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In 1918, a strain of influenza Avirus caused a human pandemic resulting in the

deaths of 50 million people. A century later, with the advent of sequencing

technology and corresponding phylogenetic methods, we know much more

about the origins, evolution and epidemiology of influenza epidemics. Here

we review the history of avian influenza viruses through the lens of their

genetic makeup: from their relationship to human pandemic viruses, starting

with the 1918 H1N1 strain, through to the highly pathogenic epidemics in

birds and zoonoses up to 2018. We describe the genesis of novel influenza A

virus strains by reassortment and evolution in wild and domestic bird

populations, as well as the role of wild bird migration in their long-range

spread. The emergence of highly pathogenic avian influenza viruses, and

the zoonotic incursions of avian H5 and H7 viruses into humans over the

last couple of decades are also described. The threat of a new avian influenza

virus causing a human pandemic is still present today, although control in

domestic avian populations can minimize the risk to human health.

This article is part of the theme issue ‘Modelling infectious disease out-

breaks in humans, animals and plants: approaches and important themes’.

This issue is linked with the subsequent theme issue ‘Modelling infectious

disease outbreaks in humans, animals and plants: epidemic forecasting

and control’.

1. Introduction
(a) Influenza viruses
Influenza viruses are part of the Orthomyxoviridae family [1] and are negative

sense single-stranded RNA viruses with segmented genomes. There are four

main influenza virus species: A, B, C and D. Type A viruses are known to

infect a wide variety of birds and mammals, while the other species have

more restricted host ranges. Influenza A viruses (IAV), including all avian influ-

enza viruses, possess eight separate genomic segments ranging in size between

890 and 2341 nucleotides [1,2]. Like other RNA viruses, influenza viruses have a

fast mutation rate, typically accumulating two to eight substitutions per 1000

sites per year [3]. Segmentation further increases the evolutionary speed of

the virus by permitting exchange of genes between virus strains that co-infect

cells in the same host, a process known as reassortment. The genome segments

of IAV encode ten core polypeptides, including: three subunits of a viral pol-

ymerase, a nucleoprotein, three transmembrane proteins (haemagglutinin

(HA), neuraminidase (NA) and the M2 ion channel), a matrix protein M1

and ‘non-structural’ proteins NS1 and NS2/NEP, as well as a virus strain-

dependent suite of non-essential accessory proteins [4]. The HA and NA surface

proteins are antigenic, very diverse, encoded on separate segments and split

into 18 and 11 subtypes, respectively. Apart from the recently discovered

bat-specific H17, H18, N10 and N11 proteins [5,6], all of the subtypes have

been found in avian species, whereas only a subset of the others have been

detected in mammals. The other six segments are often considered as encod-

ing the ‘internal’ genes. Although there is continuous global circulation of IAV

in humans, due to the connectivity of the population [7], the majority of the

diversity is in avian species and the reservoir population is avian [2]. There-

fore, understanding the general global patterns of IAV epidemiology in
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Figure 1. PB2 phylogeny of a stratified sample of all influenza subtypes. Tips in the circular neighbour-joining tree are coloured by host: blue, avian; pink, swine;
orange, human; green, canine; brown, equine; purple, bat. The rings from inner to outer are: host-type, haemagglutinin subtype (H-type), neuraminidase subtype
(N-type) and continent of isolation. The tree shows (clockwise) bats at the root, the avian—Eurasian lineage with many subtypes, human seasonal H1N1, H2N2 and
H3N2 spread through all the continents, H1N1, H1N2, H3N2 swine influenza, the H1N1 pandemic swine influenza lineage in humans and swine, and the avian—
Americas lineage with many subtypes.
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birds will help elucidate the origins of past pandemics and

could help inform predictions about future events.
(b) Major IAV lineages
Figure 1 shows a phylogenetic tree from 8809 nucleotide

sequences of segment 1, which encodes the polymerase

basic 2 (PB2) subunit of the viral polymerase, with major

hosts and subtypes marked. The sequences in the tree are a

stratified subsample (one or two per host-type, subtype,

country or state and year) of all the virus isolates with com-

plete genome sequences in Genbank, obtained through the

Influenza Virus Resource database [8] (approx. 40 000 in

July 2018) and represent the known diversity of IAV. Details

of the sequences as well as the alignments files and tree files

for all internal segments can be found in the electronic sup-

plementary material. Major lineages for avian, swine, human,

equine and canine hosts can be observed, although cross-

species transmissions are quite common. As indicated in the

figure, reassortment of the surface protein-encoding segments
is rife in avian virus lineages [9,10] and present to some

extent in swine lineages [11,12], but is generally uncommon

for the human, equine and canine lineages.
(c) Fowl plague is avian influenza
Severe non-bacterial outbreaks with high mortality rates in

domestic birds have been recorded since the late 1800s

(reviewed in [13,14]). In the nineteenth and early twentieth

centuries, these outbreaks were termed ‘fowl plague’, and it

was not until 1955 that Schafer determined that ‘fowl

plague virus’ (FPV) was indeed a type of IAV, with similar

internal antigens to human and swine influenza viruses

[15]. Sequencing studies performed many years later resulted

in the identification of the highly pathogenic avian influenza

(HPAI) virus strains responsible for these outbreaks as H7

subtype IAVs, including A/chicken/Brescia/1902 (H7N7)

[16], A/FPV/Weybridge/1927 or A/FPV/Dutch/1927

(H7N7) [13,17] and A/chicken/FPV/Rostock/1934 (H7N1)

[18]. In 1959, an antigenically different HPAI H5 subtype



Box 1. The molecular basis for high and low pathogenic phenotypes of H5 and H7 strains of IAV.

HA is synthesized on the endoplasmic reticulum as a precursor HA0 polypeptide, assembled into a trimer, glycosylated and

transported to the cell surface. At this point, it can be incorporated into budding virus and is active as a receptor binding mol-

ecule. However, it is incapable of promoting membrane fusion and thus virus entry into the next cell, until a post-translational

cleavage event has taken place to separate the HA1 and HA2 domains and liberate a fusion peptide at the new N-terminus of

HA2 (figure 2). In LPAI strains of virus, cleavage is performed extracellularly by host proteases present on mucosal surfaces,

after a single basic residue. By contrast, HPAI strains have an expanded multi-basic sequence that allows intracellular proces-

sing via ubiquitous furin-like proteases; this has the consequence of expanding the tissue tropism of the virus and facilitating

systemic disease [25–29]. This phenomenon is well established for H5 and H7 HAs, but for reasons that are unclear, has not

been seen outside of the laboratory for other HA subtypes.

fusion
peptide

signal
peptide

HA1

S–S

HA2 COOH

LPAI:
HPAI:

NH2

transmembrane
domain

Figure 2. Cartoon depicting post-translational processing of a linear HA monomer. HA1 and HA2 domains are indicated, as is the linking disulfide bridge. Red
boxes indicate hydrophobic regions involved in membrane interactions. Example cleavage sequences from low and high pathogenicity H5 viruses are shown.
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was found in a chicken farm in Scotland (represented by A/

chicken/Scotland/1959 (H5N1) [17]), while in 1961 an H5N3

strain was isolated from a wild common tern (Sterna hirundo)
in South Africa (A/tern/South Africa/61 (H5N3) [19]).

Because of the highly pathogenic phenotype of these first

H5 and H7 isolates, it was parsimonious to consider all H5

and H7 viruses to be similarly virulent. However, this was

reconsidered after the isolation of low pathogenic avian influ-

enza (LPAI) H5 and H7 strains from ducks in the 1950/1960s

and from turkeys in the 1960s/early 1970s (e.g. A/turkey/

Ontario/77332/66 (H5N9) [20] and A/turkey/Oregon/71

(H7N3) [21]). Since then, an enormous variety of LPAI and

HPAI H5 and H7 subtypes have been isolated from domestic

and wild birds, as well as the viruses bearing the majority of

all other possible combinations of H1–H16 and N1–N9 sur-

face glycoproteins [2,22–24]. The molecular basis for the

strikingly different virulence phenotypes seen with H5 and

H7 viruses has also been elucidated (see box 1).
(d) Avian influenza and human pandemics
One hundred years ago, in 1918, the ‘Spanish flu’ pandemic,

caused by an H1N1 influenza virus is estimated to have con-

tributed to the deaths of around 50 million people [30]. Since

then, three other human IAV pandemics have occurred:

H2N2 in 1957 (Asian flu), H3N2 in 1968 (Hong Kong flu),

and H1N1 again in 2009 (swine flu). In each case, IAV strains

bearing segments coding for antigenically novel NA and/or

HA surface protein(s) rapidly spread through a human popu-

lation with no or little prior immunity. The relationship

between fowl plague, avian influenza and human influenza

was not apparent before the 1950s, but by 1967 Pereira,

Tumova & Webster suggested that the human H2N2 and

H3N2 pandemic viruses might have had an avian origin on

the basis of antigenic cross-reactivity [31].
As soon as IAVs were sequenced (e.g. [18]), phylogenetic

analyses started to show how avian and human viruses were

related, and how this relationship could vary according to

the segments involved. Such studies unambiguously con-

firmed the avian virus origin of the human 1957 and 1969

pandemic glycoprotein genes [32,33]. The complete sequences

of 1918 human H1N1 viruses are also available (e.g. A/Brevig

Mission/1/18 (H1N1)) despite this pandemic pre-dating the

identification of IAV as the causative agent [34], having been

obtained direct from tissue samples of victims [35]. However,

it has been difficult to infer the host species of the ancestor(s) of

the 1918 pandemic virus, since there are only three partial

sequences of HA or NP from contemporary avian isolates

(obtained from museum samples collected between 1915 and

1919) [36,37], and most of the earliest other avian and swine

virus sequences are from samples from the 1930s [38]. Although

the human 1918 H1N1 sequences form a group with the con-

temporaneous classical swine H1N1 lineage, analysis of the

polymerase gene sequences and time-scaled phylogenetic

studies indicate that these 1918 human IAV segments probably

do have an avian origin [39,40].

The subsequent two human pandemics (1957 and 1968)

were not caused by completely avian-origin viruses, but

were rather reassortant viruses with avian-origin HA, PB1

polymerase and (for the 1957 pandemic) NA segments

[33,41–43]. The N2 neuraminidase in the 1968 strain, how-

ever, was a continuation of the avian N2 previously

introduced in the human population in 1957 [33]. The 2009

H1N1 ‘swine flu’ pandemic was a result of reassortment

between different strains of IAV that had been circulating in

swine for at least 10 years [44], but these precursor swine

strains all had segments tracing back to avian origins some

30 years previously [44,45].

Sporadic infections of humans with a limited number of

avian virus subtypes (H5, H6, H7, H9, H10) have also been



Box 2. Inference of transmission routes using phylodynamics and phylogeography.

(a) (b)

Figure 3. Example of a time-scaled phylogenetic tree with tips coloured by host-type and the discrete trait host model (a); and the same tree mapped into
space with continuous spatial coordinates with tips coloured by subtype (b).

Viral sequence data sampled over a period of time, spatial locations and different host species can be used to infer transmission

patterns (e.g. [63,64,67–71], figure 3). Typically for IAV, time-scaled phylogeny reconstruction is often performed using the pro-

gramme BEAST (Bayesian Evolutionary Analysis Sampling Trees) [72,73] in which trees and relaxed molecular clock models

used to represent the relationship between genetic distance and time, and other parameters, are jointly inferred.

To infer transmission rates between discrete locations or hosts, or to model subtype changes (for example, the change of

NA subtype with respect to a tree made from HA sequences), phylogenetic analysis with discrete traits can be used [74],

where transitions from one state to another are inferred along the phylogeny as a continuous time Markov chain model

[75] (e.g. H5N1 in Asia [63] and H7N3 in North America [64]). Discrete trait analyses can be extended by parameterizing

the transition rate matrix as a log–linear function of various potential covariates in a generalized linear modelling frame-

work, to identify the host species or environmental factors associated with the observed spatial spread [7,76–78]. When

the additional feature of interest is continuously distributed, e.g. location as latitude and longitude, Brownian random

motion walks can be used to model the diffusion of the trait along the tree corresponding to the dispersal history of the

pathogen [79,80]. The impact of environmental factors on virus dispersal can be estimated by correlating the distances

along branches of the trees with the ‘resistances’ resulting from the diffusion path through landscapes of environmental vari-

ables using R package SERAPHIM [81].

In addition to trait-based approaches, BASTA [82] and MASCOT [83] make use of structural coalescent approximations

[84,85] to reconstruct evolutionary trees while considering the size of the different sub-populations involved in the meta-

population, improving inference of the migration rates between sub-populations. Finally, by combining epidemiological

data and recent phylogenetic inference techniques, several methods such as SCOTTI [86], Outbreaker [87] and Beastlier

[88] are now able to reconstruct, with some success, the transmission tree of only partially observed epidemics.
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known to occur directly from avian sources, but without as

yet leading to sustained human to human transmission

[46–52]. Typically, these infections are severe in humans,

often causing death, and potential zoonotic epidemics are

of ongoing concern. Specific episodes with H5 and H7

viruses are considered in more detail later.

2. Global patterns of avian influenza circulation
Water fowl, especially Anseriformes (ducks, geese and

swans) and Charadriiformes (gulls, terns and sandpipers),

are thought to be the natural reservoir of IAV [2,53], and

infection in these host species is not only typically low patho-

genic but can be asymptomatic [2,54–57]. It has also been

shown that migratory birds may carry HPAI as well as LPAI

viruses asymptomatically over long distances [53,58–60], and

that avian IAV lineages can spread along migratory flyways

[61–66]. For example, remote sensing and phylogenetic ana-

lyses showed that the distribution of H5N1 viruses in

Eastern Asia followed wild bird migratory flyways in the

time period 2003–2012 [63].
Transmission between places and host species can be

inferred by phylodynamic and phylogeographical analyses

[67,68], and these techniques are particularly suitable for

understanding avian influenza systems since they make use

of the fast-evolving viral sequence data to reveal dispersion

patterns (see box 2 for details). Phylogeographic analyses

have revealed the role of migratory wild birds in the intra-

continental circulation of LPAI in North America [61,62,89],

and have implicated wild birds following North American

flyways in the introduction of H7N3 strains into Mexico in

2012–2013 [64]. Similarly phylogeographic techniques have

also been used to show the effects of HPAI H5N1 transpor-

tation by different bird species across Asia [90] and that the

spread of LPAI H9N2 strains in Asia was a combination of

long-range distribution by wild birds coupled with more

localized spread via the domestic bird trade [91].

The effect that bird migratory flyways (figure 4) have on

the global circulation of IAV can be seen in the phylogeny of

all segments, where two very distinct major clades corre-

sponding either to the Americas or to Asia, Europe, Africa

and Australasia can be observed [65]. Estimates of the time



Figure 4. Flyways of migratory water fowl. Flyways run approximately north – south, and also overlap in northern regions, including in Siberia, Greenland, Alaska
and across the Bering straits, which allows occasional transmission of influenza viruses between North America and Eurasia. Flyways from http://wpe.wetlands.org/
Iwhatfly.

H5N1 
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H5N7 
H5N8 
H5N9 
LPAI 
HPAI 

1955 1965 1975 1985 1995 2005 2015

Americas LPAI

Eurasian LPAI

HPAI Gs/Gd

clade 2.1.3

clade 2.2.1

clade 2.3.2

clade 2.3.4.4
H5NX

Figure 5. Time-scaled tree of a stratified subsample of H5 segment 4 (HA). The tree represents the known diversity of LPAI (blue branches) and HPAI (red branches).
Tips are represented as circles and coloured by neuraminidase subtype from H5N1 (red) to H5N9 (magenta).
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to most recent common ancestor (TMRCA) of these clades

varies by segment and method, but appears to be in the

region of 100 years, a value close to the root of the major con-

temporary human, swine and avian lineages [40], and as such

represents a deep divide (also evident in figure 5). Although
viral dissemination via wild birds can be thought of as occur-

ring along flyways, different species have different migration

patterns, and these general flyways overlap, as indicated in

figure 4. Consequently, cross-flyway (e.g. [89]), and intercon-

tinental transmission of avian IAV by wild birds does occur.

http://wpe.wetlands.org/Iwhatfly
http://wpe.wetlands.org/Iwhatfly
http://wpe.wetlands.org/Iwhatfly
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In a study of northern pintails, Koehler et al. found intercon-

tinental transmission of LPAI connecting the East Asian-

Australasian flyway to the Pacific Americas [92], while in

2014/2015 HPAI H5N8 was introduced into North America

by a similar route [69,93]. There is also evidence for transfer

of IAV genes from the Americas to Eurasia [94].

However, even if migratory birds might be good vectors,

transmission patterns indicate that circulation is partially

maintained through trade of infected domestic birds

[91,95,96]. For example, the long-distance expansion of

H5N1 HPAI viruses in 2004 was found to be caused by

human-directed movements of domestic poultry [96], and

both LPAI and HPAI virus circulation was found to be

driven by human activities in China [76]. Therefore, it is

clear that the worldwide spread of avian IAV results from

synergy between trade of infected domestic birds and wild

bird movement through migratory flyways [91,97].

New HPAI strains are thought to emerge from an LPAI

progenitor (see box 1) following their introduction into dom-

estic bird populations (e.g. [98,99]). Since domestic ducks can

share the same habitat, water and food as wild waterfowl

[100,101], their presence and concentration are thought to

make them key intermediate hosts between wild birds and

poultry, and consequently they play an important role in

the emergence and circulation of HPAI strains, especially in

Asia [101–103]. The bridging role of domestic ducks between

wild birds and domestic Galliformes has been particularly

emphasized in the H7N9 IAV outbreaks in China [104],

most notably in areas where high concentrations of free-

grazing ducks live in close contact with potentially infected

wild birds, such as the Poyang and Dongting Lakes [100].

Agricultural practices, such as the release of high quantities

of juvenile ducks in paddy fields prior to the arrival of

the wild birds, might further exacerbate transmission and

circulation of the virus between wild and domestic animals.

3. Rise of highly pathogenic avian influenza
As noted above (box 1), H5 and H7 avian strains of IAV are

further classified as highly pathogenic on the basis of their

ability to cause disease and mortality in chickens [25].

Over 20 years ago, phylogenetic analysis of HA sequences

indicated that HPAI strains had independently evolved on

separate occasions from ancestral LPAI viruses [16]. This

has since been confirmed by many detailed sequencing ana-

lyses of outbreaks where direct LPAI precursors have been

identified, even down to individual poultry sheds (e.g.

[105,106]). Dhingra et al. performed a meta-analysis of H5

and H7 outbreaks from 1959 to 2015 and found 39 indepen-

dent LPAI to HPAI transition events [107], and the majority

of these (37 out of 39) were associated with commercial poul-

try farming. As HPAI in poultry has a rapid onset and high

mortality rate, farm outbreaks can be short lived, partly

because a large percentage of the birds die in a few days,

but also because HPAI is a notifiable disease with mandatory

control measures, including culling remaining birds and

movement bans to limit the spread to neighbouring areas

[25]. However, on some notable occasions HPAI outbreaks

have caused major losses in domestic birds (see [13] for a

review up to 2008). Apart from the widespread HPAI H5s

originating in Asia from 1996 onwards, and the associated

H7s which are described in detail next, other outbreaks

resulting in huge impacts (i.e. the death or destruction of
more than 1 million birds) include: Pennsylvania, USA 1983

(H5N2) [108], Mexico 1994 (H5N2) [109], Italy 1999 (H7N1)

[110], The Netherlands 2003 (H7N7) [111] and British

Columbia, Canada 2004 (H7N3) [112].
4. Highly pathogenic H5N1 viruses: 1996 – 2009
In 1996, an HPAI H5N1 virus was found in commercial geese in

the Guandong Province, China (A/Goose/Guangdong/1/96),

which was thought to originate from H5 viruses in wild

migratory birds [113]. These Goose/Guangdong (Gs/Gd)

lineage strains gave rise to outbreaks of HPAI H5N1 in

chicken farms in Hong Kong in 1997 that further led to

fatal human infections [46,114–118]. Surveillance of live

bird markets revealed that H5N1 was widespread in poultry

[119,120], and because of the zoonotic risk, all poultry in

Hong Kong were culled in the winter of 1997/1998 [120].

This was partially successful in that the ‘HK-97’ lineage of

HPAI H5N1 virus became extinct in Hong Kong [121]. How-

ever, reassorted Gs/Gd-like H5N1 viruses re-appeared in

2001 [95,121–123]. Phylogenetic studies of whole virus

genomes revealed that around 1996–2002 several different

genotypes of H5N1 arose from reassortment events between

the original HPAI H5N1 virus with other LPAI strains

circulating in both domestic and wild bird populations

[95,121–123]. By 2003, one genotype (Z) had become

dominant [123], and in addition to further human cases in

Hong Kong in 2003, there were poultry outbreaks in main-

land China and other countries in Southeast and East Asia

[124]. Associated with these poultry outbreaks, there were

also fatal human cases in Vietnam, Thailand and China [125].

In the spring of 2005, a mass die-off of wild birds

occurred at Qinghai Lake in west China [126]. The majority

of dead birds were bar-headed geese (Anser indicus), infected

with a mix of two previously identified HPAI H5N1 geno-

types (V and Z) [126]. The outbreak virus was thought

most likely to have originated from poultry in southern

China and had been transported by migratory birds to Qin-

ghai Lake [95,126,127]. This episode was particularly

concerning because it showed that the HPAI virus could be

transmitted within wild migratory bird populations, with

the consequent further possibility of spread to the south

Asian subcontinent and/or to Europe [127]. Furthermore,

the virus contained a mutation in a polymerase gene (PB2

627 K) that had been shown to increase H5N1 virulence in

mice, a model for mammalian infection capability [128].

HPAI H5N1 spread out from the Southeast Asia region

into Europe, the Mediterranean and Africa through the rest

of 2005 and 2006 [129], with the first reports of infected

birds in Russia and Kazakhstan in July 2005 and detections

in Turkey, Romania and Croatia in October 2005. A single

H5N1-infected migratory flamingo was found in Kuwait in

November 2005 [124], and by February 2006 Iraq and Iran

were reporting virus in backyard poultry and wild birds, as

well as human and domestic cat cases [130]. In January and

February 2006, there were several first detections reported

in southern and western European countries [124]. H5N1

was first reported in Africa in Nigerian poultry in February

2006 [129], closely followed by reports of poultry outbreaks

in Egypt [129,131–133]. The virus continued to spread in

Africa, west and northwards in Europe and through the

Middle East and South Asian subcontinent in 2006 and 2007.
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Questions had already been raised about H5N1 as the

source of the next influenza pandemic [134,135], so its

spread out of Asia was of continued concern. Reinforcing

these fears, by early 2009 H5N1 was endemic through south-

eastern Asia, had spread through Eurasia and Africa, and

was established in domestic bird populations. It had also

caused several hundred human deaths with estimated case-

fatality ratios of around 30–80% depending on the country

[125] (although the real case-fatality ratio could be different

due to case definitions, survey methods and reporting

[136]). There was also evidence for limited person to person

spread [137,138].

Fortunately, there was no human transmissible H5N1

pandemic in 2009, something that might have caused the

deaths of millions (assuming that a human transmissible

form retained high pathogenicity). Instead the world was

gripped by the much milder 2009 H1N1 ‘swine flu’ pandemic

[44,139]. Despite mostly mild symptoms in humans, the lack

of immunity to this quite different strain from the previously

circulating H1N1 seasonal virus meant that a significant

fraction of the population had probably been infected.

Combining serology studies from 19 countries, an age-

adjusted cumulative incidence estimate of just under a

quarter (24%) of the population was obtained [140], and the

excess mortality in the first year was estimated as between

151 and 575 thousand people [141]. The pandemic H1N1

strain went on to replace the previous H1N1 human seasonal

IAV, and now co-circulates alongside seasonal H3N2 IAV and

influenza B viruses in the human population.
5. Emergence of H7N9 in poultry and humans
Even as the world’s attention was on HPAI H5N1 IAV and

the new pandemic H1N1 virus in humans, transmission of

LPAI wild bird viruses to domestic ducks, reassortment

with co-circulating domestic viruses, and onwards trans-

mission to poultry populations resulted in circulating

lineages of H7N9 and H7N7 viruses [104,142]. The internal

gene segments were from a combination of H9N2 virus

lineages circulating in poultry [143–145], one of which prob-

ably also donated internal segments to the HPAI H5N1

viruses [104,143,144]. The H7N9 viruses proved to be zoono-

tic as the first human cases were found in February 2013 in

Shanghai and Anhui, China [146,147]. From February 2013

to July 2018, there have been 1625 confirmed human cases

and 623 deaths, mostly in China [148,149].

Between February 2013 and July 2017, there were five

seasonal waves of human H7N9 infections [150], with

waves 2–5 starting around October and lasting until

around June. Up until the fifth wave, the H7N9 viruses

found as part of surveillance in live bird markets were

LPAI according to HA sequence, and asymptomatic/mild

for chickens [151,152], but caused a range of symptoms in

humans including severe respiratory distress and death

[146,147]. However, there were mutations in the HA, includ-

ing Q226L (using H3 HA numbering), that were associated

with increased binding to human sialic-acid receptors and

airborne transmission between mammals [142,153,154].

However, although these viruses were shown to be transmis-

sible in ferret studies [155], human to human transmission

actually remained limited [156] and most cases were associ-

ated with contact with infected poultry or live bird markets
[157]. To control the disease, live poultry markets in affected

central urban areas were closed [157], and the total number of

human cases per wave decreased from wave 2 to wave 4

[148]. Nevertheless, the virus, asymptomatic or with mild

clinical signs for birds, continued to circulate in poultry

populations via trade in China, and diversified into several

clades [158]. The fifth wave (starting September 2016) saw a

rapid increase in the number of human cases and geographic

expansion out of southern and eastern China despite the sur-

veillance and control measures [159]. Also during the fifth

wave, HPAI versions of H7N9 were detected in chickens

and in human cases in December 2016 and January 2017

[148,160,161].

Phylogeographic studies indicated that the HA multi-

basic cleavage site was estimated to have been inserted into

an LPAI H7N9 lineage circulating in the Yangtze River

Delta region around May 2016, which later went on to reas-

sort with one of the other H7N9 clades in the Pearl Delta

region and H9N2 [162]. As LPAI H7N9 can cause severe ill-

ness and death in people, it is unsurprising that HPAI also

does, but it has been suggested that disease progression is

more rapid for HPAI than LPAI infections [160]. Also of con-

cern was the presence and ease of acquisition of E627 K or

D701N mutations in PB2 in the human isolates, since, simi-

larly to HPAI H5N1 cases, these are associated with

increased virulence and adaptation in mammals [160,163].

A nationwide vaccination programme for poultry in

China was begun in September 2017 by the Chinese Ministry

of Agriculture [164]. Recombinant H5 and H7 bivalent inacti-

vated vaccines were used [164] with subsequent testing of

post-vaccination immunization, and also continued surveillance.

The overall post-vaccination rate of immunization was in excess

of 80% (the target was 70%) although there was a considerable

variation between provinces. Only a few (11 out of over 80 000

in December 2017) samples from birds or their environment

tested positive for H7N9, and there were only three human

cases of H7N9 in the time period (September 2017–June 2018)

expected to show a sixth wave of human infection, compared

with over 700 the previous year. The risk of spread of H7N9

to surrounding countries in Southeast Asia is still considered

to be moderate via live bird trade, but low for poultry products

and negligible for onward spread via wild birds [165]. The risk

of human occupational exposure in live bird markets is also con-

sidered to be moderate to low [165]. The small number of

positive poultry samples found in the winter of 2017/2018

and near-absence of a sixth seasonal burst of zoonotic infections

suggest that the policy of mass poultry vaccination has been suc-

cessful in reducing the prevalence and risk of infection from

H7N9 viruses.
6. Diversification of highly pathogenic H5
viruses: 2009 – 2018

Since its first detection in 1996, the HPAI H5N1 Gs/Gd virus

lineage has undergone reassortment of internal protein-

coding segments and diversification of the HPAI H5 gene

into ten major clades [166,167]. In clade 2, there are several

sub-lineages that are notable for the number of birds they

have infected, their geographical spread, and spill-over to

humans, including 2.1.3 (Indonesia), 2.2.1 (Egypt), 2.3.2

(Southeast Asia), 2.3.4 (widespread) [167]. Although the H5

HA is paired with an N1 NA for most outbreaks and
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continued circulation, sub-clade 2.3.4.4 is unusual for HPAI

H5 Gs/Gd in that it has been undergoing frequent reassort-

ment with LPAI strains since 2008. In the process, sub-clade

2.3.4.4 HAs have acquired N2, N5, N6 or N8 NAs, and

these viruses are collectively known as H5NX [167], as indi-

cated in figure 5.

H5NX viruses were detected in poultry farms and live

bird markets, particularly in ducks, as part of the ongoing

surveillance effort in China from 2009 onwards [168–171].

H5N5 viruses were initially more prevalent [168,172], while

H5N8 viruses seem to have been circulating in the domestic

duck population at low levels, as they were first detected in

eastern China in 2010 [170] (A/duck/Jiangsu/k1203/

2010(H5N8)) but then apparently disappeared. In 2013,

H5N8 viruses re-appeared in eastern China in 2013 with

some internal segment reassortments from H5N1 strains

[173], were detected in wild mallards (e.g. A/mallard

duck/Shanghai/SH-9/2013(H5N8)) [174], and found in

apparently healthy ducks and geese in a live bird market

in Guangdong, southern China in 2013–2014 [175].

In January 2014, outbreaks of H5N8 were reported in

South Korea [176]. These viruses had high similarity to

A/duck/Jiangsu/k1203/2010 (H5N8) for the HA and NA

segments, but had internal segments from at least two differ-

ent lineages co-circulating in eastern China [176,177]. From

detailed time-scaled phylogeographic analysis, it was

inferred that H5N8 had entered South Korea via overwinter-

ing wild waterfowl which subsequently infected domestic

ducks [70,177].
(a) Global transmission of H5N8 on migratory flyways
The following autumn and winter of 2014/2015 saw wide-

spread H5N8 detections in wild birds and multiple

outbreaks in domestic flocks in Japan, Europe and North

America [69,178]. Both phylogeographic analysis of sampled

sequences and knowledge of bird migration patterns indi-

cated that the virus was transported by migrating wild

Anseriformes from the eastern Asia region, up to the

summer breeding grounds in the north by the East

Asian flyway, and then down into Europe via the East Atlan-

tic flyway or to North America via Beringia (Pacific and

Central flyways) [69,93,179]. This latter event was notable

as the first recorded occasion, nearly 20 years after first iso-

lation, in which a virus bearing an HPAI H5 Gs/Gd

lineage HA had crossed the Bering Straits.

In North America, the H5N8 virus was initially detected

in wild birds in Washington State, USA and British Colum-

bia, Canada where it reassorted with North American

LPAIs, acquiring local internal protein-coding segments and

N1 or N2 neuraminidases [93,178–180]. The new reassortant

H5N2 virus (Asian H5, North American N2) rapidly spread

through USA commercial poultry flocks from January to

June 2015 [181]. Around 50 million birds were infected

and/or destroyed as part of control measures, and with a

cost of at least 1 billion US$ to the industry, this is the most

expensive recorded North American avian influenza epi-

demic to date [182,183]. The control measures were

successful, however, and by the autumn of 2015, H5N2 was

not reported either from industry [182], nor from North

American wild bird surveillance studies [184].

Clade 2.3.4.4 H5 viruses also receded from Europe in the

spring of 2015, having caused outbreaks in wild birds and
domestic flocks in several countries including Germany,

The Netherlands, the UK, Sweden, Italy and Hungary

[69,177,185–190], and were not detected in the following

winter season (2015/2016). In southwest France from late

2015 to summer 2016, infection with HPAI H5 viruses of

H5N1, H5N2 and H5N9 subtypes were reported from water-

fowl, chicken and guinea fowl farms [191], but these viruses

were reassortants descended from LPAI circulation in the

Eurasian virus pool which had evolved a multi-basic

cleavage site de novo [192], and were not related to HPAI

H5 clade 2.3.4.4.

(b) H5N6: a new threat in Asia
In Asia from 2014 onwards H5NX lineages continued to cir-

culate in wild and domestic bird populations, and as well as

H5N8, two different H5N6 reassortant lineages were detected

in Sichuan and Jiangxi provinces of China, respectively in

2014 [193–195]. Both of these lineages spread within poultry

in China [194,196,197], and to wild bird populations [198].

One of the lineages, having acquired internal protein-

coding segments from H5N1/H7N9 lineage viruses, and a

neuraminidase N6 with a stalk deletion (a poultry adaption),

has also caused sporadic human infections [163,199–201].

Clade 2.3.4.4 viruses generally, and especially H5N6, seem

to be successful in poultry populations in China and have

spread to other Southeast Asian countries including Vietnam,

Laos and Korea [196,202–205]. It is also likely that H5N6 has

been transmitted on the East Asian–Australian flyway by

wild migratory birds [206], since Japan has been bombarded

with H5N6 reassortants [207,208], and it is also possible that

H5N6 was introduced into The Philippines via wild birds for

the first time in the summer of 2017 [209].

(c) Repeat invasion of Europe by H5NX
The autumn/winter of 2016/2017 saw the return of H5N8

into Europe from Asia [210] by a sister clade of the 2014/

2015 viruses (rather than a direct continuation of the

2014/2015 lineage). The pathogenicity of the new 2016/

2017 H5N8 viruses appears to be greater in ducks and has

caused more deaths in wild birds [211] than the previous

2014/2015 H5N8 viruses [212]. Additionally, the trans-

mission of the 2016/2017 viruses out of eastern Asia was

by a more southerly route than previously observed, with

detection in May 2016 around Qinghai Lake in wild birds

[213], near Uvs-Nuur Lake, near the Russian–Mongolian

border, in June 2016 [210], and finally in India, the Middle

East and Europe in November 2016 [211,214–218] as a

result of winter southward migrations. Reassortment

events between the incoming HPAI H5N8 strain and other

co-circulating LPAI strains occurred frequently in the

2016/2017 season, including the generation and trans-

mission of H5N5 viruses. Multiple incursions of these

HPAI H5NX strains into European countries occurred

[217], causing the worst epidemic so far in Germany, affect-

ing both domestic and wild birds [214]. In the following

season (2017/2018), a new reassortant H5N6 derived from

the 2016/2017 H5N8 viruses (i.e. different from the H5N6

that infected humans in Asia) was detected in the UK, The

Netherlands and Germany in December 2017 and early

2018 [219,220]. Most recently (September 2018), The Nether-

lands and Germany have reported their first H5N6 detection

of the autumn 2018 season [221,222].
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7. Concluding remarks
In this brief history of bird flu, we have seen that current

avian influenza virus strains have been circulating and diver-

sifying in wild bird populations for at least the last 100 years.

Wild migratory birds can transport IAV along their migration

routes, and contact between wild and domestic avian popu-

lations sometimes results in transmission between the two.

Direct transmission of the virus from wild birds to humans

appears to be very rare (or non-existent), presumably due

to the low frequency of contact between the two populations;

however, transmission from domestic avian species to

humans does occur, especially in live bird markets in Asia.

It is clear that H5 and H7 viruses have the capacity to

evolve (on multiple occasions) an HPAI phenotype, probably

as result of transmission in high bird density settings and the

susceptibility of chicken and other domestic Galliformes

species. In recent years, one such H5 lineage has become

widely established in Asian domestic bird populations.

Both H5 and H7 HPAI viruses have been sporadically trans-

mitted to humans from domestic poultry, and (for H5 at

least) been transmitted back into wild populations. However,

because HPAI does not necessarily kill its anseriform hosts,

reassortment with co-circulating LPAI viruses can occur,

furthering evolution of the virus, while the low severity

symptoms allow the long-range and intercontinental

transport of the disease.

In some senses, the dynamics of human influenza in

humans and avian influenza in birds are similar—both can

be thought of as stratified into layers with different connec-

tivity: age for humans—with locally moving children and

long-range moving adults; and domestic and wild species

for birds—with domestic birds moving via trade and Anser-

iformes by long-range migration. However, unlike human

IAV, where reassortment between the few dominant subtypes

is rare, reassortment is a common feature for avian IAVs,

especially in wild bird populations. Consequently, avian

IAVs are far more diverse and more easily generate novel

strains than the more specialized human viruses.

Looking to the future, we should expect the emergence of

more HPAI strains. Experience teaches that this has previously
occurred somewhere in the world approximately once or

twice per decade; and the fundamental driver of leaving H5

and H7 LPAI viruses uncontrolled in a host-dense environment

until de novo mutation into HPAI forms occurs has not been

removed. Also, it seems quite possible that HPAI H5 will con-

tinue to circulate and diversify, especially for clade 2.3.4.4

because it does not necessarily cause severe clinical signs in its

wild hosts and is therefore capable of silent spread. Hence

increasing biosecurity and vaccination in domestic poultry are

likely to be important strategies to keep outbreaks in these popu-

lations to a minimum. Ongoing avian influenza virus spill-overs

into human cases suggest that zoonotic bird flu is a continued

threat to human health; however, the apparent success of the

H7N9 vaccination programme in China suggests that it is poss-

ible to control virus circulation in domestic birds and thus vastly

reduce the number of human infections and the risk of ongoing

human to human spread. Therefore, if we continue the disease

surveillance programmes in avian, human and other domestic

animal populations, and control avian influenza in domestic

avian populations, then we can surely reduce the risks of a

new human avian influenza pandemic.
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