
INTRODUCTION

In 1969 Graham and Oppenheimer suggested the term 
“multiple system atrophy” (MSA) to describe and combine 
a set of different disorders, including olivopontocerebellar 
atrophy (OPCA), striatonigral degeneration (SND) and Shy-
Drager syndrome [1]. MSA is nowadays considered to be a rare, 
late-onset and fatal neurodegenerative disease with a largely 
unknown etiopathogenesis. Prevalence ranges from 1.9 to 4.9 
per 100,000 inhabitants, incidence is about 0.6 per 100,000 per 
year or rather 3 per 100,000 per year in the population over 50 
years [2, 3]. Patients show an average disease onset of 60 years 
(SD=9; range: 34 to 83 years), affecting males and females equally 
[4]; mean disease duration is between 7 to 9 years after clinical 
presentation [5]. This movement disorder is clinically represented 
by atypical parkinsonism, cerebellar ataxia, pyramidal signs, and 
always accompanied by autonomic failure; pathologically MSA 

is characterized by selective wide spread neuronal cell loss, gliosis 
and oligodendroglial cytoplasmic inclusions (GCIs) affecting 
several structures of the central nervous system [3, 6, 7]. 

Neuronal loss in MSA affects the striatum, substantia nigra 
pars compacta (SNpc), cerebellum, pons, inferior olives, central 
autonomic nuclei and the intermediolateral column of the spinal 
cord [8]. Microglial and astroglial activation (gliosis) affecting 
several regions of the MSA brain could partly be triggered by 
oligodendroglial α-synuclein pathology, but the exact pathogenic 
mechanisms need to be further clarified [9-12]. GCIs represent 
the major pathological hallmark of the disease [7] and are mostly 
containing misfolded, hyperphosphorylated (affecting residue 
Ser129) and fibrillar α-synuclein [13-15]. GCIs also contain tau, 
14-3-3 protein, LRRK2, parkin, heat shock protein family members 
Hsp70 and Hsc70, p25α, α-tubulin, β-tubulin, microtubule 
associated proteins and cycline dependent kinase 5 (cdk5) among 
others [16-23]. The mechanisms of GCI formation in MSA 
remain unclear; two hypotheses try to explain. The first suggests 
that active uptake of α-synuclein from neighboring neurons by 
oligodendroglia could take place. Whereas the second hypothesis 
states that there could be a selective increase of α-synuclein 
expression in oligodendroglial cells in MSA [24]. Disturbed 
protein degradation may further contribute to the accumulation of 
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α-synuclein in MSA oligodendrocytes [25]. Since the etiology and 
pathogenesis of MSA are not completely understood, no effective 
therapies have been established up to date to cure MSA. In 2009, 
the discovery of α-synuclein gene (SNCA) variants association 
with an increased risk for MSA especially in Caucasians suggested 
an important lead in the role of genetic predisposition in MSA 
[26]. Along with the fact that MSA has always been considered 
to be a sporadic disease [27], this was thought to be a great 
breakthrough. Since then, many studies have been performed 
with the aim to detect disease-causing or disease-linked genes and 
gene variants. Other studies focused on environmental risk factors 
and epigenetic mechanisms, since MSA shares common features 
with other neurodegenerative disorders that have proven role of 
epigenetic modifications in their pathogenesis [28]. Within this 
article, we provide an update on recent studies concerning genetic 
and epigenetic factors that might be involved in MSA etiology and 
pathogenesis. 

GENETIC FACTORS IN MSA

Familial MSA 

MSA is a typically sporadic neurodegenerative disease [27], but 
rare cases exist presenting a family history of MSA [29-33]. The 
ancestry arrangement in two of those family cases – probable MSA 
in one German and one Japanese family – [30, 32, 33] is consistent 
with typical autosomal dominant inheritance. Four different 
Japanese families with multiple affected siblings show probable 
autosomal recessive inheritance [29]. In 2012, a case of two sisters 
from the US was reported, presenting similar syndromes of MSA 
and thereby suggesting autosomal dominant inheritance [31]. 
Recently, two Japanese siblings (affected with either probable 
MSA-C and definite MSA-P) were described. Inheritance was 
found to be autosomal recessive, even though no consanguineous 
marriage took place and no genetic mutations were identified [34]. 
So far, no disease-causing and hereditable mutations have been 
definitely identified in MSA. 

Potential genetic “hotspots”

SNCA – mutations, multiplications, SNP variants and the 

possible risk to develop MSA 

Since the pathological hallmark of MSA is represented by GCIs 
[7] containing mostly α-synuclein among other components, MSA 
together with Parkinson’s disease (PD) and Dementia with Lewy 
bodies (DLB) is considered to be an α-synucleinopathy [13]. The 
fundamental role of α-synuclein in MSA pathogenesis leads to 
the suggestion that there might be a connection between possible 

SNCA variants and a risk for developing MSA. Several genetic 
approaches have been undertaken addressing this particular 
question.

Discovered in 1997, A53T has been the first SNCA point 
mutation identified in families with autosomal dominant PD 
[35-49]. This was followed by the identification of A30P [35, 44, 
50, 51] and E46K point mutations of the SNCA gene in familial 
PD cases [52]. In vitro as well as in vivo experiments in PD 
models showed that those mutations promote the aggregation 
of α-synuclein [53-55]. In silico experiments demonstrated that 
A18T and A29S were associated with sporadic forms of PD and 
similarly accelerate α-synuclein aggregation [56]. Recently two 
novel substitutions in SNCA, H50Q [57-61] and G51D [59, 60, 
62, 63], have been described. H50Q was associated with increased 
α-synuclein aggregation, secretion and extracellular toxicity [59-
61]. Interestingly, G51D has an opposite effect on the aggregation 
behavior of α-synuclein, thereby reducing aggregation effects, 
accompanied with impaired membrane binding and enrichment 
of the mutant in the nuclear compartment [59, 63]. Consequently, 
different groups attempted to detect an association between 
SNCA gene mutations and MSA, but these efforts remained 
futile. It was suggested that transcriptional alterations of SNCA 
using bigger sample sizes with higher statistical power should be 
investigated [64-67]. Yet, no mutations in the coding region of 
SNCA have been identified in pathologically proven MSA cases 
[64]. A patient with the G51D substitution showed clinical, genetic 
and neuropathological characteristics of an α-synucleinopathy 
including PD and MSA-like features including widespread 
neuronal and GCI-like oligodendroglial inclusions, neuronal 
loss in substantia nigra, locus coeruleus, hippocampal CA2/3 
subregions, frontal and temporal cortices, dorsal motor nucleus 
of the vagus and striatum [62]. The observed features were found 
to be similar to those in cases with A53T mutations and SNCA 
polymorphism cases [68, 69]. It was therefore suggested that the 
G51D substitution of the SNCA gene could be a possible link 
between PD and MSA. This idea was further supported by the 
detection of the novel A53E SNCA substitution in a Finnish 
patient presenting both atypical PD as well as MSA features [70]. 
In relation to the findings of SNCA multiplications in PD, Fuchs 
and colleagues found that duplications and triplications of SNCA 
are leading to MSA-like features in autosomal dominant PD 
[71]. However, a targeted search of SNCA multiplications in 58 
pathologically confirmed MSA cases failed to confirm the role in 
MSA [66]. 

In 2009, the single nucleotide polymorphism (SNP) study 
in SNCA by Scholz and colleagues suggested the first genetic 
SNCA variants that were associated with increased MSA risk 
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in Caucasian patients. Two SNPs at the SNCA locus were 
found: rs11931074 (p-value in recessive model = 1.4 x 10-11) and 
rs3857059 (p-value in recessive model = 4.9 x 10-6) with increased 
frequency in MSA. The authors stated that those variants might 
lead to pathogenic α-synuclein accumulation by alteration 
of the SNCA splicing pattern and/or SNCA messenger RNA 
processing and/or by other genetic factors [26]. Interestingly, both 
SNCA variants are considered to be PD risk factors [72, 73]. Two 
further studies subsequently replicated the results from Scholz 
and colleagues [74, 75]. Another study focusing on Korean MSA 
patients failed to replicate the findings by Scholz and colleagues 
(p-value of rs11931074 in recessive model = 0.77) [76], suggesting 
a certain degree of heterogeneity within different ethnicities. 

SNCA-linked genetic predisposition seems to play an important 
role in MSA but further studies are needed to identify the possible 
mechanisms underlying these interactions. 

COQ2 mutations and MSA

COQ2 gene encodes the enzyme parahydroxybenzoate-
polyprenyl transferase, which is important for the biosynthesis 
of coenzyme Q10 (CoQ10 or ubiquinone) [77]. Recently, the 
Multiple-System Atrophy Research Collaboration published an 
association between COQ2 mutations and an increased risk for 
developing MSA. By whole genome sequencing two mutations, 
M128V-V393A/M128V-V393A (homozygous) and R337X/
V393A (heterozygous variant), were identified in two multiplex 
families with MSA. The V393A variant was shown to be common 
in sporadic MSA cases, Japanese patients only (allele frequency = 
1.6 to 2.2%), thereby suggesting that it could serve as a potential 
risk factor for MSA-C. Finally it was concluded that mutations 
in the COQ2 gene would theoretically impair the mitochondrial 
respiratory chain and lead to less tolerance to oxidative stress, 
further resulting in a predisposition to MSA. The authors suggest 
possible efficacy of oral treatment with coenzyme Q10 in MSA 
[78, 79], since COQ2 mutations cause a lack of coenzyme Q10 
[80]. Several studies in European and Korean MSA patients failed 
to detect COQ2 mutations [79, 81-83], thereby contradicting 
the findings of the MSA Research Collaboration with a Japanese 
lead. Additionally, a very recent case report on two MSA affected 
Japanese siblings also failed to identify any COQ2 mutations, 
neither the homozygous (M128V-V393A/M128V-V393A) nor 
the heterozygous (R337X/V393A) variant [34, 79]. It is assumed 
that COQ2 mutations may cause a higher vulnerability of 
the cerebellum to damages, including dysfunction and loss of 
oligodendrocytes in MSA [84], but the exact role on MSA etiology 
remains unclear and requires further investigation. In summary, 
it seems that the evidence of a direct association between COQ2 

mutations and MSA is currently weak.

Genes related to spinocerebellar ataxias and MSA

MSA patients show overlapping features with autosomal 
dominant spinocerebellar ataxias (SCAs), including prominent 
ataxia, dysmetria and abnormal eye movement [85]. For this 
reason the investigation of possible SCA genocopies in MSA 
patients has been of great interest. Since 1996, many studies 
focused on the possible clinical overlap of SCAs and MSA [86-90]. 
Gilman et al. investigated four members of a family with SCA1 
mutations presenting dominantly inheritated progressive ataxia, 
dystonia, autonomic dysfunction and peripheral neuropathy. 
Several unusual SCA1 but MSA-like symptoms were found 
including neurodegeneration of the basal ganglia, cerebellum, 
brainstem and the intermediolateral columns of the spinal cord as 
well as tau- and ubiquitin-positive GCIs. Yet, unusual MSA features 
like early disease onset, cerebellar and autonomic features in the 
absence of pyramidal or extrapyramidal signs were also detected. 
It was concluded that SCA1 gene mutations might only lead to 
a disorder mimicking MSA [86]. Although cases of SCA2 were 
identified to present with glial cytoplasmic inclusions these were 
α-synuclein-negative [91, 92]. A SCA3 patient showed additional 
neurodegenerative disorders resembling the pathological features 
of cerebellar MSA (MSA-C). The patient presented α-synuclein 
positive GCIs and neurodegeneration in the olivopontocerebellar, 
striatal and pyramidal motor regions [87], thereby meeting the 
criteria for definite MSA-C diagnosis [93]. A case-control study 
on Caucasian MSA patients (n=80) failed to confirm the presence 
of SCA3 expansions, highlighting that MSA is an autonomous 
disease, not related to SCA-gene mutations [94]. Furthers studies 
found SCA6, SCA8 and SCA17 genes to be related to MSA [88, 
95-97], but others state that those as well as the SCA 1, 2, 3, 7 and 
12 genes do not contribute to MSA etiology [97, 98]. Patients with 
FXTAS, which is caused by a CGG expansion in the X mental 
retardation 1 gene (FMR1) [99], often show clinical features 
that look like those of MSA-C [100, 101]. A possible connection 
between MSA and premutations (55-200 repeats) in the FMR1 
gene was investigated in a study on Japanese MSA patients, 
but failed to support the initial assumption [102]. Additionally, 
the European MSA study group is not recommending FMR1 
genotyping to diagnose MSA [90].

Other genetic risk loci and MSA

Several studies on mutated genes associated with MSA-related 
neurodegenerative disorders failed to identify a direct genetic link 
to MSA. Negative findings included: Parkin and PTEN-induced 
putative kinase 1 (PINK1) mutations causing autosomal recessive 
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early-onset PD [103-105], genetic variants of MAPT encoding for 
the microtubule-associated protein tau [106-108], PD risk factors 
LRRK2 and GBA genes [26, 65, 109-114] and other mutations 
in genes coding for apolipoprotein E, dopamine β-hydroxylase, 
ubiquitin C-terminal hydrolase-1 (UCH-1), fragile x mental 
retardation 1, leucine-rich kinase 2 (LRRK2), progranulin (PRGN) 
[115-118], dopamine-β-hydroxylase (DBH) [119], CYP2D6 [120-
122], BDNF, CNTF, IGF1, HLA and hiGIRK [94], PITX3 [123] 
and rs1572931 polymorphisms in the RAB7L1 gene [124]. 

Since gliosis accounts to MSA pathogenesis [6], several genes 
involved in inflammatory processes have been investigated. 
Microglia activation leads to the production of cytokines, 
including interleukin-1-α (IL-1-α), IL-1-β, IL-6 and tumor 
necrosis factor-α (TNF-α), as well as chemokines such as IL-8 and 
the inflammatory intercellular-adhesion molecule-1 (ICAM-
1) [125]. Association with an increased risk to develop MSA was 
found in relation to gene polymorphisms in IL-1-α [126], IL-1-β 
[127], IL-8 and ICAM-1 [128], α-1-antichymotrypsin [98] and 
tumor necrosis factor genes [129]. Unfortunately, those studies 
include small patient numbers but they point out the possible 
pathogenic role of inflammation in MSA pathogenesis. 

Since oxidative as well as nitrative stress are implicated in the 
progression of α-synucleinopathies, related factors have been 
tested and a link to MSA was found for SLC1A4, SQSTM1 and 
EIF4EBPI [130].

Genetic variability in alcohol dehydrogenase (ADH) gene risk 
factors was investigated in MSA. ADH1C G78X mutation was 
associated with MSA in British but not in German cohorts [131], 
whereas no connection of ADH7 variants has been found [132]. 
In 2009, a MSA patient was reported to have “muscular” pain, 
similar to myotonic dystrophy type 2 (DM2). Since this disease 
is associated with parkinsonism, DNA analyses were performed 
revealing mutations in the ZNF9 gene. However, no other MSA 
patients carrying this mutation have been reported so far [133, 
134], thereby further studies are needed. For several years, there 
has been an ongoing discussion whether neurodegenerative 
diseases are prion-like diseases [135], supported by the finding of 
an intriguing MSA case with sporadic prion-like features. Genetic 
screening did not detect mutations in the prion protein gene 
(PRNP), but carried a well-established risk factor for Creutzfeldt-
Jakob disease (M129V polymorphism in PRNP). A case control 
study investigated this risk factor and revealed an association 
with increased risk for MSA, when compared to PD, but not to 
the control group [136]. Very recently, hexanucelotide repeat 
expansions in C9orf72 were reported in a family presenting both 
MSA and amyotrophic lateral sclerosis (ALS), thereby highlighting 
a phenotypic variability of those expansions [137]. Sasaki and 

colleagues suggested a causal link between a copy number loss 
of (Src homology 2 domain containing)-transforming protein 2 
(SHC2) and MSA [138-140]. However, Ferguson and colleagues 
contradicted these finding when examining MSA patients form 
the US [141]. 

In conclusions, the genetic studies in MSA to date do not support 
the use of genetic factors like SNCA, COQ2, SCAs expansions 
etc. to reliably diagnose MSA. Several gene polymorphisms have 
been linked to an increased risk for developing MSA, but many 
of the findings have been contradictory dependent on the high 
heterogeneity of the MSA patients. Further genetic analysis 
involving larger patients cohorts are warranted to provide reliable 
information on the role of selected genes in the etiopathogenesis 
of MSA.

EPIGENETIC AND ENVIRONMENTAL FACTORS IN MSA

Epigenetics and disease

Given the fact that it is still unclear whether genetics have a 
predisposing role in the etiology of MSA, several studies focused 
on the investigation of risk factors that could lead, together 
with genetic predisposition to disease development. Epigenetics 
includes transcriptional as well as post-transcriptional, reversible 
and hereditable changes to DNA that do not alter DNA sequence 
itself and regulate gene expression. The epigenetic machinery acts 
via different mechanisms. DNA-methylation includes the addition 
of a methyl group to the 5’ carbon of cytosines, which are located 
to CpG islands in promoter regions (regions with high content of 
the bases cytosine and guanine) and associated with gene silencing. 
Histone modifications (acetylation, phosphorylation, methylation, 
ubiquitination or sumoylation) are carried out at the N-termini of 
the core histones that protrude from the nucleosome modulating 
gene expression and chromatin structure. RNA-mediated silencing 
pathways include non-coding RNAs as well as non-coding anti-
sense RNAs, RNA interference and microRNAs (miRNAs). 
Together these epigenetic mechanisms form the “epigenetic 
landscape” being very dynamic, in contrast to irreversible 
genetic mutations, and can be influenced during life through 
environmental stimuli. Destruction of the epigenetic balance leads 
to several distinct diseases [142, 143]. Many disorders have already 
been connected to epigenetic alterations including cancer [144], 
cardiovascular diseases [145, 146], autoimmune disorders [147], 
metabolic diseases [148, 149], myopathies [150], learning and 
memory deficits [151, 152] and some neurodegenerative diseases 
[153]. 

There has been emerging evidence that neurodegenerative 
diseases are linked to exposure to chronic neurotoxic substances 
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and other risk environmental factors resulting in a higher risk 
of disease development [154]. For example the risk to develop 
multiple sclerosis is increased when being infected with Epstein-
Barr virus and smoking cigarettes, whereas vitamin D is protective 
[155]; Alzheimer’s disease is associated with lead (Pb) exposure 
resulting in higher amounts of β-amyloid, stress and traumatic 
brain injuries [156-160]; higher risk to develop PD was linked 
among others to exposure to metals (Pb and others), certain 
chemicals and magnetic fields [161].

Given that MSA is a neurodegenerative disease as well as 
α-synucleinopathy with unclear genetic background, MSA 
patients have been investigated with regard to identify the 
role of environmental and epigenetic factors including stress, 
occupational and daily habits and exposure to toxins, metals, 
solvents, plastic monomers or additives, as well as history of 
farming. 

Putative environmental risk factors in MSA 

Exposures to metal dusts and fumes, plastic monomers and 
additives, organic solvents and pesticides have been linked 
significantly to a higher vulnerability of the nervous system 
supporting disease onset of MSA [162]. Recently, one case report 
supported the role of intensive and extended contact with organic 
solvents as a risk factor in MSA, as reported when examining a 
long-term professional painter [163]. A putative association to 
environmental toxins with MSA-like disorders has been shown, 
including inorganic mercury, methanol, carbon tetrachloride, 
carbon disulfide, cyanide, and manganese after heavy occupational 
exposure [164, 165]. Control studies confirmed the findings by 
detecting increased total iron levels in MSA and PD brains, but 
failed to detect alterations in manganese levels [166-168]. 

Epidemiological studies investigated the influence of farming 
on MSA, involving exposure to different chemicals and factors 
(pesticides, solvents, mycotoxins, dust, fuels, oils, fertilizers, 
animals) and a certain lifestyle (consummation of well water, rural 
living, diet and physical activity) [169]. Especially pesticides have 
been continuously associated with an increased risk of developing 
MSA, supported by independent studies [162, 170, 171]. So far, 
there is only one study contradicting these findings and stating 
that only plant and machine operators and assemblers develop an 
increased risk for MSA that is increasing with time of exposure 
[172]. 

The influence of smoking on MSA has been investigated already 
in 1986 and studies showed an inverse association with MSA 
[170, 173, 174]. Vanacore and colleagues also investigated effects 
of smoking together with farming on MSA concluding that those 
two risk factors are not interacting with the disease development 

(ever-smokers compared with never-smokers) [171]. In contrast 
to those findings, one MSA patient was reported recently 
having severe nicotine sensitivity. Interestingly, Graham and 
Oppenheimer described a similar case in 1969, but further studies 
are needed in order to investigate the prevalence of those cases 
in MSA [1, 175]. Regarding education, MSA patients seemed to 
have a lower educational level when compared to healthy controls 
[170, 172]. Concerning food habits, the consumption of meat 
has been associated with a higher risk of developing MSA. Other 
habits including drinking alcohol, aspirin use and fish or seafood 
consumption were found to be more common in healthy controls 
and are considered being protective factors. The same study 
was not able to confirm an effect of herbal tea or tropical fruits 
consumption, as it was suggested previously [172]. 

Until now, several risk factors have been associated with MSA. 
However, epidemiological studies display some limitations. Those 
studies are often affected by a certain recall bias (over-reporting of 
exposures) and selection bias (patients with severe disease are less 
able to participate) that influences the outcomes [176]. Therefore, 
further epidemiological studies of expanded cohorts are needed to 
get more data on potential MSA risk factors. 

What is the evidence that epigenetics may play a role in 

MSA: recent findings

It has been shown that nutrients and environmental toxins, 
especially metals, are able to cause DNA methylation changes, 
histone modifications and RNA interference [177]. Together with 
findings on maternal nutrition that modulates gene expression 
already in the embryo supporting the possible development of 
later life diseases [178], this is pointing out the powerful influence 
of environmental factors on the epigenetic landscape and 
supporting the idea of a certain gene-environment interaction. 
Unfortunately not much is known about epigenetic modulations 
in MSA that could be provoked by environmental risk factors. 

As mentioned, the epigenetic landscape is shaped by several 
mechanisms. DNA methylation changes have not been reported 
in MSA yet. Histone modifications can include acetylation, 
phosphorylation, methylation, ubiquitination or sumoylation 
of the four core histone proteins (H2A, H2B, H3, and H4) of the 
nucleosome. None of these has been studied in MSA patients to 
our knowledge. Specifically histone acetylation is controlled by a 
pair of antagonistic enzymes, histone acetyltransferases (HATs) 
and histone deacetylases (HDACs) that carry out acetylation 
and deacetylation at the N-termini of the nucleosomes, thereby 
modifying the histones. Histone deacetylation by HDACs 
influences gene expression, cell cycle regulation, chromatin 
structure and developmental events [179-181]. 18 different HDAC 
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families are known in mammalians. The representative family 
members can be subdivided into zinc-dependent (HDAC1-11) 
and nicotinamide adenine dinucleotide (NAD+)-dependent 
(sirtuin 1-7) enzymes [182]. Miki and colleagues showed that 
patients with PD and dementia with Lewy bodies (DLB) show a 
co-localization of HDAC6 with Lewy bodies and also HDAC6 
co-localized with GCIs in MSA brains [183], indicating a putative 
role of HDAC6 in MSA. Despite its name, the role of HDAC6 in 
histone deacetylation directly is unclear. HDAC6 is unique to a 
certain extent, since it possesses two functional catalytic sites at the 
N-terminus in combination with an ubiquitin-binding domain at 
the C-terminus. Although shuttling between the cytoplasm and 
the nucleus has been proposed, HDAC6 is found mainly in the 
cytoplasm, which is suggesting a histone-independent function 
[184]. 

The very first indications of a changed epigenetic landscape in 
MSA were provided just recently, by studies describing an altered 
expression of microRNAs in MSA. MicroRNAs (miRNAs) are 
small non-coding RNAs that are able to regulate gene expression 
post-transcriptionally [185] and important for the survival of 
mature neurons and their functions [186]. Ubhi and colleagues 
found an upregulation of the microRNA miR-96 in MSA patients, 
which is connected to a down-regulation of miR-96 target genes, 
including family members of the solute carrier protein family 
SLC1A1 and SLC6A6 [187]. A previous genetic association of 
SLC1A4 with MSA is supporting this finding [130]. Expression 
of miR-202 is upregulated in the cerebellum of MSA patients, 
consistent with reduced Oct1 protein expression. By that, miR-
202 and the Oct1 pathway are thought to participate in sporadic 
cerebellar neurodegeneration representing a novel putative 
therapeutic target in MSA. The authors suggest that decreased 
Oct1 levels lead to higher vulnerability of neurons to oxidative 
stress [188], since this mechanism is involved in cerebellar 
neurodegeneration [189]. Next to miR-202, other microRNAs 
show downregulation (miR-129-3p, miR-129-5p, miR-337-3p, 
miR-380, miR-433, miR-132, miR-410, miR-206 and miR-409-
5p) or upregulation (miR-199a-5p) in the cerebellum, but those 
findings need to be re-evaluated and confirmed in future studies 
[188]. A further study was able to identify circulating microRNAs 
(cimRNAs) to be differentially expressed in MSA and PD patients. 
MSA patients are distinguished from PD patients and healthy 
controls by an up-regulation of miR-24, miR-34b and miR-148b, 
whereas miR-339-5p is downregulated. [190]. The role of these 
changes is still unclear, however similar they show definite link 
to neurodegeneration. Previous studies showed that miR-339-
5p is expressed at low levels in mature neurons and connected to 
axon guiding [191]; miR-24 is upregulated in multiple sclerosis 

and myocardial ischemia [192, 193]; miR-34b is connected to 
Huntington’s disease, PD and Dementia with Lewy Bodies [194, 
195]; miR-148b is downregulated in the parietal lobe cortex 
and hippocampal as well as medial frontal gyrus of Alzheimer’s 
patients [196, 197]. 

CONCLUSIONS

So far, the underlying mechanisms of MSA etiopathogenesis are 
still elusive. Several familial MSA cases exist, but no hereditable 
mutations have been found supporting hereditary disease. COQ2 
mutations have been proposed to associate with familial and 
sporadic MSA, however this observation could not be replicated 
in different patient cohorts. Investigations of other genetic 
“hotspots” linked SNCA polymorphisms with an increased risk 
of developing MSA in Caucasians. Further studies associated 
gene polymorphisms in IL-1-α, IL-1-β, IL-8, ICAM-1, α-1-
antichymotrypsin, tumor necrosis factor genes, SLC1A4, 
SQSTM1 and EIF4EBPI with MSA predisposition, but failed to 
detect other disease-causing mutations. The genetic background 
of MSA thereby remains unclear, very much population-specific, 
and needs to be investigated further. Epidemiological studies 
investigated the potential influence of environmental factors on 
MSA pathogenesis. Exposures to metal dusts and fumes, plastic 
monomers and additives, organic solvents, pesticides and other 
environmental toxins have already been linked to a higher risk 
of MSA by changing the epigenetic landscape. However, the 
mechanisms of environmental epigenetics are not studied in 
depth in MSA and need further investigation as supported by the 
emerging evidence [198]. Novel genetic or epigenetic clues linked 
to the primary oligodendrogliopathy in MSA [199] may be crucial 
for understanding the pathogenesis of this disorder. 

Therefore, MSA could be considered a disease that is related to 
a complex genetic and non-genetic interplay. Interaction of those 
factors could also contribute to the phenotypic variability of MSA 
(cerebellar or parkinsonian MSA in various combinations) among 
different populations, as it was discussed by Ozawa and colleagues 
[200]. How and whether certain risk factors contribute to MSA 
remains unclear, but the investigation of those factors is a key topic 
for promising future research initiatives. Furthermore, epigenetic 
disease markers may prove a potential role as novel biomarkers in 
the early diagnosis of MSA.
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