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Abstract
Background  Long-term sequelae of SARS-CoV-2 infection, namely long COVID syndrome, affect about 10% of severe 
COVID-19 survivors. This condition includes several physical symptoms and objective measures of organ dysfunction 
resulting from a complex interaction between individual predisposing factors and the acute manifestation of disease. 
We aimed at describing the complexity of the relationship between long COVID symptoms and their predictors in 
a population of survivors of hospitalization for severe COVID-19-related pneumonia using a Graphical Chain Model 
(GCM).

Methods  96 patients with severe COVID-19 hospitalized in a non-intensive ward at the “Santa Maria” University 
Hospital, Terni, Italy, were followed up at 3–6 months. Data regarding present and previous clinical status, drug 
treatment, findings recorded during the in-hospital phase, presence of symptoms and signs of organ damage 
at follow-up were collected. Static and dynamic cardiac and respiratory parameters were evaluated by resting 
pulmonary function test, echocardiography, high-resolution chest tomography (HRCT) and cardiopulmonary exercise 
testing (CPET).

Results  Twelve clinically most relevant factors were identified and partitioned into four ordered blocks in the GCM: 
block 1 - gender, smoking, age and body mass index (BMI); block 2 - admission to the intensive care unit (ICU) and 
length of follow-up in days; block 3 - peak oxygen consumption (VO2), forced expiratory volume at first second 
(FEV1), D-dimer levels, depression score and presence of fatigue; block 4 - HRCT pathological findings. Higher BMI 
and smoking had a significant impact on the probability of a patient’s admission to ICU. VO2 showed dependency on 
length of follow-up. FEV1 was related to the self-assessed indicator of fatigue, and, in turn, fatigue was significantly 
associated with the depression score. Notably, neither fatigue nor depression depended on variables in block 2, 
including length of follow-up.
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Background
Almost 700  million cases of COVID-19 had been 
recorded worldwide by the end of 2023 [1]. In the long 
term, around 10% of survivors of the acute phase of the 
disease develop symptoms such as fatigue, shortness of 
breath, cognitive dysfunction and other features covered 
by the umbrella definition of “long COVID” [2]. Accord-
ing to the World Health Organization, long COVID 
encompasses the persistence or new development of 
a cohort of symptoms 3 months after the initial SARS-
CoV-2 infection, with these symptoms lasting for at 
least 2 months, and with no other explanation [3]. Long 
COVID poses a significant healthcare challenge, since 
20 to 30% of affected individuals report significant limi-
tations in undertaking their habitual daily activities [4]. 
The symptoms of long COVID are highly heterogeneous 
in terms of both prevalence and severity. This reflects the 
impairment in structure and function of different target 
organs and apparatuses [5]. Moreover, a unifying patho-
physiological mechanism is, at present, far from being 
identified [6].

Many predisposing factors for long COVID present 
mutual and reciprocal interconnections. The severity of 
the acute disease, which is a known risk factor for the 
development of long COVID, is predicted by a cluster of 
inter-related clinical features, such as older age, male sex, 
non-white ethnicity, obesity, hypertension, and cumula-
tive exposure to chronic diseases [7–10]. On the other 
hand, several of these factors, such as male sex, obesity 
and previous CV disease, although associated with risk of 
severe COVID-19, do not seem to predict the occurrence 
of long COVID [11]. In order to investigate this com-
plex relationship between predisposing factors, features 
related to the acute manifestations of disease, and sev-
eral outcome variables of potential interest, we selected 
graphical chain modelling (GCMs, also known as Chain 
Graph Models [12]) as an appropriate statistical model-
ling technique.

GCM is a statistical analytical approach that structures 
a model around a natural partition of the study variables 
into a sequence of blocks, such that variables in each 
block are potential explanatory variables of those in sub-
sequent ones; variables in the same block are assumed to 
be concurrent, i.e., their association structure is assumed 
to be symmetric [12]. GCM, which are an extension of 
Directed Acyclic Graphs [12], are useful for addressing 

situations where a complete ordering of the variables is 
not available but an ordering between blocks of variables 
is nonetheless reasonable.

In the present study, we applied the GCM strategy 
to shed light on the relationship between a set of vari-
ables associated with the long COVID condition, pos-
sibly overlapping and interrelated with each other in 
an unclear manner [13]. We examined the features of a 
cohort of patients surviving hospitalization for COVID-
19-related consequences in a non-intensive care unit of 
the “Santa Maria” Hospital in Terni, central Italy, dur-
ing the second COVID-19 wave in 2020–2021, and fol-
lowed them up from 3 to 6 months later, searching both 
for objective measures of organ dysfunction (e.g. reduced 
peak oxygen consumption (VO2), fibrotic signs at the 
radiological lung examination) and subjective symptoms 
(e.g. dyspnea and fatigue). The main aim of the present 
study was to evaluate whether factors related to patient 
history and clinical course during hospitalization could 
independently predict the onset of long COVID features. 
The findings may also help to identify those individuals 
who will receive most benefit from targeted preventive 
and therapeutic strategies.

Materials and methods
All consecutive survivors of COVID-19-related pneu-
monia and associated respiratory failure, who had 
been admitted to the Internal Medicine Ward of the 
Santa Maria University Hospital in Terni, Italy, were 
approached to participate in an observational prospec-
tive registry named “CArdioPulmonary exercise Testing 
for a global fitness Assessment in patients with recent 
COVID-19 Interstitial Pneumonia (CAPTAIN) study”. 
The registry aimed to evaluate and quantify the long-
term sequelae of COVID-19 related pneumonia and 
respiratory failure [14]. The first patient was recorded 
on October 11, 2020, and the last on May 2, 2021. All 
patients were unvaccinated for SARS-CoV-2.

Participation was proposed to all subjects aged 
between 18 and 80 years able to sign written informed 
consent. The Local Ethics Committee (protocol number 
50970) approved the study protocol. The research was 
carried out according to The Code of Ethics of the World 
Medical Association (Declaration of Helsinki). The diag-
nosis of acute COVID-19 was based on positivity of viral 
RNA in RT-PCR of the nasopharyngeal swab performed 
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at hospital admission, according to standardized proce-
dures [15]. COVID-19-associated interstitial pneumo-
nia was based on high resolution computed tomography 
(HRCT) findings and according to clinical presentation 
at hospital admission. After hospital discharge, follow-
up visits were planned over the period between 3 and 6 
months. Exceptions to this time interval due to personal 
reasons were tolerated.

The follow-up visit consisted of a clinical and instru-
mental evaluation including blood sample testing, 
evaluation of resting pulmonary and cardiac function 
through pulmonary function test and echocardiography, 
an HRCT scan, and the evaluation of the cardiorespira-
tory function under dynamic conditions through cardio-
pulmonary exercise testing (CPET). Participants were 
excluded from the CPET evaluation if they had a his-
tory of heart failure with ejection fraction less than 50%, 
symptomatic coronary heart disease, history of moder-
ate or severe valvulopathy, atrial fibrillation, asthma or 
severe chronic obstructive pulmonary disease, or muscu-
loskeletal disease affecting physical performance.

Clinical evaluation
The main dataset included demographic data, anthropo-
metric measurements (height, weight, body mass index 
[BMI], body surface area), and smoking habits. Blood 
pressure and heart rate were measured in a sitting posi-
tion, after 5 min of resting, using a validated oscillometric 
device (Omron M3 HEM-7155, Omron, Japan) accord-
ing to current guidelines [16]. Pre-COVID-19 medical 
history and concomitant treatment were collected. Hos-
pitalization data were acquired from each patient’s hos-
pital admission up to discharge, including duration of 
the clinical course and need for non-invasive or invasive 
mechanical ventilation.

All patients were evaluated by a team of medical doc-
tors specialized in internal medicine, infectious diseases 
and clinical psychology. General symptoms presented 
after discharge (e.g. fatigue, sleep disorders), along with 
respiratory, cardiovascular (dyspnea, palpitations, chest 
pain), dermatologic (hair loss) and gastrointestinal 
(diarrhea) symptoms were collected. Depression, stress 
and anxiety were quantified using the 42-item Depres-
sion Anxiety Stress Scales (DASS-42) [17]. Due to low 
frequencies in some categories, the score was recoded 
from the initial five ordered levels to three levels, formed 
as follows: moderate: score ≤ 9, severe: 10 ≤ score ≤ 13, 
extremely severe: score ≥ 14. The symptom “fatigue” was 
also obtained from the questionnaire, and was reported 
as a binary variable (No, Yes). Symptoms related to post-
traumatic stress disorders triggered by illness severity or 
hospitalization experiences were collected by the Impact 
of Event Scale-Revised [18]. All findings were collected 
by medical specialists through face-to-face interviews.

Instrumental evaluation
Blood samples were drawn after 13-h overnight fasting 
and delivered to the same centralized laboratory of the 
Terni University Hospital that processed blood samples 
during the in-hospital acute phase.

Pulmonary function tests were performed using Mas-
ter Screen Body (Jaeger, Wurzburg, Germany) by dedi-
cated staff. Forced expiratory volume in one second 
(FEV1), measured vs. predicted (FEV1%), forced vital 
capacity (FVC), and measured vs. predicted (FVC%) were 
included in the analysis. For each patient, parameters 
were expressed as percentages of a theoretical value cal-
culated from Global Lung Function 2012 equations [19].

Standard transthoracic echocardiography was per-
formed with a commercially available device (Esaote 
MyLab60, Esaote, Italy) by an expert echocardiographer 
according to the American Society of Echocardiography 
recommendations [20]. The M-mode echocardiographic 
study of the left ventricle was performed under two-
dimensional control and confirmed using the parasternal 
long-axis two-dimensional approach. Ejection fraction, 
tele-diastolic left ventricular diameter, presence or 
absence of left and right atrial dilation, moderate/severe 
valvulopathy, and tricuspid annular plane systolic excur-
sion were collected. Left ventricular mass (LVM) was 
normalized by height2.7 [21]. Results of examinations of 
patients with low-quality transthoracic acoustic window 
were not collected.

HRCT and image analysis were performed by two 
expert radiologists working independently, both dur-
ing the acute disease and at follow-up. Lung sequelae 
were classified according to quantitative scores based on 
the degree of each lobe involvement (0 = none, 1 = < 5%, 
2 = 5–25%, 3 = 26–50%, 4 = 51–75%, 5 > 75%) and qualita-
tive scores based on radiological features of pulmonary 
opacities, including ground-glass opacities, linear opaci-
ties, crazy-paving and consolidations, and fibrosis-like 
lesions including reticulation, traction bronchiectasis and 
honeycombing [22]. Agreement was reached by consulta-
tion in case of discrepancies.

CPET was performed using a commercially available 
system equipped with an ergometer bike and a ventilator 
gas expired analyser (Cosmed Bike, Cosmeds.r.l., Flor-
ence, Italy). Before each procedure, the equipment was 
calibrated using reference gases. Each patient underwent 
a familiarization test, useful to set up ramp protocols 
according to clinical and training level characteristics. 
The test was performed according to current recom-
mendations [23] and was halted if muscular exhaustion 
or cardiac symptoms appeared. The Hansen-Wasserman 
equation [24] was used to calculate the normal pre-
dicted values of the main parameters evaluated. VO2 was 
expressed as the highest 10  s averaged sample obtained 
during the last 30 s of testing. The V-slope method and 
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respiratory equivalents methods were used to measure 
the anaerobic threshold (AT). Ventilatory equivalent 
(VE) and carbon dioxide production (VCO2) values were 
acquired from the initiation of exercise to AT. The VE/
VCO2 slope was calculated after exclusion of the first 
part of the test, which is potentially influenced by emo-
tional hyperventilation. Oxygen pulse was defined as the 
ratio between VO2 and heart rate; the slope VO2/work 
rate (VO2/WR) was calculated by dividing VO2 by power 
expressed in watts.

Statistical analysis
Descriptive statistics are presented according to the 
nature (qualitative or quantitative) of the variables. For 
quantitative variables, mean ± standard deviation were 
reported, together with median and quartiles.

The choice of a GCM as a modelling strategy seems 
particularly suited to enhance our understanding of this 
complex systemic condition possibly due to the overlap-
ping contribution of interrelated factors, as opposed to a 
modelling strategy that takes one response variable at a 
time. For instance, a clear ordering between the variables 
in block 3 (namely: VO2, FEV1, D-dimer levels, depres-
sion score and fatigue) cannot be postulated, as they 
may be influencing each other in an interrelated manner. 
However, they are all possible responses to the variables 
in previous blocks.

The GCM was represented by means of a graph. This 
visual aid allowed a comprehensive understanding of 
phenomena characterized by multiple related variables. 
In a GCM, variables are typically represented by nodes 
and nodes are partitioned into blocks, with a natural 
ordering between blocks, as follows: block 1 - explana-
tory variables; block 2 - variables that are responses of the 
variables in block 1 and explanatory for the variables in 
the subsequent blocks, and so on. GCMs are fitted via a 
series of univariate regressions [25], thus standard infer-
ential procedures for generalized linear models, based on 
maximum likelihood, can be implemented. Here, we used 
the gRchain routine developed in the software R. Miss-
ing values were filled in with the k-nn method [26]. To 
check whether the underlying assumption of missing at 
random was reasonable, analyses were also performed on 
complete data only, showing no major differences.

In the graphical representation of the GCM, two nodes 
are joined by an edge whenever there is an association 
between the corresponding variables. Two kinds of edges 
are allowed: directed (←), also called an arrow, or undi-
rected (-). An arrow is always used to join two variables 
in two different blocks, in line with the ordering between 
the blocks, implying a covariate-response relationship. 
An undirected edge is always used to join variables in the 
same block, reflecting the fact that a residual association 
between the variables remains, also after conditioning on 

all the variables in the preceding blocks. Further details 
on GCMs are given in the Supplementary Material and in 
the section Modelling.

Results
Variable selection and preliminary univariate and bivariate 
analyses
108 patients were included in the present study. Twelve 
patients were removed because of missing data for a 
large proportion of variables (Supplementary Fig. 1). The 
remaining 96 patients were included in the main analysis. 
Of these, 29 patients withdrew their consent to undergo 
HRCT examination at the follow-up visit and 11 patients 
did not perform CPET because of the exclusion crite-
ria or because they withdrew informed consent to the 
examination.

The full dataset included 99 variables (Supplementary 
Table 1). Preliminary analyses were conducted mainly to 
investigate bivariate associations between potential out-
come (objective findings and subjective symptoms) and 
background variables such as age, gender, BMI, smoking 
status, as well as intermediate variables such as admission 
to the intensive care unit (ICU) during the acute phase 
of the disease and length of follow-up. Based on these 
findings, and also on the current focus of the literature 
on long COVID [27–29], 12 clinically relevant variables 
were selected for further investigations (Table 1).

These variables were partitioned into blocks, as fol-
lows: block 1 - explanatory variables: this set consisted of 
four variables: gender, smoking, age and BMI; block 2 - 
intermediate variables: ICU admission during the acute 
phase of the disease, days between hospital discharge and 
follow-up visit; block 3 - outcome variables: VO2, FEV1, 
D-dimer serum levels, depression score and presence of 
fatigue; block 4 - HRCT findings of lung damage, such 
as persistence of ground-glass opacities and/or fibrotic 
signs. The analysis of the outcome variables such as VO2 
and HRCT findings was restricted to the subset of par-
ticipants for whom these data were available.

Descriptive statistics of key variables are shown in 
Table 2. The median age of the study population was 60 
[IQR 52–65] years. The population pyramid according 
to age and gender is reported in Supplementary Fig.  2. 
Histograms and bar plots are reported in Supplementary 
Fig.  3. Men showed a higher variability in terms of age 
than women. 45% of patients were active or past smokers, 
and 41% had a BMI > 30 Kg/m2. During the acute phase 
of the disease, 18% of patients were admitted to ICU. The 
median time between discharge and follow-up visit was 
131 days with large variations [IQR 96–176 days]. 44% of 
patients reported the presence of the symptom fatigue, 
while 30% and 36% reported a DASS-42 score > 9 com-
patible with the presence of severe anxious and depres-
sive findings, respectively.
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Scatter plots of the continuous outcome variables 
against the continuous variables in the same block and in 
the preceding blocks are shown in Supplementary Fig. 4. 
The scatter plot of VO2 against FEV1 showed a possible 
nonlinear relationship. The normal Q-Q plots of the con-
tinuous outcome variables, grouped according to the 
qualitative variables in the same block and in the preced-
ing blocks, are reported in Supplementary Fig. 5. For the 
case of VO2, using gender as a grouping variable, the two 
conditional distributions had different shapes, with males 
exhibiting higher values and higher variability. Patients 
who had been admitted to ICU tended to have lower 
values than the others, however the upper quantiles of 
the two distributions tended to overlap. No major differ-
ences emerged from the other Q-Q plots of VO2. Similar 
behaviour was found for the Q-Q plots of D-dimer and 
FEV1 against gender. The Q-Q plot of D-dimer against 
ICU showed that patients who had been admitted to ICU 
tended to have upper quantiles lower than the others. 
Patients complaining of fatigue tended to have uniformly 
lower values of FEV1 than others (p-value 0.004). The 
Shapiro Wilk test for normality was also performed on 
the marginal distributions (p-values: 0.478 for VO2, 0.035 
for FEV1; <0.001 for D-dimer). This led us to log trans-
form the variable D-dimer (after adding 0.01 to avoid 
taking the log of zero) to achieve normality (p-value after 
transformation 0.007).

Modelling
The GCM is depicted in Fig. 1. Due to the properties of 
conditional independence [12], a GCM is fitted as a series 
of univariate regressions - see the Steps in the Supple-
mentary Material. For quantitative response variables, 

Table 1  List of key variables selected for the implementation of 
the graphical chain model
Variable Type Description
AGE Quantitative Patient’s age at follow-

up visit
BMI Quantitative Body mass index
GENDER Qualitative Patient’s gender (1: 

Female, 2: Male)
SMOKING Qualitative Smoking status (1: non-

smoker, 2: past or current 
smoker)

TIME_UNTIL_FOLLOWUP Quantitative Number of days between 
discharge and follow-up

ICU Qualitative Intensive care unit (1: not 
admitted, 2: admitted)

VO2 Quantitative Oxygen consumption 
during maximal effort 
during CPET

FEV1 Quantitative Maximum amount of 
air that can be forcibly 
expelled during the first 
second after maximal 
inhalation

DDIMER Quantitative D-dimer
DEPRESSION Qualitative 

(Ordinal)
Depression score (1: 
0≤ score≤ 9, 2: 10≤
score≤ 13, 3: score≥
14)

FATIGUE Qualitative Fatigue (1: No, 2: Yes)
HRCT Qualitative 

(Ordinal)
High Resolution 
Computed Tomography 
(1: normal, 2: residual 
parenchymal disease, 
3: signs of fibrotic 
evolution)

Table 2  Descriptive statistics of the quantitative and qualitative variables
Univariate Analysis - Quantitative & Qualitative Variables

Qualitative Quantitative

Variable Level 1 Level 2 Level 3 Na1 Min Max Mean Median SD2 FQ3 TQ4

Quantitative
AGE 2 32 78 58 60 9.52 52 65
BMI 12 21.91 54.68 31 29.39 5.93 27.1 33.72
TIME_UNTIL_FOLLOWUP 13 59 331 140.32 131 55.94 96.5 176.5
VO2 23 8.36 33.54 20.35 20.02 5.22 17.28 23.42
log_DDIMER 28 4.91 7.96 5.94 5.93 0.61 5.51 6.28
FEV1 17 1.76 5.45 3.11 3.03 0.75 2.56 3.6
Qualitative
GENDER 31 (28.7%)5 77 (71.3%) 0
SMOKING 52 (55.32%) 42 (44.68%) 14
ICU 79 (82.29%) 17 (17.71%) 12
DEPRESSION 54 (64.29%) 12 (14.29%) 18 (21.43%) 24
FATIGUE 53 (56.38%) 41 (43.62%) 14
HRCT 32 (47.06%) 23 (33.82%) 13 (19.12%) 40
BMI: body mass index; VO2: peak oxygen consumption; log-DDIMER: Serum D-dimer level after logarithmic transformation; ICU: admission to intensive care unit; 
HRCT: high resolution computed tomography;1The count of missing values for each variable; 2Standard Deviation; 3First quartile; 4Third quartile; 5Each parenthesis 
denotes the percentage of observations within a level, excluding missing values
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linear regression models are used. For binary response 
variables logistic regressions are used. For qualitative 
ordered variables, cumulative logit models are used. The 
summary of each univariate regression, together with the 
normal Q-Q plots of the residuals for continuous out-
come measures, is reported in Supplementary Figs. 5 and 
6. As the results may be sensitive to the order of the uni-
variate regressions performed in Step 1, the stability of 
the analysis was confirmed after checking for robustness 
against the choice.

The inspection of the first block revealed an associa-
tion between BMI and gender. Considering the variables 

in the second block, BMI and smoking status had a sig-
nificant impact on the probability of being admitted to 
ICU. VO2 showed associations with length of follow-up, 
age, BMI and gender. After conditioning on these covari-
ates, VO2 was no longer related to previous ICU access. 
D-dimer levels and FEV1 both showed dependency on 
age, gender and BMI. After taking the relevant covariates 
into account, FEV1 was related to complaining of fatigue, 
thereby confirming what emerged from the preliminary 
bivariate analysis. In turn, fatigue was significantly asso-
ciated with the depression score. Due to the high corre-
lation between the anxiety and depression scores, results 

Fig. 1  The Graphical Chain Model (GCM). In the GCM two variables are joined by an edge. Two kinds of edges are allowed: directed (←), also called arrow, 
or undirected (-). An arrow is always used to join two variables in two different blocks. Let A be in block 3 and B be in block (1) A←B implies that B is an 
explanatory variable of A. An undirected edge is always used to join variables in the same block. Let A be in block 3 and C be also in block 3. Then A-C 
means that the two variables are associated after conditioning on all the variables in block 1 and 2. BMI: body mass index; VO2: peak oxygen consumption; 
log-DDIMER: Serum D-dimer level after logarithmic transformation; ICU: admission to intensive care unit; HRCT: high resolution computed tomography; 
FEV1: Forced expiratory volume in one second
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did not change if anxiety scores were considered instead 
of depression scores.

Notably, neither fatigue nor depression were responses 
to any of the variables of block 2, including length of fol-
low-up. VO2 was not influenced by smoking status after 
conditioning on length of follow-up, age, BMI and gen-
der, and it was also found to be independent of D-dimer 
levels after conditioning on length of follow-up, age, BMI 
and gender. Further investigations involving the possible 
role of comorbidities (hypertension, dyslipidaemia, type 
II diabetes mellitus, atrial fibrillation, previous coronary 
artery events, chronic obstructive pulmonary disease, 
and thyroid disease) and concomitant medications (beta-
blockers, antiplatelet drugs, anti-hypertensive drugs, 
hypoglycemic drugs and statins) did not show any signifi-
cant effect on the outcome variables in block 3 (Supple-
mentary Table 6), with the sole exception of significant 
effects of type II diabetes mellitus (+), hypertension (+), 
and statins (-) on D-dimer levels.

Concerning the fourth block, HRCT findings were 
related to VO2, age, gender, ICU access and follow-up 
duration. Finally, the follow-up duration did not have an 
impact on FEV1.

Discussion
In our study, we attempted to describe the complex rela-
tionship between baseline individual characteristics, 
manifestations of the acute phase of COVID-19, and 
long-COVID-related signs and symptoms observed in a 
cohort of 96 patients previously hospitalized for COVID-
19-associated pneumonia. We applied the GCM strategy 
to identify interconnections and independent associa-
tions between variables after partitioning into blocks with 
a natural order. Since post-acute sequelae of COVID-19 
can involve multiple organs and present with a variety of 
clinical features, it is helpful to adopt a modelling strat-
egy that allows investigation of the interdependency of 
multiple variables. Overall, results from our analysis con-
firmed that GCMs proved to be effective in allowing the 
use of the prior knowledge of the order between blocks of 
variables and standard statistical methods to investigate 
the structure of associations or dependencies.

In our study cohort, we observed that both obesity and 
active smoking had a role in predicting ICU access dur-
ing hospitalization, which is a hallmark of COVID-19 
severity. Obesity, together with age and female gender, 
negatively affected FEV1 and peak oxygen consumption 
at follow-up. In turn, FEV1 at follow-up demonstrated a 
negative correlation with the occurrence of fatigue symp-
toms, while this association was not observed with peak 
oxygen consumption. Additionally, fatigue symptoms 
were also influenced by depressive symptoms. Finally, 
we showed that persistence of ground-glass opaci-
ties and fibrotic signs at HRCT during follow-up were 

independently predicted by age, gender, ICU admission 
and follow-up duration. An inverse association between 
HRCT findings and peak oxygen consumption was inde-
pendent of the effect of the other outcome variables. 
These findings overall indicated that some features of 
long COVID, such as fatigue symptoms, being linked 
to both depressive disorders and objective measures of 
organ dysfunction, could persist in the long term and 
negatively impact on the quality of life. Our results also 
suggest the necessity for a personalized, multi-level, pro-
cess-based intervention that adequately addresses the 
complexity of the biopsychosocial network of subjective 
symptoms and objective findings in the treatment of indi-
viduals suffering from long COVID.

Our results should be interpreted in the context of pre-
vious literature. Monteiro et al. first demonstrated in an 
inpatient population of 112 individuals diagnosed with 
COVID-19 during the first wave, that obesity and active 
smoking, along with increased inflammatory markers 
of acute phase such as procalcitonin, IL-6 and ferritin, 
independently predicted the need for mechanical ventila-
tion [30]. These findings have been corroborated by sub-
sequent studies, including a large meta-analysis, which 
found that obesity is associated with an increased risk of 
ICU admission and, in a dose-dependent manner, with 
the need for mechanical ventilation [31]. Although a uni-
fying pathophysiological theory is still lacking, several 
hypotheses suggest that excess adiposity may increase 
the risk of severe COVID-19. These include increased 
expression of Angiotensin Converting Enzyme-2 (ACE2) 
receptor in adipocytes [32] and specific immunologi-
cal signatures that predispose obese individuals to an 
enhanced cytokine storm [33].

Obese patients also showed impaired aerobic exer-
cise capacity six months after acute Sars-CoV-2 infec-
tion [34]. Compared to non-obese individuals, they also 
showed increased odds of having FEV1 lower than 80% of 
predicted value one year after hospitalization for severe 
COVID-19 [35]. Whereas the restrictive lung pattern 
related to fibrosis is recognized as a classical long-term 
radiological feature of severe COVID-19, emphysema-
tous abnormalities, which can negatively impact on FEV1, 
and impaired cardiorespiratory response to exercise have 
often been observed in obese patients with chronic post-
COVID-19 symptoms [3]. These symptoms are typical 
features of an exaggerated hyperventilatory response and 
impaired gas exchange at peak exercise.

Our results align with these observations, outlining a 
phenotype of obese patients who are prone to increased 
odds of ICU admission and, over the long term, may 
exhibit reduced FEV1 and diminished oxygen consump-
tion during exercise.

In this context, it is important to focus also on the 
predictors of chronic fatigue, a distinct hallmark of 
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long COVID that has been extensively investigated. 
Several studies have hypothesized a link between lung 
lesions, low oxygen saturation, the immune-inflamma-
tory response to viral invasion and the onset of psycho-
affective symptoms observed 3–4 months post-acute 
infection [36, 37]. Although the precise mechanisms 
underlying chronic fatigue symptoms remain incom-
pletely elucidated, our findings align with existing evi-
dence suggesting that fatigue may be the expression of 
both psycho-affective impairment and lung functional 
decline. However, in contrast to other studies, our 
research reveals that fatigue symptoms in our cohort 
were not directly correlated with lung features observed 
at HRCT.

It is well acknowledged that COVID-19 survivors 
experience a range of neuropsychological disturbances, 
including anxiety, depression, cognitive impairment, 
sleep problems, ageusia, anosmia, and brain fog [38]. 
Whereas some of these symptoms may be biologically 
linked to Sars-CoV-2 neurotropism, the pathophysiology 
of others remains a subject of debate. In accordance with 
our results, depression after COVID-19 was found to be 
the only predictor of persistent fatigue in a cohort of 495 
patients who recovered from COVID-19 from whom 
clinical and psychopathological characteristics including 
fatigue presence and severity were collected at one, three, 
six and twelve months after infection [39].

In previous research there is a notable indication that 
invasive and non-invasive mechanical ventilation, as 
well as the length of stay in ICU for patients with severe 
COVID-19, may predispose individuals to a higher fre-
quency of fibrotic lesions seen at HRCT. Sturgill et al. 
conducted a comprehensive examination of patient out-
comes, specifically focusing on the incidence of lung 
fibrotic changes following COVID-19-related acute 
respiratory distress syndrome (ARDS) in comparison to 
non-COVID-related ARDS [40]. They found that fibrotic 
changes at HRCT imaging occurred more frequently 
in COVID-19 survivors (70%) than in the non-COVID 
group (43%, p-value < 0.001). Interestingly, fibrotic 
lesions were associated with ICU length of stay, and 
patients surviving pneumonia-ARDS frequently showed 
impairments in physical, emotional, and cognitive health 
[41]. Our data revealed an inverse relationship between 
the presence of lung lesions and the duration of the fol-
low-up, suggesting a progressive nature of the healing 
process. Intriguingly, Wu et al. systematically gathered 
clinical and radiological data from 11 patients diagnosed 
with severe acute respiratory syndrome (SARS) during 
the 2003 outbreak, conducting serial follow-up thin-sec-
tion CT scans at 3, 6, and 84 months. Notably, the extent 
of the lesions observed in the CT scans demonstrated a 
reduction at both 6 and 84 months when compared to 
the initial assessment at 3 months [41].

The findings from our study should be interpreted in 
the light of several limitations. Firstly, the relatively small 
sample size hinders us from drawing definitive conclu-
sions regarding the observed relationships between vari-
ables. Additionally, despite the longitudinal nature of our 
observations, our research is constrained by the inherent 
challenge of establishing cause-and-effect relationships 
outside experimental contexts. To this end, it should be 
noticed that GCM inherit all limitations of statistical 
models when applied to observational studies and are not 
tools to infer causal inference. Nevertheless, the biologi-
cal plausibility of the relationships between variables, as 
described by the GCM, underscores the effectiveness of 
this approach as a valuable statistical tool for unravel-
ling structural features, such as conditional dependencies 
and associations. This promising method holds potential 
for investigating the long-term health implications of 
COVID-19 by identifying predictive factors and inform-
ing suitable therapeutic strategies.

Our findings, together with the limitations noted 
above, suggest several directions for future research. 
Generalizability would be enhanced by extending the 
investigation to include a wider selection of patients, 
for example in a multicentre study covering different 
regions. Longer follow up, tracking patients across sev-
eral time points, would increase the ability to infer causal 
relationships. Furthermore, the observed link between 
depressive symptoms and fatigue suggests the desirability 
of investigating additional psychosocial factors.

Conclusions
We demonstrated the suitability of employing GCMs to 
elucidate the predictors of long COVID symptoms and 
signs of organ dysfunction in a cohort of previously hos-
pitalized COVID-19 patients. In this model, variables 
are ordered in blocks based on the temporal sequence 
of events. Within our database, the application of GCM 
revealed a distinct cluster of patient characteristics - such 
as age, BMI, gender and smoking status - that exerted a 
significant impact on the severity of the acute COVID-
19, as indicated by ICU admission. These variables also 
played a crucial role in the occurrence of long-term signs 
and symptoms linked to both functional and structural 
signs of lung dysfunction, including fatigue. This latter, 
however, was not solely predicted by features of organ 
dysfunction, but also by depressive symptoms. A GCM 
offers valuable insight into defining appropriate preven-
tive strategies and informed therapeutic decisions to mit-
igate the health impact of long COVID.
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