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Abstract

Physics-based analyses have the potential to consolidate and substantiate medical diagnoses in rhinology. Such methods
are frequently subject to intense investigations in research. However, they are not used in clinical applications, yet. One
issue preventing their direct integration is that these methods are commonly developed as isolated solutions which do
not consider the whole chain of data processing from initial medical to higher valued data. This manuscript presents a
workflow that incorporates the whole data processing pipeline based on a Jupyter environment. Therefore, medical image
data are fully automatically pre-processed by machine learning algorithms. The resulting geometries employed for the
simulations on high-performance computing systems reach an accuracy of up to 99.5% compared to manually segmented
geometries. Additionally, the user is enabled to upload and visualize 4-phase rhinomanometry data. Subsequent analysis
and visualization of the simulation outcome extend the results of standardized diagnostic methods by a physically sound
interpretation. Along with a detailed presentation of the methodologies, the capabilities of the workflow are demonstrated by
evaluating an exemplary medical case. The pipeline output is compared to 4-phase rhinomanometry data. The comparison
underlines the functionality of the pipeline. However, it also illustrates the influence of mucosa swelling on the simulation.

Keywords Rhinology - High-performance computing - Computational fluid dynamics - Machine learning

Abbreviations MRI Magnetic resonance imaging

4-PR 4-phase rhinomanometry PNIF Peak nasal inspiration flow

BFL Balanced focal loss PPDF Particle probability distribution function

BGK Bhatnagar-Gross-Krook RANS Reynolds-Averaged Navier-Stokes

CFD Computational fluid dynamics ReLu Rectified linear unit

CNN Convolutional neural networks RMS Root-mean-square

CT Computed tomography ROI Region of interest

DL Deep learning STL Standard tessellation language

DNS Direct numerical simulation TEDF Total energy distribution function

GPGPU General purpose graphics processing unit TLB Thermal lattice-Boltzmann

GUI Graphical user interface VAS Visual analogue scale

HPC High-performance computing VTK Visualization Toolkit

ISCOANA International Standardization Committee on the VITKM Vascular Modeling Toolkit

Objective Assessment of the Upper Airways ZFS Zonal Flow Solver

JSC Jiilich Supercomputing Centre

LES Large-eddy simulations

m — AIA multiphysics Aerodynamisches Institut Aachen .

M D5 Message-digest algorithm 5 1Introduction

ML Machine learning The nasal cavity is one of the most important organs of the
human body. Its various functionalities are essential for the
well-being of the individual person. The nasal cavity is

Extended author information available on the last page of the article. responsible for the sense of smell, supports degustation,
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and filters, tempers, and moistens the inhaled air to provide
optimal conditions for the lung. Diseases of the nasal
cavity like chronic rhinosinusitis, septal deviation, or nasal
polyps may lead to restrictions or complete loss of these
functionalities [11, 12]. A decreased respiratory capability,
the development of irritations and inflammations, and
lung diseases can be the consequences. A meaningful and
physics-based diagnosis is hence essential to adequately
understand the functional efficiency of the nasal cavity and
the impact of different pathologies.

Nowadays, the diagnostic quality is primarily based on
the experience of the corresponding physicians. Morpho-
logical diagnoses frequently employ methods of medical
imaging such as computed tomography (CT) or magnetic
resonance imaging (MRI), and nasal endoscopy [44]. Such
methods, however, do not cover the fluid mechanics of res-
piration. A physically correct analysis of the nasal airflow
has to consider at minimum two parameters: (i) the mass
flux and (ii) the differential pressure between the nares and
nasopharynx.

Before digitized measurement techniques employed
personal computers, rhinomanometry had been the gold
standard to analyze physical respiratory quantities. In this
method, both parameters (i) and (ii) are read from xy-
plots. Therefore, it is necessary to set a reference point at
150 Pa, which is standardized through many years by the
ISCOANA (International Standardization Committee on the
Objective Assessment of the Upper Airway) [9, 10]. The
analysis of the entire respiration cycle and the subsequent
calculation of the resistance by root-mean-square (RMS)
values of the pressure and mass flux, and the logarithmic
transformation of these values lead to the so called 4-
phase rhinomanometry (4-PR) [46]. This advanced method
of resistance measurement is the only method correlating
subjective sensing of nasal obstruction. The plots generated
by this method allow the estimate of the influence of
elastic compartments in the vicinity of the nasal entrance at
inspiration. In multicentric studies [47, 48], a classification
of the obstruction is obtained from 36,500 measurements
for a single nasal side and from 10,000 for the total nose.
The measurements were performed on patients in the age
of 20 to 85 years. From the corresponding findings, five
categories that classify nasal cavities by their resistance
are derived. They can be used by clinicians to support
surgery decisions impacting the shape of nasal cavities. A
classification for the age between 6 and 19 years can be
added using a correction following the statistically relevant
investigations in growing noses [40]. This advanced method
of rhinomanometry is recommended as the new standard
in [45, 48]. 4-PR is a low-cost procedure, which can
be carried out in any clinical unit. The results underline
that there is a necessity to determine the impact of the
morphology of the nasal cavity on the corresponding
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respiration physics. In contrast, the frequently used acoustic
rhinometry does not analyze the functional obstruction. It
only measures the cross-sectional area in the anterior thirds
of the nasal cavity. Furthermore, the cheap and widely used
peak nasal inspiration flow (PNIF) [53] method does not
consider the motility of the nasal valve.

Multiple studies already employ computational fluid
dynamics (CFD) simulations to assess the physics of res-
piration [2, 5-7, 14, 16, 28-32, 35, 36, 50]. However,
none of them has made it into clinical application so far.
Most of the studies solve the Reynolds-Averaged Navier-
Stokes (RANS) equations, i.e., turbulent structures are not
fully resolved, but are modeled using different kinds of tur-
bulence models. Models such as the k-¢ [8] or the k-w
model [51] have been developed for specific flow problems.
They are able to produce accurate results for their corre-
sponding specific kind of problem. For others, they may
result in less convincing results, depending on the specifics
of the model, which need to be tuned for each individual
simulation case. Especially for complex fluid mechanical
problems in intricate geometries such as the flow in the
human respiratory system, their results may fundamen-
tally differ from reality. In contrast, large-eddy simulations
(LES) [2, 6, 7] and direct numerical simulations (DNS) [14,
28-32, 35, 36, 50] lead to more confident results. These
methods promise computer-aided flow predictions for indi-
vidual patients and allow to detect anatomical locations of
pathologies. Despite their computational cost, such detailed
simulations allow the necessary accuracy for surgery plan-
ning. Utilizing high-performance computing (HPC) systems
reduces the time-to-solution required for LES and DNS.
In the present study, a thermal lattice-Boltzmann (TLB)
method as part of the multiphysics software m-AIA (multi-
physics Aerodynamisches Institut Aachen), formerly known
as Zonal Flow Solver (ZFS), framework [33] is employed
for the simulation of the respiratory flow and the tempera-
ture distribution. No model of any filtered scales is consid-
ered. The LB method allows for efficient parallelization and
is hence well suited for massively parallel computations on
HPC systems.

A critical prerequisite to perform highly accurate CFD
simulations of nasal airflow is the accurate reconstruction
of nasal geometries from medical imaging data. Anatomi-
cally plausible 3D polygonal mesh models, e.g., in standard
tessellation language (STL), are the base for such simula-
tions. Therefore, CT volume data sets need to be segmented
in order to classify anatomical structures that are of interest
for CFD purposes. That is, the nasal cavity, the paranasal
sinuses, or the oral cavity need to be separated from bone,
tissue, air inside the mastoid air cells, and air outside of
the patient’s head. Manual or semi-automatic segmentation
using software such as 3D Slicer (https://www.slicer.
org) or Materialise (https://www.materialise.com) is
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tedious and requires experienced personnel. Using these
software tools it can be time-consuming to obtain a high-
quality air segmentation for an individual patient, at least
if accurate segmentations of delicate structures like the thin
meatus of the nose and the ethmoidal air cells are needed.
Once an air segmentation has been obtained, it is laborious
to separate, e.g., the nasal cavity from the paranasal sinuses
and the air outside the head. Furthermore, the tremendous
anatomic variability of the nasal cavity makes it diffi-
cult to use a simple rule-based approach to automatically
obtain high-quality segmentations of CT volumes for dif-
ferent patients. This is further complicated by high noise,
limited resolution, and suboptimal discriminability of dif-
ferent tissues on a per voxel basis of CT data. Obviously,
these obstacles pose fundamental challenges to analyzing
large amounts of patient data. Hence, it is mandatory to
develop pipelines that allow the segmentation of medical
image data and generate computational meshes in a com-
pletely automated manner while yielding morphologically
accurate results rapidly.

In recent years, machine learning (ML) algorithms have
outperformed many techniques previously considered state-
of-the-art [49]. Convolutional neural networks (CNNs)
nowadays beat classical approaches on a variety of com-
puter vision tasks including object detection, face recog-
nition, body part classification, and image segmentation.
Litjens et al. [37] conduct a survey which covers over 300
publications from 2012 to 2017 on applications of deep
learning (DL) techniques to analyze medical images. This
survey reveals CNNs to be the most frequently used DL
algorithms in medical image analysis in this time period.
Moreover, CNNs are most commonly used for image seg-
mentation, especially for MRI and CT images. Based on
the work in [39] on optic disk and retinal vasculature seg-
mentation in eye fundus photographs, CNNs are developed
to obtain 2D segmentations of either air or bone in axial
CT slices of the sinonasal cavities. In [39] highly accurate
segmentations of delicate retinal blood vessels are obtained
by a simple CNN architecture. The meatus of the nose, the
ethmoid air cells and the bones surrounding the sinonasal
cavities are similarly thin and intricate. Given the promis-
ing results obtained for CNN-based image segmentation in
other areas of medical imaging, the current approach is also
based on CNNs.

Workflows using HPC systems can become quite com-
plex and setting them up requires a fair amount of expertise
in computer science, software development, and HPC hard-
ware. The command line is still the most widely used
method to access and interact with HPC systems. Obvi-
ously, this leads to a high entry barrier. Furthermore, the
computing resources are distributed piecewise and are fre-
quently shared among many users. That is, compute nodes
can be allocated for a certain time in batch mode and the

corresponding compute jobs usually start at an undefined
point in time in the future. This is due to the varying load
of HPC systems, which is caused by user jobs allocat-
ing unforeseeable resources for an unforeseeable amount of
time. This kind of scheduling is not known from computers
at home, where different programs alternate very quickly
and therefore, appear to run in parallel. Using such com-
plex systems in clinical environments creates an extra hurdle
for the users, is, however, necessary to yield sufficiently
accurate simulation results.

To include all aforementioned necessary functionalities
into a single framework, the workflow presented in
this manuscript uses Jupyter (https://jupyter.org), which
enables to use HPC systems through web browsers such
as Firefox. The Jupyter extension voila (https:/
voila.readthedocs.io) is used to create graphical interfaces
that are similar in appearance to conventional websites.
Considering numerical simulations, the workflow integrates
three major steps: (i) ML-based methods for pre-processing
medical image data are employed within Jupyter to
prepare highly resolved simulations on HPC systems, (ii)
the simulation itself is executed using the TLB method
to simulate respiratory flows on HPC systems, and (iii)
the evaluation of the results is performed. In addition to
the first step, Jupyter takes care of efficiently post-
processing and visualizing simulation data. The Jupyter
environment with an in-situ coupling of the simulation
with ParaView Catalyst (https://www.paraview.org/
in-situ/) is furthermore used to monitor the simulation
and to visualize simulation results live on a website. The
workflow hence realizes a user interface that is intuitive and
easy to use and yields a novel diagnostic tool for physicians.

In the following, the material and methods for estab-
lishing a full automatic simulation pipeline are discussed
first. Subsequently, the results applying this pipeline to an
exemplary medical case are presented. This is followed
by a discussion. Finally, the work is summarized, some
conclusions are drawn, and an outlook is given.

2 Materials and methods

To enrich standardized functional diagnosis with results from
realistic, physics-based numerical simulations and from reli-
able experimental measurements, the whole simulation
pipeline and 4-PR measurements are integrated into an easy
extendable and accessible framework. The framework con-
sists of the components outlined in Fig. 1. To provide a
user-friendly access to the framework’s functionalities, a
web-based Jupyter environment is developed that pro-
vides components to upload CT data sets, monitor HPC
simulation, and visualize and analyze the simulation results.
A typical case analysis may consist of the following steps:
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Fig.1 Jupyter-based framework for the simulation of respiratory flows and interactive supercomputing

(1) clinical 4-PR diagnostics evaluate the nasal respira-
tory capability in-vivo;

(i) the user uploads a CT data set and the 4-PR results;
the anonymization is performed on the client side;

(iii)) ML algorithms segment the CT data set;

(iv) a three-dimensional geometrical representation of

the nasal cavity is generated and prepared for a
simulation;
(v) astationary CFD simulation of the respiratory flow is
performed on an HPC system;
at run time the results are processed and visualized;
the final results are presented to the user together
with the uploaded 4-PR measurements;

(vi)

(vii)

In the following sections, the core components that
constitute the pipeline from clinical diagnostics using 4-
PR over CT data set upload and geometry acquisition to
enhanced diagnostic results based on CFD are presented.
That is, the 4-PR technology, the Jupyter environment,
the methods for acquiring the geometry and the numerical
simulations of the flow, in-situ visualization, and post-
processing techniques are introduced.

2.1 Four-phase rhinomanometry
In clinical practice, rhinomanometry follows immediately

the basic investigation of the patient, i.e., history review,
inspection, and in some cases nasal endoscopy. Figure 2a
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shows a 4RHINO 4-PR device in application and Fig. 2b
the results of a measurement. The details of a rhinomanome-
ter are depicted in Fig. 2c. Unlike in anesthesiology or
emergency, the airflow in 4-PR is determined by digitally
calibrated mass flux sensors instead of pneumotachographs
and digital pressure sensors. The measurements are usually
carried out for breathing at rest. One nasal side is closed
by a tape connecting the non-breathing side with a tube
measuring the differential pressure Ap between nasophar-
ynx and a mask covering the nose and mouth of the patient.
The method also allows the measurement of the total nasal
resistance. A further method, which is in use worldwide,
is the calculation of the total nasal resistance by the equa-
tion for parallel electric resistances. A classification of the
resistances is published in [47]. Note that the accuracy of
the estimation is presently under experimentally investi-
gation. The influence of the mucosa on the resistance is
determined by a decongestion test. Therefore, both nasal
sides are measured before and 10 min after application of
0.1% xylometazoline nose drops. In case the influence of
the body position is of interest, e.g., in sleep medicine, the
measurements are repeated in the supine or lateral position.
A recording of subjective complaints on a visual analogue
scale (VAS) can be added to the measured results. Using
the obstruction/resistance classes shown in Table 1, the
findings from the 4-PR measurements can be used to quan-
titatively judge the grade of respiratory degradation and
to decide if CFD analyses should be performed to obtain
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(a) Photo of the 4RHINO 4-PR device. A mask attached to

the 4-PR device is applied to the patient’s face.
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(b) Results of 4-PR measurements. The pressure
difference Ap is plotted over the volume flux V for
the left (quadrant II and IV) and right (quadrant I and
IIT) nasal cavities for a full respiration cycle.

(¢) 4RHINO rhinomanometer consisting of: (1) sensor housing, (2a+2b) mass flux sensor, (3) differential pressure
sensor, (4) diffusor, (5) bacterial and humidity filter, (6a+6b) tubings, (7) sterilizable mask, (8) fixing element for
differential pressure tube (rhino-Patch, tape), (9) mainboard, and (10) USB-port.

Fig. 2 Photo of a 4-PR rhinomanometer device in application and the corresponding schematics. Furthermore, measurement results are shown.

The energy supply of the measurement unit is provided via the USB-port

more detailed diagnostic information. The values within
the clinical classification are calculated from the effective
resistance

1 [TA
= || 22u, (1)
Verr T Jo V

where T is the total measurement time over a single res-
piration cycle, ¢ is the time, and V is the volume flux.

Furthermore, the vertex resistances V R at inspiration, expi-
ration, or for the complete respiration cycle is used. The
vertex resistance is the resistance measured at the high-
est point of a respiration wave at quiet breathing, where a
linear relation between mass flux m and pressure p
exists [46]. Hence, it is defined completely different from
the definition of the PNIF. The latter is measured at max-
imum inspiratory breathing and does not account for the
movement of the nasal valve towards the septum.
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Table 1 Resistance

classification: one-sided Class Obstruction/resistance LR;ff range LRgff range
logarithmic effective resistance
L Rgl. 77 and two-sided 1 Very low < 0.755 <0423
calculated logarithmic effective 2 Low 0.760-0.960 0.575-0.703
resistance LR} 3 Moderate 0.910-1.135 0.467-0.592
4 High 1.136-1.365 0.593-0.755
5 Very high > 1.365 > 1.756
A classification can then be derived by side. All personal information is removed from the DICOM
| headers of the files to be transmitted. That is, a pseudo-
LR;f = 1og(10 - Resy) = 0. 2 anonymization takes place, where key pairs of the hash
Using the bounds in Table 1 for LR ;ff and L Rgff_, which  Vvalues and the patient information are stored in the hospital

are the measured one- and two-sided quantities, a classifi-
cation is obtained. The latter is given by

Rleft . Rright

2 eff ~Teff
LReff_10g 10- left right &)

Repr + Regy

i.e., using the effective resistances on the /eft and right
side. In any case, the results of the 4-PR measurements are
fed into the data pipeline in the Jupyter environment.
They can subsequently be visualized and be compared to
the simulation outcome. For more details on the 4-PR
measurement technique, the reader is referred to [45-48].

2.2 Jupyter environment

The Jupyter environment provides a visible user inter-
face. It is a browser-based tool that allows users to combine
descriptions, source code, and results in Jupyter note-
books in a single place [18]. It enables to display results
and how they have been generated in a documented and
clear way, i.e., it advances reproducibility of (not only)
scientific results. Using Jupyter’s voila extension,
experts and non-experts can use the same notebook. On
the one hand, non-experts can be presented a normal web-
site excluding source code for better interactivity. On the
other hand, experts can easily make changes and analyze
the results from individual points of view. The Jupyter
notebooks are accessible through JupyterLab (https:/
jupyterlab.readthedocs.io). JupyterLab enables to use
custom components and allows flexible arrangements of
multiple different documents.

In this study, a JupyterLab extension is developed
to copy CT data sets to the HPC systems at the Jiilich
Supercomputing Centre (JSC), Forschungszentrum Jiilich.
Therefore, a hash value of the image data is first generated
using the message-digest algorithm 5 (MDS5) [42]. The hash
value is then transmitted and used to check for redundancy
in JSC’s data base and for a later identification on the client
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and only anonymized patient data arrives at JSC. The data
is encrypted using AES-256 [13] and is then transmitted
using an https-encrypted connection. The decryption key is
stored separately from the data and only used when access
is required. The system allows to add additional comments
to the data set and to upload data acquired using 4-PR.

With the help of the extension pv1ink, which is devel-
oped at JSC, visualization functionalities are integrated into
JupyterLab. The extension makes use of ParaView
(https://www.paraview.org) to interact with the various sim-
ulation in- and outputs in a web front-end. The data is
rendered by ParaView on the server and presented in
Jupyter. Using server side rendering on the HPC system
enables the user to visualize data without being limited by
their personal computer and circumvents the need to trans-
fer all the data. This is realized by providing a web socket on
the Jupyter server to the web client. The access is granted
by a JavaScript, which is executed in the user’s browser.
The script also registers the user’s interaction with the ren-
dered picture and communicates corresponding operations
such as zooming, panning, or rotating objects.

To allow for interaction with a running simulation,
ParaView’s in-situ interface Catalyst is used in
Jupyter. To make this interface work properly, it is
necessary to replace some of ParaView’s graphical user
interface (GUI) functionalities such that Jupyter is the
interacting element. That is, functionalities are replaced by
corresponding Jupyter scripts written in Python. This
allows the connection of the simulation to the visualization,
extraction of data, and update of the visualization.

2.3 Geometry acquisition

For the purpose of segmenting incoming CT data sets
automatically, a CNN is trained to generate 2D binary
segmentations of air-filled regions in axial CT slices.
Labeled data, generated by manually segmenting CT data
sets, are provided as training sets to iteratively improve
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segmentations. Since the quality of the labeled data deter-
mines the accuracy of the outcome, the manual segmen-
tation is performed by experts. The image segmentation
task is implemented as a mathematical optimization prob-
lem, where a differentiable cost function is minimized by
an iterative optimization algorithm. The cost function deter-
mines the difference between the predictions computed by
the CNN and the labeled data, i.e., in the learning process it
is the objective to minimize the cost function. Once trained,
the CNN is able to generate segmentations for unseen CT
data sets. In addition to simple air/non-air segmentations,
CNN s are trained to identify different air-filled regions, i.e.,
the frontal, maxillary, and sphenoid sinuses on both sides of
the body, the nasal cavity, and the air-filled region outside
the head.

In the following, more details on the medical image data
base, the manual labeling process, and the training of CNNs
for binary segmentation and multi-class segmentation are
provided.

2.3.1 Medical image data base

All CT slices have a full resolution of 512 px2. A single
patient’s CT volume consists of roughly 200 axial slices.

The CNN is trained only for a slice thickness of 0.6 mm.
As for all stochastic systems, imperfections can not be
precluded. Positive as well as negative examples concerning
the slice thicknesses in the range between 3.0 and 0.1 mm
(CT vendor interpolated) were obtained. However, the
impact on the likelihood of imperfections, e.g., failure rates
of the geometric plausibility checks, was not investigated.
The post-processing phase of the current implementation
checks for size, position, and connectivity of the identified
objects.

The first models are trained with 213 axial slices of a
single patient. In this data set, no significant obstructions
are noticeable and all sinuses are present. A 256 px” CT
slice subset, limiting the original data to the nasal cavity
and sinuses, is used as input to a supervised learning
process. This limitation removes parts of the image such as
the mastoid air cells, which are very time-consuming and
difficult to segment accurately, and restricts the analysis to
the region of interest (ROI). From the 213 axial slices, 20
hand-selected images covering a wide range of anatomical
regions are used as validation set. The remaining 193 images
are used as training set. No test set is used for these initial
experiments. To train a multi-class segmentation CNN with
9 classes, a data set consisting of 579 CT images from 3
different healthy patients is used. 511 of these are used as
training set. Due to severe class imbalance, oversampling is
used, which results in a final training set of 4,094 images.
In the multi-class case, the ROI is chosen to have a size of
400 px?. As a pre-processing step, the intensity values are

scaled to [0, 1]. Table 2 summarizes the medical image data
base used for training and validation.

2.3.2 Manual labeling process

To generate initial training data, segmentations of a limited
number of patients are created semi-automatically by using
the Segment Editor module in the free open source
software 3D Slicer. First, the threshold tool is used to
assign voxels in a certain Hounsfield unit range to air and
bone segments. Subsequently, a smoothing filter is applied
followed by extensive manual editing. The tissues segment
is then given by the remaining voxels, which belong neither
to the air nor to the bone segments. For the multi-class
segmentation individual labeling then is performed. To
ensure high quality of the segmentations, they are checked
for anatomic plausibility by an ENT surgeon specialized in
sinus surgery.

2.3.3 CNNs for binary segmentation

Figure 3 shows the basic architecture of a binary segmenta-
tion CNN with 2 convolutional layers. The network weights
are initialized randomly and drawn from a truncated nor-
mal distribution. For training, a batch size of BS = 1 is
used. The optimization is performed with the Adam algo-
rithm [24]. The CNN contains 1 to 4 convolutional layers
and further specialized convolutional layers, all with a fil-
ter size of 3 x 3 with 5 to 20 filters per layer. A fixed
learning rate of 0.01 is used. This set of hyperparameters
leads to convergence, defined as a residual below 1073 for
30 consecutive iterations, after anywhere from 27 to 2,078
iterations.

The models are trained on a NVIDIA GTX 1080 GPU.
The class-balanced cross entropy introduced by Xie et
al. [52] is used as cost function. For a single pre-processed

input image X,,n € {1, ..., N}, the cost is given by
Ca(W) = =By Y log P(ynj = 1|Xn; W)
jevi
— (1= Ba) Y _ log P(ynj = 0|X,; W), )
30
where
P(ynj = 0[Xp; W) =1— P(ynj = 1| Xp; W). )

In these equations, Y, = {yuj,j = 1,...,|Xul}, ynj €
{0, 1} denotes the matrix of the true pixel-wise labels yj;.
The quantity W denotes the weights of the CNN which
are updated during training. There are substantially more
foreground pixels Y, in a given image than there are
background pixels Y,". Class balancing multipliers B, are

used to handle this imbalance on a per image basis. These
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Table 2 Medical image data base used for CNN training

Segmentation type Patients Slices Train. set Val. set Test set ROI [px?]
Binary (air or bone) 1 213 193 20 0 256
9 classes (unbalanced) 3 579 511 34 34 400
9 classes (balanced) 3 4,162 4,094 34 34 400
are defined by found in a limited number of CT slices different classes
Vot are combined to reduce the total number of classes. As the
Bn = —=— (6)  distance between the left and right maxillary sinuses is large
Yl enough to assume they are never connected to each other
with directly, they are combined into a single class. The sides can
Yol Yl =Y (Y then easily be separated once a segmentation is obtained.
l=B=1- A = Y| = Y (7) " The left and right sides of the frontal and sphenoid sinuses
" " " are only separated by a thin bone wall, i.e., careful manual
In the latter equations, | - | denotes the number of elements

in the set. The CNN computes the probability P that a
given pixel belongs to a certain class. The complementary
probability is given by 1 — P. The pixel-wise probabilities P
are computed by a sigmoid function to the prediction matrix
obtained from the feature volume via the linear combination
layer

P(y) =o0(y) = (8)

14+eY’
which can be implemented as a 1 x 1 convolutional layer, cf.
Fig. 3. For an entire data set, the mean class-balanced cross
entropy is given by

N
C(W) = % > Cu(W). ©)
n=1

It should be noted that using two distinct CNNs for two
different segments with the remaining voxels being assigned
to a third class may lead to non-unique classifications of
border voxels, i.e., undesirable overlaps between segments
may exist. However, as will be shown in Section 3, the
current approach is sufficient to accurately perform binary-
class segmentation.

2.3.4 Class balancing

To identify the different regions of a nasal cavity, CNNs for
multi-class segmentation are developed. In this method, a
vector of class probabilities is obtained for each voxel by
linearly combining the feature volume for each class. The
specific class is given by the argument of the vector element
with the maximum value. The CNNs are trained to identify
9 classes, i.e., the left and right frontal and sphenoid sinuses,
the left and right maxillary sinuses combined, the nasal and
oral cavity combined, air outside of the head and inside the
mastoid air cells, bone, and tissues. Since each class is only
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segmentation is required to generate viable training data.
For some patients, the oral cavity is visible in some axial
slices. Both oral and nasal cavity are combined into a single
segment as the former can be removed later if needed. The
air outside the head and inside the mastoid air cells is not of
interest. It is specified as a distinct segment and removed.

Table 3 shows the percentage of the total number of
pixels for each of the 9 segments in the unbalanced and
balanced training sets. Details on the training sets are listed
in Table 2.

The four non-sinus segments, i.e., nasal and oral cavities,
air outside, bone, and tissues, make up about 97% of the
total pixels, leaving approximately 3% for the 5 sinus
segments. This imbalance results in CNNs that learn to
classify large-share segments, but have problems learning
segments with smaller shares. To increase the probability
that a CNN learns all 9 classes, a balancing algorithm
is applied. This algorithm minimizes the mean absolute
difference between the total pixel count of each of the
5 sinus segments by repeatedly determining which sinus
segment is least dominant. It finds images in the training set
that contain pixels of this segment, translates or horizontally
flips them (adjusting the sinus segments in the latter case,
assuming bilateral symmetry), and adds them to the training
set. Table 3 also shows the impact of this balancing
approach on the share of the individual segments. After
balancing, each of the 5 sinus segments makes up roughly
0.5% of the total number of pixels. The four remaining
non-sinus segments hence make up about 97.5% of the
pixel count. With the 5 sinus segments being approximately
equiprobable, a given CNN is more likely to learn all 9
segments.

Additionally, two other class balancing techniques are
used. First, class balancing multipliers that take into account
the total number of pixels per segment in each image are
used to assign higher weights to segments with a small pixel
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Table 3 Percentage of total pixel count in the training set for 9 segments in the unbalanced and balanced case. The entries in red indicate the sinus

segments, which are roughly equiprobable after balancing

Frontal Frontal Maxillary Sphenoid Sphenoid Nasal and Air outside  Bone  Tissues
sinus left sinus right sinuses sinus left sinus right oral cavities
Unbalanced  0.37 0.26 1.91 0.22 0.27 1.91 44.36 7.29 43.42
Balanced 0.55 0.44 0.48 0.40 0.41 1.54 45.26 6.07 44.85

share. Second, the focal loss introduced by Lin et al. [27] is
used to arrive at the balanced focal loss (BFL) function

9
BFL,(W)=—=Y "> Brs(1—P(yy; =11X,; W)”

s=1 jevy

log P(y,; = UXn; W), (10)

where P = P(yjj =1]X,; W), s is the class index, and y >0
is a modulating factor. The BFL is more briefly expressed as

9
BFL,(W) = — Z Z Bys(1 — P)? log P. (11)

s=1 jevs

The class balancing multipliers Bys are defined by

Bys = ( | 5") 12)
s =exp | — ,
Y P | X5

where | X; | denotes the number of pixels belonging to seg-
ment s. That is, the pixels of segments which are less dom-
inant in a given image are given more weight when com-
puting the loss. The matrix Y = {yj;j,j =1,...,|Xnl}
denotes the matrix of the true pixel-wise labels y;j e {0, 1}
for segment s for each X,. Hence, for each segment of a
manual segmentation, a matrix of ones and zeros is created.
Concatenated, these 9 matrices define a tensor of order 3.
This tensor gives a one-hot vector with 9 elements for each
pixel, i.e., each pixel is assigned to only 1 of 9 mutually
exclusive segments. P(yflj = 11X,; W) € (0, 1) is then the
probability of pixel j in image X, belonging to segment s.
This probability is computed by a CNN with weights W.
The modulating factor (1 — P)?” is used to reduce the rela-
tive loss contributed by pixels which are already classified
correctly. This way, more focus is given to pixels that are
misclassified or classified correctly but with a lower proba-
bility, i.e., a probability closer to P = 0.5 rather than P = 1,
cf. [27]. The mean BFL over an entire data set is given by

N
BFL(W) = %ZBFLn(W). (13)

n=1
2.3.5 Multi-class segmentation

For a 9-class segmentation, the data set listed in Table 2 is
used. The data set is split into training, validation, and test
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sets consisting of 511, 34, and 34 images, respectively. After
balancing, the training set consists of 4,094 images. In total,
18 different combinations of the 9 segments are present in
the entire data set. The validation and test sets include at
least one of each of these combinations if possible.

The specific architecture of the network consists of
multiple convolutional layers, each followed by a rectified
linear unit (ReLu) activation, and a pooling layer. The
latter performs max pooling and uses a kernel with both
height and width of two, both height and width stride of
two, and zero padding. Each pooling layer is followed by
its own specialized convolutional layer, cf. Fig. 3 and a
ReLu activation. The outputs are resized to the full image
size using resize layers that perform bilinear interpolation
without corner alignment. A concatenation of the resize
layers’ outputs along the depth dimension results in a
feature volume. Linear combination of the feature volume
along the depth dimension then results in a prediction matrix
of the same size as the original image. For each of the 9
classes, a different linear combination is computed from
the feature volume. The 9 resulting prediction matrices
are then concatenated along the depth dimension to obtain
a prediction tensor of order three. A softmax function is
applied along the depth dimension of the tensor to obtain
9 values p; € (0, 1), which can be interpreted as class
probabilities and hence obey Z?:o pi = 1. Applying
argmax(p;) gives the class predicted for a given pixel.
Such segmentations can, e.g., be stored in the NRRD file
format (http://teem.sourceforge.net/nrrd/format.html) used
by 3D Slicer. Subsequently, the segmentations can be
used to generate polygonal meshes in STL or PLY format
using the Marching Cubes algorithm [25, 38]. For a detailed
description on how to arrive at geometries suited for
numerical simulations the reader is referred to [14, 36].

2.4 Numerical simulation

The simulation of the flow in the nasal cavity follows a for-
malized procedure. First, a computational mesh is generated
using the STL geometry obtained from the geometry acqui-
sition step. Subsequently, the discretized equations of fluid
motion are solved on this mesh using problem-specific
boundary conditions. In this study, the TLB method is
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used for the simulation. In the following, these steps are
described in more detail.

2.4.1 Mesh generation

The obtained STL files are handed to the simulation frame-
work m-AIA. From the STL, the framework generates an
hierarchical unstructured Cartesian mesh in parallel with
the method described in [34]. Starting on refinement level
lstars = 0 with an initial cube surrounding the complete
geometry, the algorithm creates the computational mesh
by continuously subdividing all cells of the current refine-
ment level into 8 equally sized child cells. This subdivision
processes constitutes an octree as shown in Fig. 4a. Child
cells located outside the geometry are deleted. This proce-
dure is repeated until a specified uniform refinement level
I = luniform 1s reached. Afterwards, refinement patches
and/or boundary refinement are created similarly until the
final refinement I = Iy, is achieved. The grid genera-
tion process for a two-dimensional arbitrary body including
boundary refinement is shown in Fig. 4b. For more details,
the reader is referred to [34].

2.4.2 Thermal lattice-Boltzmann method
A TLB method employed in this study has been previously

used in [1, 14, 23, 28, 31, 32, 35, 36] to simulate respiratory
flows. The code has been extensively validated in [15, 17,

Fig.4 Grid generation process
of m-AIA

31]. In this method, the discrete Bhatnagar-Gross-Krook
(BGK) equation [3] of the Boltzmann equation

fite +&; - 8t,14+681) = fi(r,)) + - (F; — fi(r, 1) (14)

is solved, where f; is the discrete particle probability dis-
tribution function (PPDF) in the discrete direction i, §; is
the discrete molecule velocity, ¢ and 8¢ are the time and the
time increment, and r is the spatial location. The spatial dis-
cretization is based on the D3Q27 model [41], i.e., 27 direc-
tions are used in three dimensions. The complex collision
term of the Boltzmann equation is simplified in the BGK-
model by a linear collision term with the collision frequency
. The Maxwell equilibrium distribution function

Fi=pt, <1 n So;;)a | Va¥p (Saéﬂ _Saﬂ)>» (15)

2 2
s 2cs Cs

to which the PPDFs are relaxed, depends on the density p,
the isothermal speed of sound cy, the macroscopic velocity
v with o, 8 € x,y,z, and the Kronecker delta u5. The
quantity f, is a direction-dependent scaling factor.

To determine the temperature distribution inside the nasal
cavity, a second set of distribution functions, the total energy
distribution function (TEDF) h; are solved on the same
lattice [19] by

hi(r+&; -8t,t+8t)=h;(r,t) + w; - (H;i—hi(r, 1))

+ ((l)t - wf) ’ (gavoc - vazva) (16)
(fi—F).

[y

luni/'m‘m

Z_ final

(a) Octree structure of a hierarchical unstructured Cartesian mesh.
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5
—_ k/ — HE — FEE
NELEELERT

T
s,

(b) Grid generation process for a two-dimensional arbitrary body.
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Thus, external forcing and internal heat sources are neglected.
The collision frequency w; of the transport equation of the
TEDF is based on the thermal conductivity. The equilibrium
distribution H; for the D3Q27 model reads

2 Ea Vg Vo U ";:a‘s;:ﬁ
H; = pcstp'< 2 + c2 < ) _8ﬂtﬁ>

N N N

| (ata |
+5 ( 2 D)) + EF,. (17)

It is based on the total energy E = (D/2) - RT + (vqvy)/2,
with T and R being the temperature and the specific gas
constant of the fluid, and D = 3 for three-dimensional flow.
The quantity H; depends on the number of components of
the molecule velocity vector &;. The macroscopic conservative
variables are calculated from the moments of f; and A;:

p=> 1 (18a)
pv=> &f (18b)

DR VaVa \ _
p(TT—i- 5 ) = zi:h" (18¢)

The pressure can be expressed by the density p using the
equation of state of an ideal gas.

p=pRT = pc%. (19)
2.4.3 Boundary conditions

For the realistic simulation of respiratory flows, different
sets of boundary conditions are available in m-AIA. To
realize no-slip and isothermal wall conditions for a body
temperature of 7p = 309.15 K at the inner walls of
the nasal cavity, the interpolated bounce-back scheme of
Bouzidi et al. [4] is used for the PPDF and the scheme of
Li et al. [26] for the TEDF. Depending on the application,
a volume flux or a fixed pressure can be applied at the
pharynx. In the former case, the target REYNOLDS number
at the pharynx Rep = (Vp/Ap) -dp/v is determined as a
function of the hydraulic diameter dp, the surface area of
the pharynx Ap, the prescribed volume flux Vp, and the
kinematic viscosity of air v. The time-specific REYNOLDS
number is calculated using the velocity extrapolated from
the inner cells. Depending on the difference between target
and current REYNOLDS number, the pressure is adapted at
each time step. In the latter case, the pressure at the pharynx
is calculated from the ambient pressure and the given
pressure difference [32]. The velocity and the temperature
are extrapolated from the inner cells in both cases. At the
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nostrils, a modified version of the equation of Saint-Venant
and Wantzel [32, 43], i.e.,

Y

-1 3 -

p= (1 -5 (p,_lvt_l)z) 20)
t—1

is used to calculate the updated density. The momentum
pr—1v;—1 is extrapolated from the inner cells at the previous
time step and the isotropic exponent is set to y = 1.4 [20,
32]. The temperature at the nostrils is set to the ambient air
temperature Ty = 293.15 K [32].

All setup data are written to m-AIA’ configuration files and
a job is submitted with the standard submission commands
of JSC’s scheduler slurm.

2.5 In-situ post-processing

The final step of the simulation pipeline is the post-
processing of the raw simulation data and the visualization
of the results. At run time, the simulation data are processed
by m-ATIA. Thus, distilled information tailored for surgery
planning can be presented in-situ at run time and in a
summarized manner subsequent to the simulation. In the
following, first the methodologies used to process the data
to be displayed in the web-based Jupyter front-end are
presented before details on the various methods to analyze
the flow are given.

2.5.1 ParaView-based visualization in Jupyter

To visualize the simulation data in-situ, the tool ParaView
is embedded into the Jupyter environment. The interface
between m-AIA and ParaView is implemented in
Catalyst, the ParaView in-situ interface. This allows
an in-situ data transfer from m-AIA to ParaView.

For in-situ visualization, the data are transformed from
the m-ATIA internal octree-based format to the ParaView-
compatible Visualization Toolkit (VTK - https://www.vtk.
org) format. Snapshots of the simulation can be written
to disk using Python scripts. These scripts can flexibly
exploit all available ParaView functions or any self-
written Python code to realize any needed visualization
pipeline. The output may contain predefined rendered pic-
tures and videos, or data files that need further processing.
The in-situ transfer also enables the visualization of the
data directly in Jupyter, i.e., it can be used to generate
predefined images, the control of the simulation, and the
interaction with the visualization directly on a website.

2.5.2 Post-processing of the data

To analyze the flow, various important fluid mechanical
quantities are calculated and extracted from the simulation
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data. The integral difference between pharynx P and

the left and right nostril N(I'),T" € {left, right} of the
P:N(T)

dynamic, static, and total pressure Apjv:;v , Apgar - »and
Apf;:,N(F), and the temperature AT and the mass flux m are

calculated by

P R L T
Apgyn = H_PZE("” Ip.i
i

1 Hy ()
- ~ (V)N (21a)
1 &
PN 2
Apstut( ) = H_PZ:OPJ Cs
i
1 Hyr)
— PNT),j € (21b)
PN PN PN
Ap;or o= Apdyn( )+ Apstat( ) (21¢)
L
ATPN = —N"T1p, —T 21d
H X,: P.i B (21d)
Hp
ML) =Y (pov)L.i (2le)

Here, H is the total number of boundary cells for the
considered boundary and L € {P, N(left), N(right)}. To
minimize numerical fluctuations in the results, a moving
temporal averaging is used

At

1 2
a = , 22
Gr= D ark (22)

—_ar
k= 2

where a is the quantity to be averaged, At is the averaging
interval, and ¢ is the current time step number.

Subsequent to the simulation, several post-processing
tools are automatically applied to reduce the amount of
raw data and to simplify the analysis for the physician.
Cross sections at predefined, characteristic locations are
created to provide a comprehensive overview of the flow
field variables. Prior to a simulation, geometric centerlines
are created for the whole nasal cavity and for each side
I' using the Vascular Modeling Toolkit (VMTK - http://
www.vimtk.org). In m-ATIA, cross sections orthogonal to
those centerlines are created with equidistant spacing. In
each cross section, the integral pressure is calculated.
To distinguish between the individual I' and parts of
the sinuses, which are in the cross sections not directly
connected with the main cavity, a region growing algorithm
is used. Starting from the cell that contains the start point
on the centerline C,;, neighbor cells are recursively marked,

if their cell center x is located inside a cuboid with the
thickness +/3 8x, i.e.,

|:(X —Co) £ \/738){| -ng <0 (23)

holds using the normal vector n;. Thus, only cells directly
connected to the start point on the centerline are found,
which allows for separating the left and right side of the
main cavity and also the sinuses as shown exemplarily
in Fig. 5. For those cells, the average total pressure is
calculated using the spatial averaging scheme

g.o— i (24)
ax—Hcs iaz

with H,; being the total number of cells belonging to a cross
section.

3 Results

In the following, the functionality of the Jupyter-based
framework for the simulation of respiratory flows and
interactive supercomputing, cf. Fig. 1, is demonstrated on
the basis of an exemplary pathological case. That is, the
results of the individual pipeline steps, from the ML-based
geometry acquisition over 4-PR measurements to the final
post-processed simulation data, are presented. The starting
menu of the web application is shown in Fig. 6. After
creating a new project, the user is asked to upload CT
and if available 4-PR measurement data. Subsequently, the
simulation pipeline is started. The current status of the
various pipeline steps is indicated by icons in the starting
menu. In the subsequent presentations, the left and right side
correspond to those from a patient’s point of view.

3.1 Visualization of 4-PR measurement results

Prior to starting the automated flow analysis, the user has
the opportunity to upload 4-PR measurement data of the
investigated patient along with the corresponding CT data.
This allows to collect all patient-specific data in a single
project. The visualization of these data complements the
results of an analysis of steady flow cases. In Fig. 7, the
plot of the 4-PR measurement data is presented such that
is common to rhinologists, i.e., the volume flux in [cm?/s]
is plotted over the pressure loss in [ Pa] for inspiration and
expiration, cf. Fig. 2b. In addition to these two curves, the
case for STROUHAL Sr = wye5p - dp/v = 0 representing
steady simulations with a respiration frequency of w,sp =
0 is shown. When the results from a numerical simulation
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(a) Surface geometry of the nasal
cavity.

(b) Slice a) of the nasal cavity.

(c) Slice b) of the nasal cavity.

Fig.5 Nasal cavity containing two slices for the pressure averaging. The left and right cavities are marked in red and orange. The sinuses, which
are not directly connected to the main cavity in the cross section, are colored in dark blue

become available, the graph is extended by the steady state
results (red and blue dots).

Note that the non-perfect alignment of the simulation
results with the pressure curve from the measurements for
Sr — 0 is caused by different swelling states of the nasal
cavity at the measurement and CT-recording times.

Furthermore, it should be noted that the environment is
currently extended to use the 4-PR data in the boundary
conditions to excite unsteady flow, see Section 5.

RHINO

3.2 Segmentation with CNNs

Segmentations are performed using both the binary- and multi-
class methods. Next, the corresponding results are presented.

3.2.1 Results of binary-class segmentations

The best models for binary air segmentation that employ the
hyperparameters specified in Section 2.3 reach a validation
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Fig.6 The starting menu of the web application allows the creation of a new or to edit an existing project. The inset shows a zoom of the project

view. The status of the pipeline steps is indicated by different icons
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accuracy of up to 99.5%. This is the only metric used
for the binary models trained. A grid search is performed
with learning rates in the range of [10~7, 10~!]. The batch
size is set to 1. The Adam optimizers are used for cost
optimization [24]. Network weights are initialized using
random values from a truncated normal distribution. In the
computation of the cost, all pixels are either weighted equal
or pixels are assigned a higher weight if they are located in
an image region where intensity changes quickly such as in
transition regions, e.g., between the air-filled inner region
of a cavity and the bone surrounding it. The grid search
produces similar models in terms of the final validation
accuracy and of the segmentation quality as determined
by subjective visual inspection. That is, the accuracy does
not improve as compared to the best models mentioned
above. The same process is used to obtain models for bone
segmentation, which results in a validation accuracy of up
to 96.82%. Note that these accuracy values by themselves
do only tell how similar the CNN segmentation results are
to the manually segmented data, which serve as ground
truth. They only provide additional information on the
segmentation quality in general if the manual segmentations
are highly accurate. Testing the trained models on unseen
patient CT data, the segmentation using both the air and
bone classifiers yield similar results to those obtained
after training and validation as judged by careful visual
inspection. This even holds for those models trained and
validated with only the 213 axial slices of a single patient,
cf. Table 2.

In Fig. 8, the results of automatically and manually
segmented data are shown for a single axial CT slice.
The original slice is depicted in Fig. 8a, while Figs. 8b
and d show the automatically and manually segmented
data. Evidently, the results are almost identical. However,
the CNN appears to be a bit more conservative than the
trained person at the boundaries of the cavities and at air

to tissue transitions between adjacent axial slices. Figure 8c
highlights the segmentation difference.

3.2.2 Results of multi-class segmentations

The segmentation of different air-filled parts of a CT image
cannot be performed on the basis of Hounsfield unit ranges
alone. A CNN is capable of performing this task by taking
into account the 2- or 3-dimensional environment of a
given voxel. It performs a classification based on possibly
thousands of environments it was trained on. This enables
to, e.g., remove the air outside of the head and extract the
individual paranasal sinuses automatically.

The most accurate 9-class segmentation CNN in this
study achieves test and validation accuracies of 97.17% and
96.91%. Further metrics are used to assess the quality of the
segmentations. The first metric is the average Jaccard index
J (intersection over union). This metric is used to measure
the overlap of corresponding segments between manual and
CNN segmentation with 7 = 100% representing a perfect
match. It is determined by computing the Jaccard index for
each of the 9 segments for each image, and averaging over
all 9 segments and over the entire test set. For this set,
an average Jaccard index of J = 86.29% and an average
segment match of S = 97.39% is obtained. The latter
metric is determined by computing how many segments
out of 9 classes are present in both the manual and CNN
segmentation for each image and then averaging over all
images in the test set. The segment match S quantifies if
the segments found in the manual and CNN segmentations
are the same, i.e., for § = 100%, the segments predicted by
the CNN for all images in a given data set are exactly those,
which are present in the images according to the manual
segmentations. Smaller values of S indicate that the CNN
predictions are wrong or that too few or too many classes
have been predicted. Another metric used is the averaged
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Fig.8 Comparison of the results
from CNN and manual air
segmentation

(a) Original axial CT slice.

(b) CNN air segmentation.

(c) Difference between manual and automatic
segmentation.

connected component match C, which is determined by
computing the absolute difference in connected component
count between manual and CNN segmentation for each
segment of an image, averaging over all segments of the
image, and averaging over all images of the test set. A
value of C = 100% indicates that the numbers of connected
components in the manual and CNN segmentations are
exactly the same in every image of the test set. For the given
test set, a value of C = 69.11% is found.

Figure 9 shows the segmentation generated by a 9-class
CNN for an arbitrary 400 px? ROI on an axial CT slice.
In Fig. 9a, the result of automatically applying a single
post-processing step that splits the combined maxillary
sinuses segment into left and right components, yielding 10
different classes, is shown. In contrast, Fig. 9b shows the
segmentation after two more post-processing steps. In the
first additional step, each voxel of connected components
with less than 10 voxels is given the dominant color of its
3 px? neighborhood. The second step assigns correct colors
to anatomically implausible components. For example, the
small dark blue component shown in Fig. 9a in the right
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(d) Manual air segmentation.

frontal sinus is recolored pink in Fig. 9b. Note that the
last post-processing step is only applicable if the patient’s
geometry is deemed healthy, which here means that each of
the cavities are given by single connected components.

On a standard desktop computer (CPU: IntelCore
i7-7820X with 16 cores clocked at 3.60GHz, GPU:
GeForceGTX 1080/Pcle/SSE2, Memory: 64GB), a segmen-
tation in NRRD format and 3D geometries in STL and/or
PLY format can be generated in approximately 3 min for
single patient data consisting of ~ 200 axial slices using a
400 px? ROI. The complete process roughly takes 8 min
when the two additional post-processing steps are included.
Figure 10 shows 3D geometries generated from the 2D
segmentations with the single and the two additional post-
processing steps. In Fig. 10a, the bone geometry is also
shown, which is removed for all other cases for visualization
purposes. By comparing Fig. 10b with the two views of the
same corrected geometry in Fig. 10c and d, it becomes clear
that without applying the two additional post-processing
steps, the sub-segmentation is less accurate. The sphenoid
sinuses appear to be smaller than they should be in the
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Fig.9 Multi-class CNN
segmentation with and without
post-processing for a single CT
slice

(a) Segmentation with a single post-processing step.

ideal case. A single connection exists between the frontal
sinuses due to limited segmentation accuracy at the thin
bone wall separating them. The results obtained for the
maxillary sinuses appear to be particularly accurate. Nev-
ertheless, the CNN evidently already learned to discern the
sinuses quite well despite the fact that it is only trained on
data of three healthy patients.

Fig. 10 STL geometries
generated from a multi-class
CNN segmentation using a
single and two further
post-processing steps

(a) Surfaces resulting from applying a single
post-processing step (with bone).

(b) Segmentation with further post-processing.
3.3 Simulation of the respiratory flow

Subsequent to the geometry acquisition, the framework
guides the user towards the simulation setup. After complet-
ing the setup, the simulations can be executed and the results
can be displayed and analyzed. These steps are explained in
the following.

(b) Surfaces resulting from applying a single
post-processing step (without bone).

(¢) Results after two additional post-processing
steps (view 1).

(d) Results after two additional post-processing
steps (view 2).
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RESET TO DEFAULTS

Settings

Possible Lattice Boltzmann Methods
(® ZFS_LATTICE_BGK_THERMAL
(O ZFS_LATTICE_BGK

QO ZFS_LATTICE_MRT

Boundary Condition Type
@® volumeFlux

QO pressureDifference

Possible Grid Configurations

O coarse
@ medium
O fine

©)

O

Fig. 11 In the simulation setup the user can choose from several configurations. Here, the simulation method, the types of boundary conditions,
and the grid refinement can be selected. Advanced users can set additional configuration options

3.3.1 Simulation preparation

In the setup process, the simulation parameters can be speci-
fied in simplified drop-down menus in the Jupyter frame-
work as shown in Fig. 11. The user can choose between differ-
ent grid refinement levels, different simulation parameters,
and boundary conditions. Default values are pre-selected.

For the simulation of the sample nasal cavity, a uniformly
refined, medium fine mesh with a grid cell size of §r =
0.106 mm, which results in approximately 100 - 10° cells,
is generated. Considering quasi-steady flow at moderate
volume fluxes leads to REYNOLDS numbers Re, < 2000.

In this regime, the flow is neither fully laminar nor turbu-
lent [21]. It has been shown in [32] that for such conditions
the employed resolution is sufficient to resolve all turbu-
lent structures impacting the fluid mechanical properties of
respiration.

A computational mesh, as output of the massively par-
allel grid generator of m-AIA is shown in Fig. 12. For
demonstration purposes, the example mesh also features
boundary-refined elements. The flow in the frontal sinuses
does not have a significant effect on the respiratory flow
through the main cavities. Therefore, and to save computa-
tional resources, the frontal sinuses are removed.

Fig. 12 Hierarchical
unstructured Cartesian mesh for
the simulation of the flow in the
nasal cavity. A boundary-refined
mesh is shown to emphasize the
capabilities of the parallel
meshing tool in m-AIA

@ Springer

The boundary conditions are set as described in Section 2.4.3,
i.e., a volume flux of V = 250 ml/s is prescribed for the
steady state simulation. This value corresponds to the aver-
aged volume flux for respiration at rest for an adult. Note
that this is only the default value. The user can prescribe
any physically valid volume flux. However, depending on
the volume flux a higher grid resolution might be required.

The corresponding REYNOLDS number is calculated
automatically using the hydraulic diameter of the pharynx
dj, and the kinematic viscosity of air v = 1.63 - 10™2m /s>
at the average ambient air temperature of 7,z = 303.15 K.

3.3.2 Simulation run and in-situ monitoring

At simulation run time, some of the flow variables such
as Apf;:,N(F) are visualized in-situ. This allows the user
to monitor the simulation. For quasi-steady simulations, as
used in this study, the in-situ output of the flow variables
can be used to monitor the convergence of the simulation. In
contrast, if unsteady simulations are desired the temporar-
ily resolved evolution of the flow variables will become

available to the user. An example output of Apg;l;/(r) over

the number of iterations is shown in Fig. 13. The number
of iterations used for one simulation run is set to 300,000.
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Fig. 13 Temporal evolution of the static pressure loss plotted in-situ at
simulation run time

Subsequently, the simulation is restarted to average the
results over another 300,000 iterations. The user can mod-
ify both the number of the simulation and the averaging
iterations in the Jupyter interface.

pressure loss A p”N ) [Pa]

o
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(a) Static and total pressure loss in the left and right
cavity, plotted as difference to the pressure in the
pharynx.

3.3.3 Output and analysis of the simulation results

The averaging process is followed by the post-processing
of the simulation data. In this pipeline step, the user is
able to choose between different analysis tools. Initially,
the Jupyter interface provides the user with an analysis
of the flow variables that is presented in multiple plots.
That is, the averaged temperature at the inlets and at the
outlet, and the total and static pressure losses are displayed.
The results for the example case are shown in Fig. 14.
Furthermore, the volume flux in combination with the
pressure loss is presented in the 4-PR measurement data
plot in Fig. 7. These values provide the user with a first
impression of the quality of the nasal cavity. From Fig. 14a,
it is obvious that the pressure loss in the exemplary case
is moderate. Furthermore, the heating capability determined
by an averaged temperature increase up to 99% body
temperature is excellent, cf. Fig. 14b.

For a more detailed view, the pressure and temperature
evolution along the geometric centerline is presented to
the user. The geometric centerline of the investigated nasal
cavity is shown in Fig. 15. Its computation is based on
the explanations given in Section 2.5.2. The pressure and
temperature along this curve are shown in Fig. 15b and
c, respectively. Using this data representation, the user
can easily identify regions of high pressure loss or further
conspicuous areas without searching the whole simulation

temperature T [°C]
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2 ]
= ]

]

inflow temper ;m:u e: 20
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(b) Temperature at the nostrils and pharynx. The
temperature for the nostrils is a boundary condition
parameter.

Fig. 14 Bar diagrams of the aggregated static and total pressure loss (a) and the aggregated temperature (b), available in the web application
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(a) The path of the geometric centerline used to aggregate data.
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(b) Pressure loss along the geometric centerlines.

Fig. 15 The geometric centerline inside the nasal cavity can be visual-
ized in the web application, cf. (a). The flow variables like the pressure
or the temperature are plotted along the centerlines, starting from

data. The peak S1 shown in Fig. 15b is such a candidate.
After localizing these critical regions, the user can interact
with the Jupyter interface to visualize the flow variables
in these regions. It is furthermore possible to visualize
other regions or even the whole computational domain.
Therefore, the simulation data is rendered in parallel on
the visualization nodes of the JURECA supercomputer
using ParaView. Figure 16 shows the cross section
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(c) Temperature along the geometric centerlines.

the left and right nostrils. The distance from the nostrils is shown in
percentage of the total length of the centerline

corresponding to S1. Obviously, the cross section cuts a
narrow passage between the frontal sinus and the main
cavity. The total pressure within the frontal sinus is greater
as the total pressure in the main cavity, which results in the
peak S1 in Fig. 15b. Furthermore, this pressure difference
between the frontal sinus and the main cavity can cause
pain that might be alleviated by decongestants that widen
the passage. Figure 17 shows further rendered data in the
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Fig. 16 Total pressure
difference between the pressure
at the inlet and the cross section
S1, cf. Fig. 15b. Furthermore,
the velocity magnitude
distribution at location S1 is
shown

Aptot [Pa] v
1.8 2.7 3.6

0.0 0.9

|

web application. Here, sagittal and frontal cross sections
with the velocity magnitude are shown. Obviously, and in
accordance with the reduced pressure loss in the left nasal
cavity, accelerated flow is found on the left side.

4 Discussion, summary, and conclusions

CFD methods slowly make their way into clinical envi-
ronments. One of the biggest challenges that needs to be
addressed is finding a suitable pipeline that (i) delivers
reliable results, (ii) can be executed efficiently and fully
automatically, (iii) is intuitively usable by medical experts,
and (iv) is easily extendable by software developers.

The approach presented in this study fulfills all the-
ses requirements and focuses on the implementation and
deployment of a fully automated simulation pipeline for
decision making processes and for surgery planning in
the field of rhinology. The automatization is facilitated by
including ML methods into the pipeline. The desired accu-
racy is guaranteed by running scale-resolving simulations
without using any modeling aspects. Results are obtained in
a short amount of time through the use of HPC systems. The
usability and the extensibility of the software framework
is provided through using a Jupyter-based framework. It
allows for intuitive data progressing, a clear presentation of
the results, and easy access to HPC resources hiding the
whole complexity of running numerical simulations from
the user. The pipeline is executed on JSC’s HPC systems,
can be transferred, however, to any other system supporting
JupyterLab with a voila extension and having access
to sufficient computing resources.

0.0 05 1.0 1.5 2.

I N R

45 54 6.3

R

Initially, the pipeline accepts CT data sets, which are
anonymized on the client side, i.e., no personal data is
treated on the server side. Additionally, 4-PR data can be
uploaded and visualized, after simulation even with numer-
ical results integrated. Subsequently, novel CNN-based
algorithms are capable of either performing a two-class
binary segmentation of the airways or a 9-class segmen-
tation identifying several relevant anatomical structures. In
the former case, which is the most relevant case when con-
sidering numerical simulations of the respiratory flow, the
air-filled regions in particular are confined fairly strictly to
a certain Hounsfield unit range. For the latter case, it is dif-
ficult to classify a given voxel, regardless of whether the
segmentation is performed manually by a person or auto-
matically. That is, bones or tissue can be difficult to discern
in regions where the Hounsfield units of different materials
are practically indistinguishable. In this work, two CNNs
have been developed that are capable of providing accurate
results for binary-class segmentations and to classify nine
different anatomical structures. The multi-class segmentation
algorithm is enhanced by class balancing methods. All
CNNs have been trained by multiple CT data sets and
deliver a segmentation in a short amount of time with a suf-
ficient accuracy, even on single desktop computers. From
these segmentations water-tight geometries are obtained by
standardized techniques.

These surfaces are input to a grid generator, which
creates a hierarchical, unstructured Cartesian mesh to run
numerical simulations. From the novice user, advanced
options that, e.g., influence the mesh resolution, are hidden
in the configuration process. They are set to decent standard
values. The advanced user has, however, the opportunity
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to influence the mesh generation by, e.g., modifying the
maximum refinement level or the refinement type. Since
the mesh generation process requires less computational
resources than a simulation, the job is in general executed
within a few seconds.

On the computational mesh, the governing equations of
a TLB method are solved, i.e., the BGK equation and its
thermal extension by a total energy distribution function
approach are solved. Unlike other solvers employing RANS
methods, in which turbulent structures are only modeled,
using the default option of the pipeline, the mesh is
sufficiently fine to fully resolve all relevant flow phenomena
without using any model. The TLB method yields highly
resolved flows, which are required for an accurate medical
analysis. Obviously, this comes at a high computational
cost. On single desktop computers, results cannot be
obtained in a reasonable amount of time. Fortunately,

Fig. 17 Sagittal and frontal
cross sections colored by
velocity magnitude

the Jupyter interface has been designed in such a
way to directly grant access to HPC resources through
allocated compute time projects. Thereby, simulations can
be executed in a massively reduced amount of time
using thousands of computational cores. The simulation
framework m-ATA, especially its TLB component, has
shown to scale to hundreds of thousands of computational
cores, i.e., it is expected that similar simulation problems
can simultaneously be solved in only a fraction of the time
on soon upcoming exascale systems.

The complete setup of the simulation is integrated into
the Jupyter framework. Like in the grid generation
process, the framework provides a simplified interface
pre-filled with decent default values, i.e., the user not
necessarily has to deal with the complex choice of
reasonable boundary conditions, simulation times, or the
parallelism of the execution. Various drop-down menus

(a) Velocity magnitude in a sagittal plane through the right nasal cavity. The pharynx is located on the left side, the right

nostril on the right side.

S

(b) Frontal cross section in the center of the nasal

cavity.
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(c) Frontal cross section close to the pharynx.
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offer meaningful options for the prescription of boundary
conditions. For example, the user can simply choose from
prescribing a volume flux or driving the flow by a pressure
difference from the nostrils to the pharynx. Hence, in
contrast to other research codes that are used to conduct
highly resolved simulations of the respiratory system, the
user does not require any knowledge on HPC and CFD to
run simulations using the proposed pipeline. In any case,
there also exists an advanced users’ view. Here, the user
may, e.g., additionally choose from various discretization
models or influence the parallel simulation execution.
The submission to the batch system and the execution is
completely hidden behind a single simulation run button.
Internally, a job script is modified, the properties of the
simulation are written to m-AIA property file and a job is
submitted. Of course the execution time is dependent on
the availability of the requested resources. However, for the
small number of cores as considered here, the queuing takes
in general only a few minutes.

At run time, some of the simulation data is already
available in-situ and is visualized in the Jupyter
framework. That is, the pressure loss and the temperature
difference are presented to the user in form of plots. At this
stage of the pipeline, they serve as monitoring functions for
the convergence of the simulation in case of steady state
simulations. In unsteady simulations, the plots show the
temporal evolution of the variables.

Subsequent to the simulation the result data are post-
processed. The user can intuitively interact with various
plots presented in the Jupyter environment. Besides
standard bar plots of the flow variables pressure loss,
temperature difference, and mass flux, the user is offered the
distributions of the pressure loss and temperature difference
along the geometric centerline of the left and right nasal
cavity. This way, critical areas inside the airways, which
can be investigated in detail afterwards by visualizing the
rendered simulation data, can be analyzed in detail.

To summarize, the Jupyter platform with the voila
extension is a perfect tool to link all the individual steps
that are required to run numerical simulations of respiratory
flows on HPC systems. It guides novice and professional
users through the complex process of running such
simulations and analyzing the results. The individual steps
can be executed fully automatically. The interaction with
the user is only required to specify additional simulation
properties and to allow the user to stop the pipeline at any
point. In principle, default values can be applied to execute
the pipeline without any user interaction.

Thus, the pipeline is capable of combining easy usability
and highly resolved simulations including automated pre-
and post-processing on HPC systems, which does not yet
exist in this form to the best of the authors knowledge.

Furthermore, Jupytexr’s flexibility allows the easy adap-
tation of the pipeline to any other simulation problem.

5 Outlook

The next step is to integrate the pipeline into medical trials
to get more intense feedback from medical experts on the
usability of the framework, when integrated into everyday
clinical routine. Several hospitals are already interested in
joining such a study. Furthermore, the Jupyter notebooks
are currently prepared to make them available to other
supercomputer users of JSC. They will serve as templates
for different communities to implement domain-specific
notebooks to efficiently process simulation data and to
advance interactive supercomputing.

Of course, there is also potential to improve the accuracy
and performance of the individual pipeline steps. 3D
CNNs that make use of more training data and consider
information along the axial dimension will be implemented.
Three-dimensional information, much larger yet accurately
segmented data sets, and additional data set enhancement
techniques such as scaling and translation of the volume
data, will be exploited. This will lead to CNNs that
provide more accurate results for a wide range of patient
geometries, for both healthy and pathological cases. Such
CNNs may also enable large-scale data analysis for, e.g.,
CFD simulations, volumetric measurements, obstruction
detection, or septum deviation gradation, using thousands of
patients.

Considering the simulation, m-ATA is currently extended
to read 4-PR data as input and to simulate complete res-
piration cycles according to these data. This enables the
prescription of time-resolved volume fluxes that correspond
to the 4-PR data, i.e., to create fully-integrated and real-
istic digital twins of patients. Furthermore, an interface is
implemented in m-AIA to interact with a virtual surgery
environment. In this environment, a surgeon will be able to
conduct virtual surgeries on segmented geometries at sim-
ulation run time, the fluid mechanics will automatically
be updated, and feedback will be given to the surgeon.
Therefore, the TLB method will be coupled to a level-set
solver tracking the change of the air/tissue interface at vir-
tual surgery. Furthermore, the TLB method is extended to
allow for analyses of the heat transfer at this interface.
That is, the impact of various inlet temperatures on the
tissue temperature is investigated. To this end, m-AIA is
also continuously adapted to new supercomputing archi-
tectures to prepare it for exascale computing, i.e., various
modules of m-AIA are currently ported to general pur-
pose graphics processing units (GPGPUs), further load-
balancing techniques are investigated, and the modular
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supercomputing architectures at JSC are exploited for effi-
cient in-situ analysis.
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