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Abstract
Coronavirus disease 2019 (COVID-19) has caused significant morbidity and mortality and new cases are on the rise globally, yet malaria-

endemic areas report statistically significant lower incidences. We identified potential shared targets for an immune response to severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by immune determinants’ shared identities with P. falciparum using the Immune

Epitope Database and Analysis Resource Immune 9.0 browser tool. Probable cross-reactivity is suggested through HLA-A*02:01 and

subsequent CD8+ T-cell activation. The apparent immunodominant epitope conservation between SARS-CoV-2 (N and open reading

frame (ORF) 1ab) and P. falciparum thrombospondin-related anonymous protein (TRAP) may underlie the low COVID-19 incidence in

the malaria-endemic zone by providing immunity against virus infection to those previously infected with Plasmodium. Additionally, we

hypothesize that the shared epitopes which lie within antigens that aid in the establishment of the P. falciparum erythrocyte invasion may

be an alternative route for SARS-CoV-2 via the erythrocyte CD147 receptor, although this remains to be proven.
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Introduction
Coronavirus disease 2019 (COVID-19), caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2, formerly

HCoV-19), has led to significant morbidity and mortality in
This is an open access arti
addition to adversely affecting healthcare systems and the global

economy [1,2]. This acute respiratory illness ranges from a self-
limiting acute upper respiratory tract infection to severe

pneumonia, multiorgan failure and death [3]. There is currently
no approved treatment or vaccine.

Most of the confirmed cases are confined to subtropical and

temperate zones; countries in the equatorial and tropical zones
seem to have the lowest incidences of COVID-19

(Supplementary Fig. S1). Interestingly, those countries have a
high burden–high incidence (HBHI) of malaria infection [4].

According to World Health Organization (WHO) reports, the
African region is characterized by a high prevalence of malaria

(~150.9 million in 2018), with dominant infection caused by
Plasmodium falciparum (99% compared to ~0.7% of Plasmodium
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vivax in 2018), and have the lowest number of cases of

confirmed COVID-19 (~187625 as of 17 June 2020) compared
to other regions [4–6].

Malaria infection and its severity have shown an associationwith
the ABO blood group system. Individuals with the O blood group

are less susceptible to the infection compared to individuals with
the A blood group [7]. The mechanism for this preferential pro-
tection is attributed to the rosette phenomenon, which is initially

inducedby theparasite proteins thrombospondin-related adhesive
protein (MTRAP) and RH5. MTRAP and RH5 interact with the

CD147 receptor on the erythrocyte surface, which results in
making infected red blood cells (RBCs) stickier and therefore

facilitate their binding to healthy erythrocytes, forming RBC clus-
ters termed rosettes [7,8]. These rosettes assist parasites to

escape recognition by phagocytosis. Clump formation is weakly
seen in the case of individuals with O blood group.

The relationship between the ABO blood groups and sus-

ceptibility to COVID-19 infection has already been documented
and is shown to follow a pattern similar to that of malaria [9].

Blood group A is associated with a high risk for acquiring the
disease, whereas O blood group individuals have the lowest risk

[10]. Several recent reports have highlighted the notably lower
incidence of COVID-19 in malaria-endemic belts [11,12].

Though no mechanistic laboratory-based clarifications of this
lower number of COVID-19 cases in the African malaria zone

have been explained, several hypotheses have been put forward
to answer the open query. The following factors have been
widely suggested to be relevant: (a) warmer climate [13], (b)

limited amount of international air traffic to and from Africa
compared to the other continents, (c) public socioeconomic

conditions, (d) early lockdown measures, (e) demographic
factors, (f) protection provided by repeated use of antimalarial

drugs and finally (g) factors related to host susceptibility, which
might include immunologic and genetic factors [14–17].

The genome of coronaviruses encodes 16 nonstructural
proteins and four major structural proteins. A number of them
are being targeted therapeutically and are being considered for

candidates for vaccine development for COVID-19 [18,19]. In
this study, we computationally and statistically analysed cases of

COVID-19 in malaria-endemic regions and investigated possible
shared immunogenic regions between dominant proteins of

P. falciparum and SARS-CoV-2.
Methods
Statistical analysis of malaria-endemic regions and
COVID-19 outbreak
We collected and analysed data from WHO reports and
countries’ status profiles for malaria HBHI in 2018 and the
© 2020 The Author(s). Published by Elsevier Ltd, NMNI, 38, 100817
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daily reports covering the COVID-19 outbreak [5,20]. Two-

tailed tests of logistic regression coupled with chi-square,
odds ratio and confidence interval analyses were performed

by GraphPad Prism 5.0 software (GraphPad Software, La Jolla,
CA, USA). Correlation confidence was used, and one-way

ANOVA was performed with Bonferroni multiple compari-
son tests.
Defining immunodominant epitopes from
SARS-CoV-2
SARS-CoV-2 B- and T-cell major histocompatibility complex
(MHC)-restricted immunodominant regions and their corre-

sponding epitopes, which are potential targets for immune re-
sponses, were identified by Grifoni et al. [21]. These potential

epitopes were determined on the basis of sequence-shared
identities with the closely related SARS-CoV and by parallel

bioinformatic prediction approaches. Epitope sequences from
SARS-CoV-2 were then retrieved and used to identify common

immunodominant epitopes for P. falciparum.
Immunodominant regions of P. falciparum
and homology with SARS-CoV-2
The Immune Epitope Database and Analysis Resource (IEDB,
https://www.iedb.org) is a comprehensive repository of epitope

data reported from the scientific literature. It includes antibody
and T-cell epitopes for infectious disease, allergy, autoimmunity
and transplantation. IEDB was used to search the immunome of

Plasmodium falciparum (ID 5833) to identify the most immu-
nogenic proteins (i.e. 23 proteins were determined) and

retrieve their immunodominant epitopes. These proteins are
apical membrane proteins 1 (AMP-1), circumsporozoite pro-

tein (CSP), merozoite surface protein 1 (MSP-1),
thrombospondin-related anonymous protein (TRAP), liver

stage antigen 3 (LSA3), circumsporozoite-related antigen
(EXP1), sexual stage–specific protein 16 (Pfs16), sporozoite
threonine and asparagine-rich protein (STARP), uncharac-

terized protein (UniProtQ8I5P1), DNAJ protein, putative
(UniProt: Q8I0U6), serine-repeat antigen protein, RING finger

protein (PFF0165c), Plasmodium exported protein (PHISTc),
erythrocyte binding antigen 175, reticulocyte-binding protein

homolog 5 (RPH5), rhoptry-associated protein 1 (RAP1),
merozoite surface protein 3 (MSP-3), heat-shock 70 kDa pro-

tein, S antigen protein, early transcribed membrane protein 13
(ETRAMP13), Plasmodium falciparum erythrocyte membrane

protein 1 (PfEMP-1), erythrocyte binding antigen 140 (EBL-140)
and erythrocyte binding antigen-181 (EBL-181).
nses/by-nc-nd/4.0/).
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These proteins were mapped back to the P. falciparum

representative reference sequence using the IEDB’s Immune
9.0 browser tool to display graphs and a data table that depict

and list all the epitopes by their position and response fre-
quency (RF, or how frequently a residue was found in a positive

epitope) [22,23]. All B- and T-cell epitopes for the 23 proteins
were selected on the basis of their sequence RF ˃ 0.0. For extra
refinement of the results, we went further to identify T-cell

epitopes with recognition restricted by human leukocyte anti-
gen (HLA) MHC (class I (HLA-A, -B) and class II (HLA-DR, -DP,

-DQ)); only positive assays were selected. Next, we aligned the
P. falciparum B-cell, T-cell and T-cell MHC restriction epitopes

to the SARS-CoV-2 immunodominant epitopes in order to
calculate the percentage identity between each of the

P. falciparum–dominant epitopes and SARS-CoV-2. Four or five
amino acid shared residues were considered significant [24].

Prediction of T-cell MHC restricted epitopes
To identify and predict potential T-cell MHC restricted epi-
topes by alternative methods for selected P. falciparum anti-

genic targets (AMP-1, MSP-1, CSP, TRAP, SSP-2) and SARS-
CoV-2 open reading frame (ORF) proteins (ORF3a,

ORF1ab, ORF7a, ORF8, ORF10), we used the IEDB MHCI and
MHCII online prediction tools (respectively http://tools.iedb.
org/mhcI and http://tools.iedb.org/mhcII). These tools use

different methods to determine the ability of the submitted
sequence to bind to specific MHCI and – II molecules. The

artificial neural network method was used to calculate the
half-maximal inhibitory concentration (IC50) values of the

peptide binding. For both frequent and nonfrequent alleles,
the peptide length was set to 9 amino acids before the pre-

diction. For MHCI epitopes, the alleles with affinity binding at
IC50 of �500 nM were considered [25], while for MHCII, all

epitopes that bind to many alleles with �1000 nM at IC50

were selected for further homology analysis [26].

Results
COVID-19 and malaria-endemic regions
We obtained results of malaria (year 2018) versus COVID-19

(up through 12 April 2020) cases worldwide in different re-
gions including Africa (respectively 150887242 vs. 4943),

Eastern Mediterranean (5202933 vs. 79695), West Pacific
(1080872 vs. 19868), South-East Asia (742114 vs. 15735), the

Americas (764980 vs. 46417) and Europe (0 vs. 880106)
(Fig. 1). To examine the relative risk of exposure to COVID-19
and malaria coinfection, HBHI regions of malaria were assigned

as cases and compared to Europe (which was considered the
control), with zero cases of local malaria infection in 2018. The
This is an open access artic
odds ratio indicated that all regions of malaria-endemic areas

had a statistically significant lower relative risk of COVID-19
infection (p < 0.0001). Our results also demonstrated a signif-

icant reverse correlation between P. falciparum and COVID-19
death rates (r2 = −0.218, p < 0.001). Bonferroni multiple

comparison tests were used to compare the mean of death
rates and showed a significant variation between the death rate
caused by P. falciparum and P. vivax against COVID-19

(p < 0.005) (Tables 1 and 2).

Plasmodium falciparum immunodominant regions
We screened the P. falciparum immunome to identify immu-
nodominant regions. Twenty-three proteins were selected as

promising immunogenic proteins. A total of 763 B-cell–
immunodominant epitopes and 1084 T-cell– immunodominant
epitopes were identified with RF ˃ 0.0. Many of these epitopes

clustered in four proteins (AMP-1, MSP-1, CSP, TRAP) with a
total of 190 and 918 B- and T-cell epitopes respectively. The

analysis showed that AMP-1 has ten immune-conserved regions
(residues 14–35, 51, 200, 317–334, 350–365, 374, 397,

387–399, 446–463, 571–588). MSP-1 has six regions located at
both the N and C terminals of the protein; CSP has only two

regions with potential interest. Residues 113–318, 335; and
43–53, 101, 120, 122–130, 221–240, 302–320, 371, 390,
421–440, 509–523 were identified for TRAP (Fig. 2). For

SARS-CoV-2, ten immunodominant regions which were iden-
tified in reference to SARS-CoV by Grifoni et al. [21] via

experimental data and confirmed with prediction approaches
were used to define conserved shared regions with Plasmo-

dium’s tested immunogenic proteins.

Homology of Plasmodium B- and T-
cell– immunodominant epitopes with SARS-CoV-2
All tested B-cell epitopes shared no significant homology with
SARS-CoV-2. As such, no antibodies to Plasmodium could be

proposed as eliciting an immune response against infection with
SARS-CoV-2 through cross-reactivity. On the other hand,

�40% of shared identities were noted between SARS-CoV-2 N
protein (215–227 aa) and Plasmodium TRAP epitopes located

at (509–523 aa) and also between ORF1ab (3661–3669 aa) and
TRAP (101–130 aa). Although the phylogenetic distance be-

tween the two organisms would be expected, four or five
shared amino acids in a single immunodominant epitope would
be considered significant (Table 3).

Experimental and predicted T-cell MHC restriction
homology with SARS-CoV-2
T-cell epitopes with recognition restricted by HLAs were also
analysed. Typically, polymorphisms associated with MHC mol-

ecules result in the recognition of different epitopes.
© 2020 The Author(s). Published by Elsevier Ltd, NMNI, 38, 100817
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FIG. 1. Coronavirus disease 2019 (COVID-19) vs. malaria. (A) Comparison between COVID-19 and malaria case numbers within different high

burden–high incidence (HBHI) malaria regions. (B) Comparison between Plasmodium falciparum (Pf), P. vivax (Pv) and COVID-19 case percentages

within HBHI malaria regions.
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P. falciparum whole immunome was screened for T-cell MHC-

immunodominant epitopes. The pool of MHCI- and MHCII-
positive assays contained about 1610 immunodominant epi-

topes, most of them recognized in humans (n = 1575) and the
rest reported in mice (n = 35) and rhesus macaques (n = 11).

The same T-cell epitopes reported above have MHC restriction
and equal identities with the same shared SARS-CoV-2 N and
ORF1ab quarto-immunodominant epitopes. Interestingly, the N

protein epitope located at 219–227 aa is extremely conserved
in SARS-CoV (100% identity, RF = 0.29) and recognized by

HLA-A*02:01. This sequence is also partially shared by TRAP
(504–513 aa) (44.4% identity, RF = 0.37), which is recognized

by the same HLA-A*02:01. Similarly, the ORF1ab epitope
TABLE 1. Logistic regression analysis associated with reduction fac

WHO region No. of malaria cases in 2018 No. of C

African 150887242 4943
Eastern Mediterranean 5202933 79695
Western Pacific 1080872 19868
South-East Asia 742114 15735
Americas 764980 46417
Europe 0 880106

CI, confidence interval; COVID-19, coronavirus disease 2019; OR, odds ratio; WHO, Wor
aAs of 12 April 2020.

© 2020 The Author(s). Published by Elsevier Ltd, NMNI, 38, 100817
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(3661–366aa) (89% shared SARS-CoV identity, RF = 0.42,

recognized by HLA-A*02:01 identified in HLA-transgenic mice)
is 44.4%, homologous to TRAP precursor (114–122 aa, RF = 1)

and also recognized by the same HLA molecule. Experimentally,
HLA-A*02:01 was assayed using interferon gamma enzyme-

linked immunospot assay and reported to be restricted to
CD8+ T-lymphocyte response to malaria in endemic areas
(Table 4).

We then analysed the epitopes generated from the predic-
tion approach, which resulted in the same sequences shared

between TRAP epitopes and SARS-CoV-2 N and ORF1ab
proteins with other MHCI and MHCII restrictions. Additionally,

there was a novel immunodominant epitope identified in
tor of COVID-19 outbreak

OVID-19 casesa OR 95% CI p

179.1 174.1–184.1 <0.0001
12.04 11.96–12.12 <0.0001
45.30 44.68–45.93 <0.0001
56.93 56.06–57.82 <0.0001
19.18 19.01–19.34 <0.0001
— —

ld Health Organization.

nses/by-nc-nd/4.0/).
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TABLE 2. Average risk factor analysis by one-way ANOVA and Bonferroni multiple comparison test

Death rate

Means (all regions)

95% CI Mean difference r2 t pMalaria cases in 2018 COVID-19 casesa

COVID-19 vs. malaria 30370 65890 −117300 to 188300 35520 −0.21 0.7331 0.6780224
COVID-19 vs. Pf 30370 25860000 −693000 to 17650000 −25830000 −0.218 1.946 0.6781664
COVID-19 vs. Pv 30370 590500 −440300 to 42910000 −560100 −0.75413 0.04221 0.0832416

CI, confidence interval; COVID-19, coronavirus disease 2019; Pf, Plasmodium falciparum; Pv, Plasmodium vivax.
aAs of 12 April 2020.
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sporozoite surface protein 2 (SSP-2) located at 80–90 which
shared a pentapeptide (55.6%) with SARS-CoV-2 S protein

(1192–1200 aa) (100% identity with SARS-CoV, RF = 0.29).
Both sequences also bind the HLA-A*02:01 molecule and can

be another potential candidate for the cellular immune
response. Upon testing the sequence homology between SARS-

CoV-2 predicted T-cell MHC epitopes for the accessory ORF
proteins against the experimentally identified T-cell MHC epi-

topes from the P. falciparum immunome, we found that ORF3a
epitopes (IVDEPEEHV, 236–244 aa; ALLAVFQSA, 51–59)
share 44.4% homology with TRAP epitopes (DLDEPEQFRL,

543–552 aa; GLALLACAGL, 504–513 aa) respectively. These
epitopes are again restricted by the HLA-A*02:01 molecule

(Table 5).
Discussion
The outbreak of COVID-19 caused by SARS-CoV-2 has caused
significant devastation on multiple fronts, with 8061550 total

confirmed cases and 440290 deaths globally as of 17 June 2020
[27]. This pandemic has adversely affected social practices,

healthcare systems and economies. Despite the incremental
increase in incidence in various parts of the world, Africa has

remained the continent with the lowest number of confirmed
cases and deaths. The poor socioeconomic status of Africa

makes it one of the most vulnerable regions in the world as a
result of malnutrition, endemic tropical infections, fragile
healthcare systems, poverty and social practices that encourage

close gatherings [4]. However, the consensus is that the actual
situation of the pandemic in Africa remains unclear. According

to the Director of the Africa Centres for Disease Control and
Prevention (Africa CDC, UN), only 1.3 million COVID-19 tests

were conducted by mid-May across the continent (one test for
every 1000 individuals), compared to 3.6 million tests per-

formed in Italy by the 27 May 2020 [28]. The social distancing
applied by many governments in Africa to mitigate the

pandemic is now creating extra financial hardship and food
insecurity among African women and may not be effective in
the future [29]. Despite the higher relative youth percentage in
This is an open access artic
the African population (43% under 15 years old) compared to
the European population (14% under 15 years old), the majority

of the cases now are reported among individuals younger than
65 [30]. Nevertheless, regardless of the abovementioned chal-

lenges, as of 17 June 2020, it is apparent that African countries
located within the HBHI of malaria (42 countries) reported

fewer numbers of confirmed cases (n = 111852) and mortality
(0.95%) due to SARS-CoV-2 compared to the 12 African

countries outside the malaria zone (n = 149089 and 1.72%
respectively). These findings are supported by our statistical
analysis, which indicated a significantly lower risk of COVID-19

in malaria-endemic areas (p < 0.0001) with emphasis on
P. falciparum–endemic areas (p < 0.001) and a reverse corre-

lation between P. falciparum and COVID-19 death rates
(r2 = −0.218, p < 0.001).

In malaria-endemic areas, the net immune response of one
disease can be influenced by the predominant pathogen. The

immune response to SARS-CoV-2 infection in malaria-endemic
areas could be affected by prior exposure to the Plasmodium
parasite [31]. However, considering the immune response

through cross-reactivity could also be of value. The concept of
‘original antigenic sin’ is well known and had been used to explain

many immunologic phenomena. Essentially, an adaptive immune
response against one antigen can be used to combat another

exposure by an unrelated antigen [32], with the second antigen
relying on the memory established by the first antigen to initiate

response [33,34]. In T-cell cross-reactivity, closely related se-
quences recognition is common and typically occurs between

genetically related organisms. This is well documented for the
same epitope isolated from different hepatitis C virus strains.
Each epitope had a minor variation constricted to a single amino

acid change. In this case, cross-reactivity occurs, but with sub-
stantial differences in the priming and magnitude of response

[35]. Nonetheless, cross-reactivity can also be seen among
random peptides or peptides with no shared sequences, or be-

tween those bearing relativity low homology [36,37]. The
mechanism of recognition between T cell Receptor (TCR) and

the epitope–MHC complex, where binding is not governed by
the chemical principles of the epitope sequence, is well docu-
mented [38]. Searching the T-cell– immunodominant epitopes as
© 2020 The Author(s). Published by Elsevier Ltd, NMNI, 38, 100817
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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TABLE 3. Experimental T-cell–immunodominant epitopes from Plasmodium falciparum sharing homology with SARS-CoV-2 T-cell

epitopes

P. falciparum SARS-CoV-2

ID Sequence
Mapped
start–end

Epitope
name RF Sequence

Protein
name

Mapped
start–end Identity (%)

55033 RNNENRSYNRKHNNTPKHPE 471–490 TRAP 0.03 ALNTPKDHI N 138–146 44.4
31137 KHNNTPKHPEREEHEKPDNN 481–500 0.02 44.4
34480 KYKIAGGIAGGLALL 509–520 TRAP 0.1 GDAALALLLL N 215–224 40
20213 GIAGGLALL 515–523 0.37 44.4
34480 KYKIAGGIAGGLALL 509–520 TRAP 0.1 LALLLLDRL N 219–227 44.4
20213 GIAGGLALL 515–523 0.37 44.4
28326 IRLHSDASKNKEKALIIIKS 101–120 TRAP 0.05 SMWALIISV ORF1ab 3661–3669 44.4
7640 DASKNKEKALIIIKS 106–120 1 44.4
32526 KNKEKALII 109–117 0.37 44.4
30453 KEKALIIIKSLLSTNLPYGK 111–130 0.02 44.4
549167 KEKALIIIRSLLSTNLPYGR 111–130 1 44.4

ORF, open reading frame; RF, response frequency; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TRAP, thrombospondin-related anonymous protein.
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well as T-cell MHC-restricted epitopes for shared sequences

between P. falciparum and SARS-CoV-2 revealed several
conserved tetrapeptides and pentapeptides between the two

organisms. Because both organisms are evolutionarily distant, the
four or five amino acids shared were considered to be of sig-

nificance. These similarities were observed among immunodo-
minant sequences N protein from SARS-CoV-2/SARS-CoV and

TRAP from P. falciparum; and S protein–SARS-CoV-2/SARS-CoV
and the predicted epitope in SSP-2 from P. falciparum. Separately,
both epitopes can stimulate CD8+ T-lymphocyte response

through HLA-A*02:01 recognition.
In this argument, we have carefully applied the doctrine of

original antigenic sin to explain possible cross-reactivity be-
tween SARS-CoV-2 and P. falciparum. TRAP is a type 1 mem-

brane protein essential for sporozoite motility and cellular
invasion. Twenty-one percent of MHCI-restricted CD8+ T-cell

epitopes are found in this protein, and 28.6% to 100% of sub-
jects from malaria-endemic areas responded to 504-
GLALLACAGL-513– immunodominant epitope with restric-

tion to HLA-A*02:01 [39]. Four amino acid determinants found
in this epitope were shared by SARS-CoV-2 nucleocapsid

protein 219-LALLLLDRL-227, the recognition of which is also
restricted by HLA-A*02:01 [21]. Our assumption here is that

the memory of the cellular adaptive immunity mounted against
the abovementioned TRAP-immunodominant epitope could

recognize the 219-LALLLLDRL-227–HLA-A*02:01 complexes
originating from SARS-CoV-2 infection in malaria-endemic re-

gions and trigger an immune response. Of course, such an
assumption needs further empirical testing to prove its validity
and ascertain the strength of the primed response.
FIG. 2. T-cell– immunodominant regions based on Plasmodium falciparum–tar

surface protein 1 (MSP-1). (C) Circumsporozoite protein (CSP). (D) Thromb

response frequency (RF) score for each amino acid position was calculated an

CoV-2) consensus sequences. Cross-immune reactivity between P. falciparum

This is an open access artic
Although we could not find any shared immunodominant

epitopes between P. falciparum and SARS-CoV-2 B-cell epi-
topes, many recent letters to the editors have suggested that

antibodies against glycol immunodeterminants on P. falciparum
infection could recognize SARS-CoV-2 envelope glycoproteins

and induce activation of the complement system and proin-
flammatory cytokines [40,41].

Death due to malaria is attributed in part to Plasmodium
invasion of erythrocytes, a process mediated by RH5-CD147
interactions. Recent findings have indicated infection of the

host cell by SARS-CoV-2 through spike protein–CD147
interaction [42]. Though the CD147 receptor is also expressed

on the erythrocyte surface, these authors focused only on the
lung’s receptor. Ulrich and Pillat [43] proposed the CD147

receptor as a target for COVID-19 treatment. In a recent
study, homology modelling and molecular docking revealed

that SARS-CoV-2 could attack haemoglobin and inhibit haeme
metabolism. The authors also showed that the viral nonstruc-
tural proteins ORF3a and ORF1ab are assisted with the viral

haemoglobin attack [44]. Of COVID-19 patients admitted to
the intensive care unit with acute pneumonic complications,

~49% presented with coagulopathy and thrombotic events
[45]. High levels of D-dimer, or fibrinolysis-degraded fragments

of fibrin, are often associated with COVID-19 infection and are
used to detect in-hospital mortality [46,47], a situation that is

also common with P. falciparum and P. vivax malaria [48].
Although not yet conclusively demonstrated, it is alleged that

mature and immature erythrocytes could be implicated in
SARS-CoV-2 entry into the body [49]. Both cells have CD147
and sialic acid receptors but lack angiotensin-converting
geted proteins. (A) Apical membrane protein 1 (AMP-1). (B) Merozoite

ospondin-related anonymous protein (TRAP). Specific epitope mapping

d plotted over severe acute respiratory syndrome coronavirus 2 (SARS-

and SARS-CoV-2 was identified.

© 2020 The Author(s). Published by Elsevier Ltd, NMNI, 38, 100817
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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TABLE 4. Experimental T-cell MHC restriction immunodominant epitopes from Plasmodium falciparum that share homology with

SARS-CoV-2 T-cell MHC epitopes

P. falciparum SARS-CoV-2

ID Sequence
Mapped
start–end

Epitope antigen
name

Epitope
parent name MHC allele Sequence

Protein
name

Mapped
start–end Identity

34480 KYKIAGGIAGGLALL 509–523 Sporozoite surface
protein 2

TRAP HLA-DRB1*01:01,
HLA-DRB1*04:01,
HLA-DRB1*07:01,
HLA-DRB1*08:02,
HLA-DRB1*09:01,
HLA-DRB1*11:01,
HLA-DRB1*12:01,
HLA-DRB1*13:02,
HLA-DRB5*01:01

GDAALALLLL N 215–224 40

34480 KYKIAGGIAGGLALL 509–523 Sporozoite surface
protein 2

TRAP HLA-DRB1*01:01,
HLA-DRB1*04:01,
HLA-DRB1*07:01,
HLA-DRB1*08:02,
HLA-DRB1*09:01,
HLA-DRB1*11:01,
HLA-DRB1*12:01,
HLA-DRB1*13:02,
HLA-DRB5*01:01

LALLLLDRL N 219–227 44.4

20762 GLALLACAGL 504–513 TRAP precursor TRAP HLA-A*02:01 GDAALALLLL N 215–224 40
20762 GLALLACAGL 504–513 TRAP precursor TRAP HLA-A*02:01 LALLLLDRL N 219–227 44.4
35388 LEDIINLSKKKKKSINDTSF 2557–2576 Putative erythrocyte

binding protein EBL-1
EBL-140 HLA-DRB1*11:01 WLMWLIINL ORF1ab 2292–2300 44.4

32526 KNKEKALII 109–117 Sporozoite surface
protein 2

TRAP HLA-B8 SMWALIISV ORF1ab 3661–3669 44.4

2632 ALIIIRSLL 114–122 TRAP precursor TRAP HLA-A*02:01

HLA, human leukocyte antigen; MHC, major histocompatibility complex; ORF, open reading frame; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TRAP,
thrombospondin-related anonymous protein.

TABLE 5. Experimental T-MHC restriction epitopes from Plasmodium falciparum that share homology with predicted SARS-CoV-2

ORF T-cell MHC epitopes

P. falciparum SARS-CoV-2

ID Sequence
Mapped
start–end Epitope antigen name

Epitope parent
name MHC allele Sequence

Protein
name

Mapped
start–end Identity (%)

9041 DLDEPEQFRL 543–552 TRAP precursor TRAP HLA-A*02:01 IVDEPEEHV ORF3a 236–244 44.4
20762 GLALLACAGL 504–513 TRAP precursor TRAP HLA-A*02:01 ALLAVFQSA ORF3a 51–59 44.4
68914 VICSFLVFL 9–17 Hypothetical protein PFL0800c Uncharacterized

protein
HLA-A*02:03, HLA-A*02:06 LVFLGIITTV ORF8 4–13 44.4

68915 VICSFLVFLV 9–18 HLA-A*02:03, HLA-A*02:06 40
16939 FLVFLVFSNV 13–22 HLA-A*02:06 40
16939 FLVFLVFSNV 13–22 Hypothetical protein PFL0800c Uncharacterized

protein
HLA-A*02:01, HLA-A*02:03 FLVFLGIITT ORF8 3–12 50

68914 VICSFLVFL 9–17 HLA-A*02:01, HLA-A*02:03 55.6
68915 VICSFLVFLV 9–18 HLA-A*02:01, HLA-A*02:03 50
16939 FLVFLVFSNV 13–22 Hypothetical protein PFL0800c Uncharacterized

protein
HLA-A*02:06 LVFLGIITT ORF8 4–12 44.4

68914 VICSFLVFL 9–17 HLA-A*02:06
68915 VICSFLVFLV 9–18 HLA-A*02:06

HLA, human leukocyte antigen; MHC, major histocompatibility complex; ORF, open reading frame; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; TRAP,
thrombospondin-related anonymous protein.
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enzyme 2 (ACE2) receptors. Unlike nucleated erythrocytes,
mature RBCs lack the required machinery to support virus

replication and provoke an immune response through MHC
molecules. Therefore, erythrocyte-mediated infections are
often fatal, as they go undiscovered by the immune clearance

system. Nevertheless, viruses attacking erythrocytes would
attract circulating antibodies, leading to antibody clumping.

This would initiate a cascade of inflammatory responses that
eventually leads to blood clotting. Given that P. falciparum an-
© 2020 The Author(s). Published by Elsevier Ltd, NMNI, 38, 100817
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/lice
tigens (TRAP and SSP-2) share immunodominant epitopes with
SARS-CoV-2 antigens N, S, ORF1ab and ORF3a (Tables 3–5),

in addition to the involvement of the CD147 receptor in the
invasion process of the virus to the erythrocyte, a receptor that
is commonly used by P. falciparum in the blood stage, and the

subsequent finding that the nanolipid Metadichol could
Moderately inhibit both SARS-CoV-2 by blocking the ACE2

receptor and the malaria parasite [50], could indicate a plau-
sible SARS-CoV-2 infection route related to the blood system.
nses/by-nc-nd/4.0/).
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Conclusion
The shared immunodominant epitopes with cross-

immunogenic reactivity between SARS-CoV-2 antigens S,
N, ORF1ab and ORF3a to that of the P. falciparum antigens
TRAP and SSP-2 which are reported in this investigation

could suggest an answer for the ambiguous reason why the
lowest number of COVID-19 infections and mortality rates

exist in malaria-endemic regions compared to the rest of the
world. These results support other recently published data

that relate to erythrocyte CD147 receptor and surrogate
entry for the virus. This, in addition to the several shared

epitopes between SARS-CoV-2 with those antigens from
P. falciparum which are related to the later RBC invasion, are

collectively suggested as a probable alternative route for
SARS-CoV-2 via RBCs, although this remains to be practi-
cally demonstrated and warrants future investigations to

confirm their validity.
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