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ABSTRACT The fungal genus Ophiostoma contains numerous species that share close
associations with wood-boring insects, a relationship with important consequences for
global biosecurity. Here, we provide draft genomes for three Ophiostoma species within
the well-known Ophiostoma ulmi complex. These resources are valuable for future research
efforts related to Ophiostoma and the establishment of biosecurity-focused databases.

The genus Ophiostoma (order Ophiostomatales, class Sordariomycetes, phylum Ascomycota)
contains approximately 134 species (1) and is renowned for harboring economically

important fungi, the most notable of which are the Dutch elm disease pathogens
Ophiostoma ulmi and Ophiostoma novo-ulmi (2). Ophiostoma species are vectored by bark-
and wood-boring insects, a relationship that is hypothesized to be strongly coevolved and
host specific (3). The potential for global range expansions into novel ecosystems, caused
by insect-mediated dispersal combined with increased human trade (4), has resulted in
the regular inclusion of Ophiostoma species (and/or their vectors) on high-priority pest lists
by biosecurity agencies (e.g., see references 5 and 6). To establish a biosecurity-focused data-
base for Australia, we recently began the revision of ophiostomatalean specimens lodged
in Australian plant pathogen reference collections (7). Here, two specimens (DAR52683 and
DAR52684) were obtained from the New South Wales (NSW) Plant Pathology and Mycology
Herbarium, both originally lodged as Ophiostoma piceae. These specimens were sampled
from Lophozonia cunninghamii (= Nothofagus cunninghamii) collected in the Arve Valley
in Tasmania, Australia, in 1985 (collected by G. Kile). An additional specimen (VPRI43877)
obtained from the Victorian Plant Pathology Herbarium was originally lodged as a Sporothrix
sp. collected from Eucalyptus globulus in Victoria, Australia, in July 2020 (collected by
D. Smith).

DNA extraction, library preparation, and sequencing were performed in house and followed
themethods described by Trollip et al. (7). Briefly, preserved specimens were successfully revived
before 7-day-old cultures were used to inoculate 40-mL potato dextrose broth (Oxoid, UK).
Liquid cultures were grown on a shaking incubator at room temperature (150 rpm) for 72 h
before mycelia were harvested and freeze-dried for DNA extractions using the Promega Wizard
genomic DNA purification kit (Promega, USA) with the protocol for isolation from plant tissue.
Libraries with an average insert size of 300 bp were prepared with the NextFlex Rapid XP DNA-
sequencing (DNA-Seq) kit (Perkin Elmer, USA) and sequenced in paired-end format (2 �
150 bp) on a NovaSeq 6000 system (Illumina, USA). Raw sequencing reads were quality checked
and trimmed using FastP (8), followed by de novo genome assembly with read error correction
and k-mer values of 33, 55, 77, 97, and 111 specified in SPAdes v3.14.1 (9). Finally, assembled
genomes were used to extract commonly sequenced barcodes (namely, internal transcribed
spacer [ITS] and translation elongation factor 1-a [TEF1-a]) for species identification by mapping
Ophiostomatales reference sequences using BBMap (10), as described by Trollip et al. (7).
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FIG 1 Maximum likelihood phylogeny of TEF1-a used to identify the sequenced Ophiostoma strains.
Multiple sequence alignment was performed using MAFFT v 7 (14) before substitution model selection was
performed with ATGC:SMS online (15). Maximum likelihood phylogenetic inference was performed with
RaxML v8.2.11 (16) using the GTR1gamma model. Mapping, alignment, and phylogenetic inference were
all conducted within Geneious Prime v2022.0.2 (Biomatters Ltd.) using the aforementioned software as
plug-ins. Strains sequenced in this study are highlighted with bold text. T, ex-type isolate sequence; G,
sequence extracted from publicly available genome data (7, 17–19).
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Here, we present the draft genome sequences of three Ophiostoma species, namely,
Ophiostoma australiae DAR52683, Ophiostoma tasmaniense DAR52684, and Ophiostoma cf.
undulatum VPRI43877 (Fig. 1), all of which are known from Australia and reside in the
O. ulmi complex (11, 12). Genome quality and assembly statistics were evaluated using
QUAST v5.0.2 (13) and are summarized in Table 1. The benchmarking universal single-copy
orthologs (BUSCO) results (with the sordariomycetes_odb10 data set) showed the
genomes being 96.9% (DAR52684), 97.0% (DAR52683), and 97.2% (VPRI43877) complete,
while gene prediction (–fungus) reported very similar numbers of predicted genes for
O. australiae and O. cf. undulatum (8,565 and 8,560 predicted genes, respectively), with
O. tasmaniense having a slightly lower number of 8,454. The genomic data for these three
species, which are currently considered nonpathogenic (11), represent an important addi-
tion to Ophiostomatales-focused resources because of the close phylogenetic association
with the O. ulmi and O. novo-ulmi pathogens. The O. australiae, O. tasmaniense, and O. cf.
undulatum genomes should prove to be a valuable resource for future comparative studies
within the O. ulmi complex.

Data availability. Quality-trimmed sequence reads (SRA accession numbers SRR18010332,
SRR18010333, and SRR18010334) and draft genomes have been deposited in DDBJ/EMBL/
GenBank under BioProject accession number PRJNA805285. The accession numbers for each
genome are presented in Table 1. Partial TEF1-a sequences used for phylogenetic analysis are
also available (GenBank accession numbers ON101404 to ON101406).
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