorption of these metal ions. Carboxylic acid
is polar in nature, which donates and accepts both H+ and
OH� groups due to the presence of carbonyl and hydroxyl

groups, whereas, phenol consists of both phenyl (AC6H5)
and hydroxyl group (AOH). Presence of multiple functional
groups on an adsorbent generates higher possibilities of adsor-

bate and adsorbent interactions. Metal binds on to adsorbent
by complexation and hydrolysis mediated adsorption. Shifting
of AOH stretch after metal adsorption suggests hydrogen

bonding. In metal adsorption, permanence of complexes is
established mostly by the basicity of donor cluster, i.e., greater
the basicity, greater is the stability of the complexes. In case of
Cu2+, Fe2+ and As5+, the AOH group played an important

role in bonding with the adsorbent. In general, metal fixes
on to carbon by ligand formation and via ion-exchange. In
our study, all the three ions formed ligands with the functional

groups by replacing H+ with metal ions creating an
organometallic complex on the adsorbent surface as it can
be seen in Scheme 1. Though both phenol and carboxylic
(a) Adsorp�on of metals on carboxylic acid

Scheme 1 Adsorption mechanism of Fe2+, Cu2+ and As5+ on to SSA

acid. (b) Proposed bonding of Fe2+, Cu2+ and As5+ with phenol.
acid took part in the metal adhesion, the metal ion chemistry
and its affinity created an overall difference it their overall
uptake [45].

Optimization of single metal adsorption

Point of zero charge pHpzc and effect of pH

It is important to analyse the point of zero charge of an
adsorbent since it determines the pH at which adsorbent

surface determines net neutrality of total electric charges.
The pHpzc of the activated biochar was found to be 6.2. It
was observed that at this particular pH of 6.2, functional

groups present on SSAB which might be either acidic or
basic in nature will no longer affect pH of the aqueous
solution. Therefore, pH of the aqueous solution will influence
both adsorbent surface charge and ionization of contami-

nants. Both H+ and OH� ions adhere firmly onto the
adsorbent’s surface, thus affecting the sorption of contami-
nant ions.

Effect of pH on adsorptive removal of Fe2+, Cu2+ and
As5+ using SSAB was studied within the pH range of 2–7. It
is shown in Fig. 3a that adsorptive uptake of Fe2+, Cu2+

and As5+ depends highly on pH where with increase or
decrease in pH, overall uptake capacity of the adsorbent chan-
ged. At lower pH, maximum adsorption of Fe2+ was
observed. When initial pH of ferrous aqueous solution was

increased from pH 2 to 3, a gradual increase in the metal
uptake by SSAB was observed. At pH 3, after a steep incre-
ment of metal adsorption from pH 2, uptake capacity of SSAB

reached its equilibrium with maximum removal of 78.94%.
There was a decrease in Fe2+ ion adsorption onto SSAB as
the pH was increased from 3 to 7. This can be attributed to

the fact that the predominant ferrous species [Fe(H2O)6]
2+

found at lower pH fails to interact with adsorbent surface since
with increase in pH, the number of [Fe(OH)(H2O)5]

+ also

increases [46,47] thereby leaving lesser surface for ferrous ion
to interact with the adsorbent. Due to the increase in
[Fe(OH)(H2O)5]

+ species, precipitation of Fe2+ into Fe(OH)3
(b) Adsorp�on of metals on phenol

B. (a) Proposed bonding of Fe2+, Cu2+ and As5+ with carboxylic
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increases resulting in less adsorption of Fe2+ at higher pH [48].

Similarly, adsorption of Cu2+ and As5+ onto SSAB under the
influence of pH was studied. In case of Cu2+ and As5+,
removal percentage increased with increase in pH. In Fig. 3a,

it can be clearly seen that at pH 5 and 6, the adsorbent was
able to remove Cu2+ and As5+ with a maximum removal of
79.66% and 74.74% respectively, whereas at lower pH, it
was unable to remove Cu2+ and As5+ at a considerate

amount. This may be due to the affinity of SSAB towards
H+ ions which increases at higher concentration of H+ ions.
This increase in H+ ions prevents bond formation between

the heavy metal ions and the adsorbent surface. Thus, it can
be clearly said that SSAB has the capability to adsorb various
metal contaminants at various pH levels.
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Effect of adsorbent dose

Adsorbent dose is one of the important factors which affect the
adsorption process significantly. In order to determine the
effect of adsorbent dose on removal percentage of Fe2+,

Cu2+ and As5+, amount of SSAB dose was varied within a
range of 0.2–1.0 g/L keeping the adsorbate concentration con-
stant at 10 mg/L. Effect of SSAB dose on removal percentage
of Fe2+, Cu2+ and As5+ is shown in Fig. 3b. It followed a pre-

dicted manner of increase in metal adsorption with increase in
adsorbent dose until it reached a saturation point as the dose
was increased to an optimum amount. Among various dosages

used, 0.6 g/L of SSAB was observed to be the optimum adsor-
bent dose showing maximum removal. At lower adsorbent
dosage values, adsorption is affected by inter-ionic competi-

tion among the adsorbate particles which was more due to
presence of lesser surface area of SSAB. As a result of resis-
tance at solid liquid interface, mass transfer of Fe2+, Cu2+

and As5+ became feasible at higher adsorbent dose. Also,
removal percentage decreased as the adsorbent dose was
increased beyond 0.6 g/L. This might have occurred due to
aggregation of adsorbent particles and repulsive action among

the binding sites which decreased binding capability between
adsorbate and adsorbent leading to a reduction in total
number of binding sites on SSAB.

Effect of agitation speed

Role of agitation speed in removal of Fe2+, Cu2+ and As5+

from aqueous solution was studied. In Fig. 3c, it can be seen
that removal of the metal contaminants was greater at higher
agitation speed. Removal of Fe2+, Cu2+ and As5+ was opti-
mum at 160 rpm with 0.6 g/L of adsorbent dose, after which

it showed a steady decline in both adsorbance and adsorptivity.
Adsorption of Fe2+ showed a consistency from 100 to 160 rpm
with little variation in overall removal percentage from 85.58%

to 88.89%, whereas removal percentage of Cu2+ increased
gradually with increase in agitation speed until it removed
88.88% at 160 rpm. On the other hand, removal percentage

of As5+ continued to increase from 61.48% to 63.68% when
the agitation speed was increased from 120 to 160 rpm but
the differences were very negligible. In case of Cu2+ and

As5+ when the agitation speed was set at 180 rpm, removal
percentage decreased as compared to Fe2+, where the removal
percentage remained constant. Adsorption of Cu2+ and As5+

decreased at higher agitation speed which might be due to the

fact that at elevated speed, these metal ions were unable to bind
onto the adsorbent surface. The time required for metal ions to
bond with SSAB was less due to high speed thus affecting total

metal adsorptivity.

Effect of initial metal concentration and adsorption isotherm

Inter-relationship of initial Fe2+, Cu2+ and As5+ concentra-
tions and sorptive efficiency of SSAB were studied with an
adsorbent dose of 0.6 g/L. As it shown in Fig. 3d that with

increase in initial metal concentration from 5 to 90 mg/L, the
rate of adsorption increased with an optimum initial concen-
tration of 50, 30 and 50 mg/L of Fe2+, Cu2+ and As5+ respec-
tively. Adsorption of the three metal contaminants increased

gradually with increase in initial concentration. When the
initial metal ion concentration was within the range of
5–50 mg/L in case of Fe2+ and As5+ and 5–30 mg/L for
Cu2+, there was an increment in the adsorption of Fe2+,

Cu2+ and As5+ beyond which there was a saturation in overall
adsorptivity of metal ions onto SSAB. When the ratio of metal
ion concentration to adsorbent dose is less, higher energy sites

present on adsorbent surface are used up for adsorption.
Unlikely, when the ratio increases, these higher energy sites
overcrowd adsorbent surface leaving little space for lower

energy sites to execute remaining adsorption, thus decreasing
sorption efficiency of the adsorbent. Maximum removal
percentage of Fe2+, Cu2+ and As5+ achieved were 92.39%,
90.12% and 65.3% respectively. Thus, it can be concluded that

SSAB can effectively remove most of Fe2+, Cu2+ and As5+

from aqueous solution if the initial metal ion concentration
remains within 50 mg/L and 30 mg/L and 50 mg/L of Fe2+,

Cu2+ and As5+ respectively.
In order to obtain a better knowledge on adsorption

efficiency of an adsorbent, isotherm models give a better

explanation of the sorptive process. Adsorption isotherms of
the three metal contaminants were developed from batch
adsorption study with SSAB as adsorbent. Adsorbance of

Fe2+, Cu2+ and As5+ onto SSAB was calculated with differ-
ent initial metal ion concentrations. Thus, the findings were
fitted in Langmuir and Freundlich adsorption isotherm models
[49] using Eqs. (4) and (5) as follows:

1

qe
¼ 1

Cebqm
þ 1

qm
ð4Þ

where qe (mg/g) is the amount of the adsorbate absorbed on

per unit mass of the adsorbent at the equilibrium, qm (mg/g)
is the adsorption capacity of adsorbent, b (L/mg) is the adsorp-
tion constant interpreted as the amount of free energy capacity

of the adsorbent and Ce (mg/L) is the concentration of Fe2+,
Cu2+ and As5+ in the aqueous solution at equilibrium.

ln qe ¼ lnKF þ 1

n
lnCe ð5Þ

where KF is the adsorption proportionality constant and n is
the dimensionless exponential adsorption constant related to
the intensity of bond formation between the adsorbate and

the adsorbent.
An inter-relationship between the metal contaminants and

SSAB was established which suggested a variation in adsorp-
tive behaviour of the adsorbent with initial adsorbate concen-

tration. When Fe2+, Cu2+ and As5+ concentrations in the
aqueous solution were increased from 5 to 50 mg/L, adsorptive
uptake of the adsorbent also increased. Values obtained from

isotherm characterization of the present adsorption study have
been listed in Table 3. The R2 values obtained for the three
metal ions viz., Fe2+, Cu2+ and As5+ were 0.982, 0.988 and

0.994 for Langmuir and 0.946, 0.963 and 0.941 for Freundlich
isotherm model. A comparative study on the maximum
adsorptive capacity of Fe2+, Cu2+ and As5+ on to other con-

ventional adsorbent has been listed in Table 4 [49–55]. The val-
ues of regression co-efficient (R2) obtained from the isotherm
models suggested a monolayer metal adsorption. The values
of qm and b obtained from Langmuir isotherm model for

Fe2+, Cu2+ and As5+ removal suggest an appreciable metal
uptake capacity of SSAB with little free energy involved in
it. The values of qm suggest an appreciable extended affinity

of ferrous ions towards SSAB as compared to cuprous and



Table 3 Related parameters of Langmuir and Freundlich isotherms obtained from the adsorption of and correlation of Fe2+, Cu2+

& As5+ adsorption onto SSAB.

Metal ions Langmuir Freundlich

qe (mg/g) b (L/mg) R2 Kf (mg/g) n R2

Fe2+ 6.19 0.353 0.982 1.25 1.28 0.946

Cu2+ 2.31 0.089 0.988 1.18 1.22 0.963

As5+ 2.2 0.001 0.994 0.832 1.2 0.941

Table 4 Comparison of adsorption capacities of various adsorbents for Fe2+, Cu2+ and As5+.

Adsorbent used Mode of modification Adsorption capacity (mg/g) Reference

Fe2+ Cu2+ As5+

Waste crab shell Pretreatment with HCl – – 8.3 [49]

Untreated mangos teen shell – – 3.15 – [50]

Pomegranate peel Chemically activated by phosphoric acid – 5.8 – [41]

Jute fibres Chemically oxidized using H2O2 and NaOH – 4.23 – [51]

Untreated coir fibre – 2.03 – – [52]

Oxidized coir fibre Activation using H2O2 and NaOH 7.49 – – [52]

Activated olive stone Activation using K2CO3 and HNO3 and steam – – 0.111 [53]

Activated olive pulp Activation using K2CO3 and HNO3 and steam – – 0.129 [53]

m-Phenylenediamine Chemical oxidative polymerization using (NH4)2S2O8 – 12.3 – [54]

p-Sulfonic-m-phenylenediamine Chemical oxidative polymerization using (NH4)2S2O8 – 28.4 – [54]

SSAB Steam activation of biochar produced from roots of

C. esculenta

6.19 2.31 2.2 [Present work]
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arsenate ions. Also the values of KF and n were more for
ferrous ion than the remaining two metal ions. Therefore the

adsorption model suggests that adsorption of these metal
contaminants on to surface of SSAB occurred in properly
organized sites. These sites were considered to be potentially

equivalent while maintaining uniform distance from each
other; hence, no intra-molecular interactions were observed.
Thus, steam activation of the biochar has helped in developing

uniform sites for metal ion adsorption.

Effect of adsorption time and adsorption kinetics

Fig. 3e shows the effect of adsorption time on metal uptake of

SSAB from the aqueous solutions of Fe2+, Cu2+ and As5+

studied within a time range of 15–2160 min with 0.6 g/L of
SSAB. Metal uptake by the adsorbent increased inconsistently

with increase in the adsorption time. This clearly states that
adsorption of these metal ions was divided into two segments
with respect to time, that is, a former rapid step and a subse-

quent delayed step. Adsorption of Fe2+ was faster within
the former rapid step of first 30 min with an initial concentra-
tion of 50 mg/L, which increased the adsorptive capacity of the

adsorbent almost up to 5.82 mg/g with an overall removal of
85.19%. After a time lapse of another 30 min, adsorption effi-
ciency of SSAB increased to an extent of 6.19 mg/g with max-
imum removal of 97.34% from the aqueous solution. A similar

sequence of time lapse was observed in case of Cu2+, where
maximum removal of 94.89% with an uptake of 2.31 mg/g
was observed when the equilibrium reached at 180 min from

an initial concentration of 30 mg/L. Therefore it can be said
that the former rapid step for both Fe2+ and Cu2+ occurred
at same time interval of 30 min but the remaining Cu2+ ions

took two hours to reach its equilibrium. On the other hand,
the arsenate ions took comparatively more time in adhering
on to SSAB. The arsenate ions followed a comparative delayed

phase where SSAB took 1440 min to reach its saturation point
at 2.2 mg/g where it was able to remove 84.09% from arsenate
aqueous solution. From the adsorption trend followed by

SSAB during arsenate adsorption, it can be said that in com-
parison with the other two metal ions it took relatively more
time to reach its maxima creating a former delayed step fol-

lowed by a subsequent rapid step. The former rapid step
observed for ferrous and cuprous ions might be due to physical
and surface adsorptive phenomenon owing to the presence of
surface reactive groups. This surface sorption of the ions onto

adsorbent surface might have covered up the pores thus delay-
ing the adsorption rate. The arsenate ions, on the other hand,
were not able to adhere themselves onto the SSAB surface in

an appreciable rate which might be due to low bonding energy
resulting in higher contact time for adsorption.

Adsorption kinetics is considered to be an important

criterion in characterizing the adsorption rate of a sorption
reaction. It describes the influence of reaction time governing
rate of adsorbent uptake. Pseudo-first order and pseudo-
second order adsorption kinetic models were used to determine

the adsorption kinetics of Fe2+, Cu2+ and As5+ onto SSAB.
Eqs. (6)–(8) were used to generate data from the kinetic models
[49]:

lnðqe � qtÞ ¼ ln qe � badt ð6Þ
where qe is the amount of metal adsorbed at equilibrium
(mg/g), and qt is the amount of metal adsorbed at time t
(mg/g). bad is the adsorption constant calculated from the ln

(qe � qt) vs t plot.

t

qt
¼ 1

b2q2e
þ 1

qe
t ð7Þ
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h ¼ b2q
2
e ð8Þ

where b2 is the adsorption constant for pseudo-second kinetics
and h is the initial adsorption rate (mg/g min). Tables 5–7 rep-
resent the subsequent parameters, which suggest the kinetics of

Fe2+, Cu2+ and As5+ adsorption on to SSAB could be more
explainable with pseudo-second order kinetic model due to
greater regression coefficient (R2). This could be attributed

to the rate determining step which was governed by covalently
driven forces either by electron exchanges or by valence forces
via sharing of electrons at the junction of solid liquid interface.
Results suggest the rate of adsorption to be faster due to huge

amount of metal adsorption on to SSAB within a short period
of time for both ferrous and cuprous ions which was not the
same in case of arsenate.

Effect of temperature and thermodynamics study

Effect of temperature on metal adsorptivity of SSAB was

investigated. In Fig. 3f it can be seen that the adsorptivity of
SSAB altered with increase in temperature up to 40 �C. At a
moderate temperature range of 25–30 �C, maximum removal

of 92.22%, 88.88% and 72.5% of ferrous, cuprous and arsen-
ate ions respectively was observed. Adsorptivity and adsorp-
tion of Fe2+, Cu2+ and As5+ decreased as the temperature
was increased with an increment of 5 �C up to 40 �C which

suggested adsorption of these metal contaminants was
favoured at moderate temperature. Interaction between the
functional groups present on SSAB and Fe2+, Cu2+ and
Table 5 Calculated parameters of pseudo-first order and pseudo-se

Metal ion Initial conc. (mg/L) Pseudo-first order

qe (exp) (mg/g) qe (cal) (mg/g)

Fe2+ 5 2.245 1.181

10 2.46 1.691

30 3.9 3.167

50 6.195 5.110

Table 7 Calculated parameters of pseudo-first order and pseudo-se

Metal ion Initial conc. (mg/L) Pseudo-first order

qe (exp) (mg/g) qe (cal) (mg/g)

As5+ 5 3.705 2.18

10 3.46 1.24

30 2.9 1.16

50 2.20 0.18

Table 6 Calculated parameters of pseudo-first order and pseudo-se

Metal ion Initial conc. (mg/L) Pseudo-first order

qe (exp) (mg/g) qe (cal) (mg/g)

Cu2+ 5 2.56 0.1

10 2.41 0.418

30 2.31 1.02

50 2.31 1.188
As5+ was able to form strong bond at this temperature range
which reduced with increase in temperature [56]. Thus, the
adsorption is exothermic since adsorption and adsorptivity

decreased with increase in temperature.
The influence of temperature on adsorptive removal was

further investigated in terms of thermodynamic properties

viz., Gibbs’ free energy (DG�), enthalpy (DH�) and entropy
(DS�). These thermodynamic parameters were established from
the experimental output obtained from the following Eqs. (9)

and (10):

DG� ¼ �RT ln ba ð9Þ
where R is the universal gas constant with the value of
8.314 � 10�3 kJ/mol K, T is the absolute temperature in

Kelvin (K), ba is the adsorption constant at equilibrium
derived from Langmuir isotherm model at corresponding tem-
perature, DH� (kJ/mol), DS� (kJ/mol K) and DG� (kJ/mol) are
the enthalpy, entropy and Gibbs free energy respectively.

Gibbs free energy at respective temperature was calculated
from Eq. (9) and the change in enthalpy and entropy was
calculated from Eq. (10):

DH� ¼ DG� þ TDS� ð10Þ
From the slope and intercept of DG� and T plot as shown in
Fig. 4, the values of DH� and DS� were obtained. Values of
DH� and DS� were found to be negative. Negative values of

DH� suggested the adsorption process to be exothermic in
nature. On the other hand, negative values of DS� suggested
decrease in affinity of the metal ions with increase in
cond order for Fe2+ adsorption.

Pseudo-second order

bad R2 qe (cal) (mg/g) b2 h (mg/g min) R2

0.005 0.993 2.02 0.122 0.853 0.998

0.018 0.974 2.15 0.362 1.32 0.999

0.022 0.99 3.42 0.664 2.76 0.999

0.018 0.991 6.62 0.671 3.3 0.993

cond order for As5+ adsorption.

Pseudo-second order

bad R2 qe (cal) (mg/g) b2 h (mg/g min) R2

0.001 0.989 3.024 0.671 10.41 0.991

0.018 0.974 2.22 0.287 3.3 0.999

0.022 0.990 2.77 0.017 0.09 0.999

0.005 0.980 2.2 0.021 0.004 0.999

cond order for Cu2+ adsorption.

Pseudo-second order

bad R2 qe (cal) (mg/g) b2 h (mg/g min) R2

0.005 0.992 2.49 0.039 5.43 0.991

0.008 0.988 2.22 0.033 4.91 0.999

0.01 0.993 2.02 0.023 3.80 0.998

0.011 0.991 1.99 0.01 3.45 0.996
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Fig. 4 Graphical representation of thermodynamic study of

Fe2+, Cu2+ and As5+ at pH: 3, 5 and 6; contact time: 60, 180 and

1440 min; temp.: 20–40 �C; initial conc.: 50, 30 and 50 mg/L;

adsorbent dose: 0.6 g/L respectively.
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temperature. Randomness of metal solution and the adsorbent
at solid-liquid interface decreases during adsorption. Negative

values of DG� indicated the process to be spontaneous and fea-
sible in nature, where the value of DG� increases with increase
in temperature as seen in Table 8, suggesting less availability of
metal species. Therefore, with rise in temperature, impact of

adsorption phenomenon decreases due to decrease in affinity
and spontaneity of the process.

It is essential to determine the method of adsorption mech-

anism viz., chemisorptions or physisorption, in an adsorption
study. Physisorption or physical adsorption refers to a com-
parative weaker interface where the adsorbate adheres on to

the adsorbent surface via van deer Waals force, whereas
chemisorption or chemical adsorption is regarded to be firmer
due to exchange of electrons within the adsorbate and adsor-

bent forming chemical bonds. This bond formation causes
increase or decrease in surrounding temperature leading to
the change in enthalpy (DH�) of the system. Therefore change
in enthalpy can be considered to be the mode determining fac-

tor of an adsorption mechanism. An adsorption process is con-
sidered to be exothermic (�DH�) when most of the energy gets
released into the surrounding due to lack of bond formation

between the adsorbate and adsorbent suggesting the process
to obey physisorption. On the other hand, in endothermic
reaction, the system temperature falls from surrounding tem-

perature due to consumption of more energy in forming chem-
ical bonds between adsorbate and adsorbent suggesting the
process to follow chemisorptions. Consequently the present
thermodynamic study on the adsorption of Fe2+, Cu2+ and

As5+ on to SSAB suggests a physisorption process with
Table 8 Related parameters of thermodynamic study obtained from

Metal ions DG� (kJ/mol)

25 �C 30 �C 35 �C 40

Fe2+ �6.192 �5.940 �5.759 �5

Cu2+ �6.411 �6.071 �5.768 �5

As5+ �3.757 �3.309 �2.947 �2
maximum adsorption within 25–30 �C. Also it can be said that
inefficiency of the adsorption process at higher temperature
was due to the alteration of system enthalpy, suggesting

accumulation of heat in the surrounding; thus reducing the
chances of bond formation and its stability [57].

Desorption and regeneration study

A study on desorption of SSAB is shown in Fig. 5a. It can be
seen that the rate of desorption was high for each metal adsor-

bate when spent SSAB was treated with 1 N HCl. SSAB was
then used for multiple cycles of desorption and re-adsorption
study with an intermediate step of regeneration. As illustrated

in Fig. 5b, the efficacy of SSAB retained after each desorption
cycle when it was treated with 1 N NaOH, but it decreased
each time when the adsorbent was reused for adsorption
without regeneration as seen in Fig. 5c. Hence the removal

percentage decreased from 97.24%, 94.89% and 87.94% to
60.8%, 66.34% and 71.2 % for Fe2+, Cu2+ and As5+ respec-
tively when the desorbed adsorbent was used without regener-

ating it. In desorption, most of Fe2+, Cu2+ and As5+ got
substituted with H+ ions of acid which were obtained from
the supernatant of desorption solution. Again, pH of metal

solution decreased during re-adsorption study owing to the
presence of excess H+ ions on SSAB which got replaced by
Fe2+, Cu2+ and As5+ ions. Therefore, this excess discharge
of H+ ions resulted in decrease in overall solution pH, which

eventually lowered the removal percentage of Fe2+, Cu2+ and
As5+. Thus SSAB showed possibilities of re-adsorption
without major loss in its adsorption efficiency.
Cost estimation of SSAB production

Successful implementation of technique for sorptive removal

of contaminants from aqueous solution in commercial field
depends largely on the cost of adsorbent production. This
study of adsorptive removal of Fe2+, Cu2+ and As5+ concen-

trates on the use of an activated biocharred adsorbent indige-
nously derived from unwanted weed C. esculenta. No
maintenance cost of precursor and curbing the problem of
deforestation due to robust growth of this weed are the two

most important factors governing adsorbent selection. There-
fore, the cost of adsorbent preparation from C. esculenta is
of great importance. The cost involved in production of acti-

vated biochar from C. esculenta has not been reported yet as
per literature review. Production cost of adsorbent consists
of various steps viz., collection, preparation of adsorbent

and reusability. Overall expenditure on the adsorbent prepara-
tion thus affects its usage at commercial level. Cost estimation
of preparing 1 kg SSAB is calculated in Indian rupee (INR)

which is as follows:
the adsorption of Fe2+, Cu2+ and As5+ onto SSAB.

DH� (kJ/mol) DS� (kJ/mol K) R2

�C

.565 �18.46 �0.041 0.994

.494 �24.61 �0.061 0.997

.633 �25.98 �0.074 0.993



Fig. 5 (a) Desorption study of the adsorbent after adsorption. (b) Regeneration–adsorption cycle with 1 N NaOH treatment. (c)

Regeneration–adsorption cycle without 1 N NaOH treatment (each experiment was conducted with adsorbent dose: 0.6 g/L of SSAB;

contact time: 360 min; temp.: 25 �C).

608 S. Banerjee et al.
I. Cost of raw material (CRM) = 0.0 INR, since the raw

material is locally and abundantly available near water
bodies.

II. Cost of size reduction (CSR) = 0.0 INR, since the size

reduction was processed manually, but in case of com-
mercial production 10% extra charge should be added
to the overall cost.

III. Cost of cleaning raw material (CCRM) = (CH) +

(CW) = 2.23 INR, the raw material was washed with
distilled water obtained from laboratory setup.

where CH= cost of heating (electricity consumption for

1 L distillation unit � cost of 1 unit) = 0.5 � 4.66 =
2.23 INR.
CW= cost of water usage (tap water was used) = 0.0

INR.
IV. Cost of drying raw material (DRM) = hours � units �

per unit cost = 12 � 1 � 4.46 = 53.52 INR.

V. Cost of carbonization (CC) = CH= cost of heating =
hours � units � per unit cost = 1.5 � 3 � 4.46 = 20.07
INR.

VI. Cost of superheated steam activation (CSSA) = (CS) +

(CH) = 2.23 + 13.38 = 15.61 INR.

where CS = cost of superheated steam generation =
hour � units � unit per cost = 1 � 0.5 � 4.46 = 2.23

INR.
CH= cost of heating = hour � units � per unit cost =
1.5 � 2 � 4.46 = 13.38 INR.
VII. Cost of sample grinding (CSG) = 0.0 INR, the steam
activated biochar was ground manually using a motor
and pestle.

Therefore, the overall cost for SSAB production = CRM+
CSR+CCRM+DRM+CC+CSSA+CSG= 91.43 INR.

Overhead charge ¼ 10% of overall cost ¼ 0:1� 91:43

¼ 9:143 INR:

Net cost of SSAB production ¼ 91:43þ 9:14 ¼ 100:57 INR:

Cost estimation of SSAB production suggests that adsorbent

preparation from the roots of C. esculenta is a cost effective
process. Net cost for SSAB production was only 100.57
INR, compared to other activated carbon products derived
from plant biomass [58]. With 1 kg of SSAB, 1.5 tons of metal

contaminated water can be treated. Thus, activated biochar
developed from roots of C. esculenta can be used as a cost-
effective adsorbent for metal removal from aqueous solution.

Conclusions

In the present study, superheated steam activated biochar from

C. esculenta was developed to investigate its efficiency in
removal of iron (Fe2+), copper (Cu2+) and arsenic (As5+)
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from simulated coal mine wastewater under the influence of
various parameters such as pH, temperature, adsorbent
dosage, initial metal concentration, contact time and agitation

speed. The findings of the present investigation are summa-
rized as follows:

� SSAB was capable of removing 97.34% of Fe2+, 94.89% of
Cu2+ and 84.09% of As5+ from aqueous solutions.

� Adsorption of these ions onto SSAB followed monolayer

adsorption with maximum uptake of 6.19 mg/g, 2.31 mg/g
and 2.2 mg/g at initial concentrations of 50 mg/L, 30 mg/L
and 50 mg/L for Fe2+, Cu2+ and As5+ respectively.

� The kinetics of metal adsorption onto SSAB obeyed

pseudo-second order model.
� Thermodynamic study revealed spontaneity and exothermic
nature of the removal process for Fe2+, Cu2+ and As5+.

� In case of Fe2+, metal uptake increased with increase in
initial concentration whereas the reverse was observed for
Cu2+ and As5+.

� Desorption and regeneration cycle indicated that maximum
desorption was possible with hydrochloric acid and sodium
hydroxide thereby maintaining the efficacy of the adsorbent

up to 5 cycles.
� In contrast to the increased price and higher consumption
of electricity, the cost of SSAB production was found to
be quite less as compared to earlier reports on adsorbent

preparation from plant biomass.

After all adsorption and desorption studies, SSAB can be

considered to be an efficient, cost-effective adsorbent for
removal of metal contaminants from simulated coal mine
wastewater.
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