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Abstract: Theranostics is a precision medicine which integrates diagnostic nuclear medicine and
radionuclide therapy for various cancers throughout body using suitable tracers and treatment
that target specific biological pathways or receptors. This review covers traditional theranostics for
thyroid cancer and pheochromocytoma with radioiodine compounds. In addition, recent theranostics
of radioimmunotherapy for non-Hodgkin lymphoma, and treatment of bone metastasis using bone
seeking radiopharmaceuticals are described. Furthermore, new radiopharmaceuticals for prostatic
cancer and pancreatic cancer have been added. Of particular, F-18 Fluoro-2-Deoxyglucose (FDG)
Positron Emission Tomography (PET) is often used for treatment monitoring and estimating patient
outcome. A recent clinical study highlighted the ability of alpha-radiotherapy with high linear energy
transfer (LET) to overcome treatment resistance to beta–particle therapy. Theranostics will become
an ever-increasing part of clinical nuclear medicine.
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1. Introduction

Theranostics is a re-emerging new medical term of combination of diagnostic and
therapeutic techniques using suitable drug combination [1]. The aim of theranostics is to
provide personalized medicine to patients with cancer by suitable radionuclide imaging
and radiotherapeutics which targets specific biological pathways and receptors.

Theranostics has long been applied to treat thyroid cancer and neuroblastomas using
suitable radiolabeled compounds, I-131 iodine and I-131-iodine-meta-iodobenzylguanidine
(MIBG). More recently, theranostics has been refocused with the advent of new therapeutic
antibodies and small molecules which can be transformed into theranostic agents through
radio-conjugating with radioactive isotope materials [2]. A number of PET compounds
labeled with Ga-68 or F-18 have been used for imaging, while beta- or alfa-emitting sister
compounds are applied for therapy [3–5].

Theranostics plays an important role for both detection of malignant lesions through-
out the body using tumor affinity compounds, and also treating lesions with radiotherapy
emitted from beta- or alfa-emission from the same targeted radiolabeled compounds. Table 1
summarizes various combinations of diagnostic imaging and internal therapy with radio-
pharmaceuticals for the same target molecule. Thus, systematic imaging and radioisotope
therapy is permitted with the use of suitable radiolabeled compounds. There are a number
of reports indicating not only the diagnostic values but also better prognostic values of
oncology therapy as compared to the conventional systemic chemotherapy [6,7].

This is important to find a suitable cell target for specific radionuclide imaging in com-
bination with target radiotherapy. The first three fields cover specific targets accumulated
in the cancer cells (internalization) using suitable radiolabeled agents. Radiolabeled iodine
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is accumulated in thyroid cancer. Radiolabeled MIBG goes into cancer cells in malignant
pheochromocytoma and paraganglioma. Radiolabeled somatostatin receptor is trapped in
neuroendocrine tumors (Table 1). On the other hand, radiolabeled agents do not go into the
cancer cells in non-Hodgkin lymphoma or bone metastasis (not internalization). Instead,
these agents accumulate near cancer cells with specific targets, such as CD20 antigen on
the surface of tumor cell membranes in lymphoma and bone reaction near tumor cells in
osteoblastic bone metastases (Table 1).

Table 1. Combination of diagnostic imaging and radionuclide with radiopharmaceuticals for the same target disease.

Target Disease Target Companion Diagnostics for
Theranostics Radionuclide Therapy

Differentiated thyroid
cancer

Iodine affinity for
hormone synthesis I-131 I-131 [8–10]

Malignant
pheochromocytoma,

Paraganglioma
Norepinephrine transporter I-123 MIBG

I-131 MIBG I-131 MIBG [11,12]

Neuroendocrine tumor Somatostatine receptor
In-111 Pentetreotide

Ga-68 DOTATE
Ga-68 DOTATOC

Lu-177 DOTATATE [13]
Lu-177 DOTATOC
Y-90 DOTATATE
Y-90 DOTATOC

B-cell non-Hodgkin
malignant lymphoma Anti-CD20 receptor In-111 Ibritumomab Tiuxetan

I-131 rituximab
Y-90 Ibritumomab Tiuxetan [14]

Lu-177 rituximab

Bone metastasis Bone turnover Tc-99m bone scan
Sr-89 [15,16]

Sm-153 EDTMP [16]
Ra-223 [17]

Castration-resistant
prostatic cancer

Prostate specific
membrane antigen

Ga-68 PSMA
F-18 PSMA

Lu-177 PSMA [18]
Ac-225 PSMA [19]

2. Prognostic Value of Theranostics for Thyroid Cancer

Radioiodine therapy with I-131 iodine is a traditional and well-established treatment
modality for adjuvant postsurgical ablation of thyroid remnant tissue and therapy of
nonresectable local recurrences, lymph node, and distant metastases [8–10].

Differentiated thyroid cancer has strong affinity to I-131 and thus, shows good re-
sponse to iodine treatment. Dedifferentiated thyroid cancer lesions, on the other hand, tend
to lose radioiodine affinity, but instead show an increased glucose metabolism [20]. Both
histological and imaging studies provide evidence that increased glucose uptake correlates
with a higher grade of malignancy and a worse prognosis [21–24]. Accordingly, FDG PET
is considered a valuable tool for the detection of radioiodine-negative metastases in the
follow-up of patients with DTC [25–28] (Figures 1 and 2). In addition, FDG-PET holds a
promise as a valuable tool for predicting long prognosis of thyroid cancer.

We have analyzed the predictive value of FDG-PET in comparison with radioiodine
uptake in 141 high-risk patients with differentiated thyroid cancer with radioiodine therapy
after total thyroidectomy [29]. Our results indicate that FDG PET was more predictive
for long-term survival, whereas radioiodine uptake was more important for short-term
response. Therefore, FDG PET after thyroid remnant ablation should hold a prognostic
value for management of high-risk patients with differentiated thyroid cancer [29].
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Figure 1. A case with thyroid cancer showing positive I-131 and negative FDG uptake in the lung. 

 

Figure 2. A case with thyroid cancer showing negative I-131 and positive FDG uptake in the lung. 
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3. Prognostic Value of Theranostics for Neuroendocrine Tumor

Pheochromocytoma and paraganglioma may develop metastatic lesions. The mean
expected survival time with pheochromocytoma is 20.7 years and with paraganglioma
is 9.8 years [11,30]. After surgery, systemic chemotherapy is commonly performed for
treating remaining and metastatic lesions; however, the survival benefits are not clear
because of the lack of prospective comparative studies [31–33].

Iodine-131-meta-iodobenzylguanidine (I-131 MIBG) is a substrate of the norepinephrine
transporter system and the structure is similar to norepinephrine [34]. Norepinephrine
works as a neurotransmitter in the central and autonomic nervous systems. The concen-
trations of norepinephrine in the nervous systems are regulated by the norepinephrine
transporter. I-131 MIBG also accumulates; however, unlike norepinephrine, I-131 MIBG
has little or no affinity for adrenergic receptors [35]. I-131 MIBG radiotherapy has been
used to treat neuroendocrine tumors (NETs), including metastatic pheochromocytoma,
paraganglioma, neuroblastoma, medullary thyroid carcinoma, and carcinoid tumors that
have the uptake-1 mechanism [12,34,36].

I-131 MIBG radiotherapy has shown some survival benefits in metastatic NETs. The
European Association of Nuclear Medicine (EANM) clinical guidelines for I-131 MIBG
radiotherapy suggest a repeated treatment protocol, although none currently exists [37].
The existing single-high-dose I-131 MIBG radiotherapy (444 MBq/kg) has been shown to
have some benefits for patients with metastatic NETs. However, this protocol increases
adverse effects and it requires alternative therapeutic approaches.

A previous study reported that FDG PET maximum standardized uptake value (SU-
Vmax) was reduced after I-131 MIBG radiotherapy in patients considered to have re-
sponded, suggesting the value of FDG PET imaging for treatment evaluation in patients
with PPGL after I-131 MIBG radiotherapy [38] (Figure 3).
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Figure 3. A case with pheochromocytoma.

Accordingly, we have evaluated the effects of repeated I-131 MIBG therapy on tumor
size and tumor metabolic response in patients with metastatic NETs to find reduced tumor
size and tumor metabolic activities according to lesion-based analysis in about one-third
of patients and stabilized a majority with this therapy [39]. Thus, we concluded that this
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relatively short-term repeated I-131 MIBG treatment may have potential as one option in a
therapeutic protocol for metastatic NETs [39].

Theranostics has recently been applied for NETs with somatostatin receptor targeting
small molecule tracers such as Ga-68 DOTATATE PET, In-111 Pentetreotide, and Peptide
Receptor Radionuclide Therapy (PRRT) with Lu-177 DOTATATE therapy. The patients
with positive uptake in Ga-68 DOTATATE PET or In-111 Pentetreotide are indication for
Lu-177 DOTATATE treatment in the European Medicine Agency (EMA) and Food and Drug
Administration (FDA). Progression free survival (PFS) rate at 20 months was significantly
increased from 11% for patients in the control group to 65% in the Lu-177 DOTA-TATE
group (p < 0.0001) [13].

4. Prognostic Value of Radioimmunotherapy of Non-Hodgkin Lymphoma

Non-Hodgkin lymphoma is a common malignancy where I-131 compound has been
used for theranostics. Initially 131-iodine-tositumomab was used for imaging and Y-90-
ibritumomab-tiuxetan (Zevalin) was used for therapy [14]. However, these initial theranos-
tic trials have failed to become incorporated into mainstream oncologist practice. More
recently, lymphoma is effectively treated with 131-iodine-anti-CD20 radioimmunotherapy
(RIT) in relapsed/refractory disease following traditional R-CHOP chemotherapy [40,41].
There was no significant toxicity, and also this single-shot theranostic study seems to be
superior to all standard therapies. The recent substitution of Lu-177 rituximab, in place
of 131-iodine radiolabelling, will facilitate outpatient therapy by minimizing radiation
exposure of medical staffs, while retaining the ability to perform individual prospective
dosimetry [42]. A recent clinical study using Lu-177 lilotomab satetraxan anti-CD37 mono-
clonal antibody RIT suggested that tumor radiation absorbed doses comparable with those
achieved with 131-iodine-tositumomab anti-CD20 Mab were attained, at red marrow doses
below the 2 Gy threshold for myelotoxicity [43].

5. Prognostic Value of Theranostics for Bone Metastasis

The skeleton is the most common metastatic site in patients with advanced cancer,
particularly in prostatic cancer. Pain is a major healthcare problem in patients with bone
metastases. Bone-seeking radionuclides indicating an increase in bone turnover that selec-
tively accumulate in the bone are used to treat cancer-induced bone pain. The goals of these
guidelines are to assist nuclear medicine practitioners in evaluating patients who might be
candidates for radionuclide treatment of bone metastases using beta-emitting radionuclides
such as strontium-89 and Samarium-153 ethylenediaminetetramethylenephosphonic acid
(EDTMP) [15]. Strontium-89 is an element that behaves biologically like calcium. The
accumulation of strontium is identical to that of Tc-99m MDP (methylene diphosphonate).
The distribution of Samarium-153 EDTMP is also identical to Tc-99m MDP [16,44].

On the other hand, theranostic approaches for osseous metastasis have long been
focused for alpha therapy using Ra-223 for various solid tumors, such as thyroid cancer and
prostatic cancer. It is important that radionuclide therapy has not only a palliative effect
but also a potential for prolonging progression-free and overall survival [17,45,46]. This
important randomized control study nicely showed 3.6 months longer survival by Ra-223
therapy for bone metastasis from castrate-resistant prostatic cancer [17]. Accordingly, the
Japanese government has approved insurance coverage for Ra-223 therapy for those with
multiple bone metastasis from prostatic cancer [47].

6. Alpha vs. Beta-Emitting Isotope Radiochemistry

As previously described, theranostics has been applied by using suitable therapeutic
radioisotopes, including alpha- and beta-emission ones over the last century. Beta-emitting
radioisotopes have the longest particle pathlength (≤12 mm) and lowest linear energy
transfer (LET) (~0.2 keV/µm), supporting the effectiveness in medium to large tumors.
Long beta-particle range is advantageous in evenly distributing a radiation dose in hetero-
geneous tumors. It can also, though, result in the irradiation of healthy tissue surrounding
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the tumor site causing a relatively large side effect. Alpha-particles have a moderate path-
length (50–100 µm) and high LET (80 keV/µm) that render them especially suitable for
small neoplasms or micro-metastases with such smaller side effects in the surrounding
normal organ. A recent clinical study highlighted the ability of alpha-radiotherapy to
overcome treatment resistance to beta-particle therapy, prompting a paradigm shift in the
approach toward radionuclide therapy [19,48].

7. Future Perspectives of Theranostics

More recently, a number of new radio-labeled pharmaceutical compounds have been
investigated for promoting theranosticis. One of the most exciting new theranostic agents
is the prostate specific membrane antigen (PSMA) binding compound for prostatic cancer
developed at Heidelberg University and in many researches worldwide [49]. Prostatic
cancer is the second most common cancer in men worldwide with an estimated about a
million 1,276,000 new patients. About 30% of men experience biochemical recurrence, often
progress to castration resistant prostate cancer (CRPC), and there were 359,000 deaths in
2018 [50,51].

New therapeutic agents such as abiraterone, enzalutamide, and cabazitaxel have been
developed in the last decade [52]. On the other hand, diagnostic tools with radionuclide
such as Ga-68 or F-18 labelled PSMA have been used for whole body PET imaging to
identify metastatic lesions [53–56]. In addition, Lu-177 or Ac-225 labeled PSMA therapies
are expected to have a therapeutic effect by a unique mechanism using radiopharmaceuti-
cals [18,19,57,58]. Lu-177 or Ac-225 PSMA therapies are the main strategies in theranostics
at present. PSMA PET detects recurrent and metastatic tumors more accurately than con-
ventional imaging diagnostic tools such as computed tomography (CT), bone scintigraphy
(BS), or F-18 Fluciclovine PET [53–56]. In the study of our group at the Technical University
of Munich, the accuracy of Ga-68 PSMA PET was 99.8% which was significantly higher
than BS (84.3%) and BS + Single Photon Emission Computed Tomography (SPECT). In
another international trial of Ga-68 PSMA-PET in biochemical recurrence, 75% of patients
had a positive lesion detected, and both the positive predictive value and sensitivity were
92% [56]. The FDA approved Ga-68 PSMA-PET for patients with suspected prostate can-
cer metastasis and with suspected prostate cancer recurrence based on elevated serum
prostate-specific antigen (PSA) levels in December 2020. Our group also reported that
similar uptake is shown between pretherapeutic Ga-68 PSMA-PET and Lu-177 PSMA
therapy; therefore, Ga-68 PSMA PET avid lesions are expected the effect of Lu-177 PSMA
therapy (Figure 4) [57]. Up to 4 cycles treatments with 6 weeks interval are a standard
course of Lu-177 PSMA therapy considered for a kidney absorbed dose at a risk organ.

The remarkable therapeutic effect of Lu-177 PSMA therapy for CRPC has been de-
scribed in several reports. PSA decline from baseline was seen in 68% of patients [59],
greater than or equal to 50% seen in 44–64% of patients [18,58–62]. At least 80% decline
was seen in 44% of patients, and 16% achieved an at least 98% PSA decline [58]. Regard-
ing toxicity, there were no treatment-related deaths, and grade 2 or less xerostomia was
reported in 8–66% of patients. Grade 1–2 nausea was seen in 6–48%, respectively. Grade
3–4 toxicity was primarily hematologic, including leukopenia (3–32%), thrombocytopenia
(5–10%), and anemia (10%). Grade 1–2 renal injury occurred in 10% of patients [58,59].
Ac-225 PSMA therapy is expecting excellent therapeutic effect even for PC resistant to
Lu-177 PSMA therapy [63]. PSA decline of more than 50% from baseline was observed
in 21–63% of the patients [63–65]. This rate is similar to the biochemical response rates of
Lu-177 PSMA therapy; however, note that many patients who underwent Ac-225 PSMA
therapy were refractory to previous Lu-177 PSMA therapy.
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Another exciting theranostic trial is in applying for cancer with poor prognosis. Most
theranostic radiopharmaceuticals have so far been applied for cancer with relatively good
prognosis. On the other hand, pancreatic adenocarcinoma has an extremely poor prognosis.
Five years survival rate of metastatic pancreatic adenocarcinoma is less than 5% [66]. At
the time of diagnosis, most patients are ineligible for surgery due to metastatic spread or
local invasion. For metastatic disease, cytotoxic chemotherapy is the only treatment choice
on most occasions [67]. Neurotensin receptor 1 is highly expressed in ductal pancreatic
adenocarcinoma as well as hepatic metastasis but not in normal pancreatic tissue or chronic
pancreatitis [67,68]. 3BP-227 is a DOTA-conjugated neurotensin receptor 1 antagonist
and Lu-177 labeled 3BP-227 significantly inhibited tumor growth [68]. The first clinical
trial of Lu-177 labeled 3BP-227 indicated feasibility of treatment of ductal pancreatic
adenocarcinoma [69]. More clinical experiences are warranted to see whether this new
agent may prolong survival of this disease.

In external-radiation therapy, the radiation treatment plan is designed to focus the
dose on the malignant tumor and to minimize damage to the surrounding tissues. On the
other hand, in conventional radionuclide therapy, doses are administered empirically, and
there are no guidelines for dosimetry and no personalization. In radionuclide theranostics,
dosimetry can be measured in the following two ways: one is to estimate the dose from the
kinetic analysis of companion diagnostics, and the other is to measure the dose of the first
treatment. The AHASA (as high dose as safety administrated) approach is proposed for
radionuclide therapy [70]. Evidence on the relationship between dose and treatment or side
effect is now gradually accumulating [71–74]. A study of theranostics for neuroendocrine
tumors reported that dose escalation based on organ risk improved outcome [74]. In this
study, they conducted a prospective observational study of 200 patients with advanced
metastatic NETs. Patients received additional cycles of treatment until the cumulative renal
dose reached 23 Gy or was discontinued due to toxicity. Overall survival was significantly
longer when treatment was given until the cumulative renal dose reached 23 Gy. Once the
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evidence is established, a personalized, dosimetry-based treatment planning will become
the mainstream for the purpose of more effective treatment and avoidance of serious
side effects.

As in many other radionuclide studies, the injected drug dose is quite small with
minimal side effects. On the other hand, a careful attention should be used for suitable
radiation dose to each patient. A rapid grow of theranostics for diagnosis and treatment
combination has increased a need for nuclear medicine practitioners with suitable training
in the field of new nuclear medicine and radionuclide therapy.

8. Conclusions

Theranostics is an elegant technique using suitable pairs of radionuclide imaging and
radiotherapeutics which targets specific biological pathways and receptors.

This review has outlined old as well as recently developed nuclear theranostics which
have entered the clinic as well as evolving imaging and therapy. In particular, new trends
toward patient outcome have been focused upon. Theranostics will become an ever-
increasing part of clinical nuclear medicine. This will lead to adaptation of personalized
molecular targeted radionuclide therapy as a mainstream oncology practice through-
out world.
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