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Background. Since the 1970s, liver hepatocellular carcinoma (LIHC) has experienced a constant rise in incidence and mortality
rates, making the identification of LIHC biomarkers very important. Tripartite Motif-Containing 28 (TRIM28) is a protein-
coding gene which encodes the tripartite motif-containing proteins (TRIMs) family and is associated with specific chromatin
regions. TRIM28 expression and its prognostic value and impact on the immune system in LIHC patients are being
investigated for the first time. Methods. The TRIM28 expression data from TCGA database was used to analyze TRIM28
expression, clinicopathological information, gene enrichment, and immune infiltration and conduct additional bioinformatics
analysis. R language was used for statistical analysis. TIMER, CIBERSORT, and ssGSEA were used to assess immune responses
of TRIM28 in LIHC. Next, the results were validated using GEPIA, ROC analysis, and immunohistochemical staining pictures
from the THPA. GSE14520, GSE63898, and GSE87630 datasets were analyzed using ROC analysis to further evaluate
TRIM28’s diagnostic value. To ultimately determine TRIM28 expression, we performed qRT-PCR (quantitative real-time
polymerase chain reaction). Results. High TRIM28 expression level was associated with T classification, pathologic stage,
histologic grade, and serum AFP levels. In patients with LIHC, TRIM28 was an independent risk factor for a poor prognosis.
The pathways ligand-receptor interaction, which is critical in LIHC patients, were closely associated with TRIM28 expression,
and the function of DC could be suppressed by overexpression of TRIM28. As a final step, our results were validated by GEO
data and qRT-PCR. Conclusions. TRIM28 will shed new light on LIHC mechanisms. As an effective diagnostic and
intervention tool, this gene will be able to diagnose and treat LIHC at an early stage.

1. Introduction

The incidence and mortality of liver hepatocellular carcinoma
(LIHC) have increased over the past 40 years, making it
important to identify biomarkers for LIHC [1]. LIHC is being
monitored due to concerns about the COVID pandemic and
associated policy lockdowns [2]. A recent overview on global
cancer statistics released in 2020 revealed that 906,000 new
diagnosed cases and 830,000 deaths occurred from LIHC, with
more than half occurring in China [3]. Hepatocellular carci-
noma (HCC) is the most common histological subtype of

primary liver cancer (75-85%) [4]. Now, the development of
LIHC is associated with a number of risk factors, including
hepatitis B and C, excessive drinking, chemical exposure,
tobacco use, and aflatoxin [5–7]. At present, there are nonin-
vasive detection and diagnosis methods for LIHC, but they
are not sensitive enough for early detection of LIHC [8]. In
order to improve LIHC prognosis, it is important to identify
more specific biomarkers and possible treatment targets.

Tripartite Motif-Containing 28 (TRIM28) is a protein-
coding gene which encodes the tripartite motif-containing
proteins (TRIMs) family and is associated with specific

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2022, Article ID 6267851, 17 pages
https://doi.org/10.1155/2022/6267851

https://orcid.org/0000-0002-5580-1513
https://orcid.org/0000-0002-6999-4707
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/6267851


chromatin regions. TRIMs family are linked with autoim-
mune and autoinflammatory diseases which are closely
related to malignant tumor [9]. Meanwhile, previous study
shows that TRIM28 plays a critical role in T cell activation
and T cell tolerance [10]. So, we hypothesize that TRIM28
is linked to immune cell infiltration and significantly pro-
motes tumor progression in LIHC. The hypothesis is in
accordance with the results of these past studies [11–14].

In spite of the fact that various types of cancers, compris-
ing colorectal cancer, melanoma, kidney renal clear cell
carcinoma, and lung adenocarcinoma are associated with
TRIM28-associated immune responses, there is still a lack
of understanding of how TRIM28 contributes to immune
infiltration and prognosis in LIHC [15–18]. As a response
to this challenge, The Cancer Genome Atlas (TCGA,
https://cancergenome.nih.gov/) was used to analyze and
check the expression level of TRIM28 in LIHC. Under RStu-
dio 1.4, we used R software (version 3.6.3) to assess the
relationship between TRIM28 expression and some clinico-
pathological parameters, as well as possible prognostic value
in LIHC. Gene ontology (GO) analyses, Kyoto Encyclopedia
of Genes and Genomes (KEGG) analyses, and protein–pro-
tein interaction (PPI) networks were performed to clarify the
pathogenic impact of TRIM28 and to understand the regula-
tory mechanisms that govern LIHC invasion and metastasis.
Tumor Immunoassay Resource (TIMER) (https://cistrome
.shinyapps.io/timer/), CIBERSORT algorithm, and single
sample gene-set enrichment analysis (ssGSEA) were per-
formed to further investigate the relationship between
TRIM28 and Tumor-Infiltrating Immune Cells (TIICs).
Furthermore, Gene Expression Profiling Interactive Analysis
(GEPIA), Kaplan–Meier (K-M) survival analysis (http://
kmplot.com/analysis/), and the Human Protein Atlas (THPA)
were used to compare and assess the interrelationship between
high TRIM28 and poor prognosis. Finally, receiver operating
characteristic curve (ROC) and experimental analysis were
constructed to determine TRIM28’s diagnostic value.

This is the first analysis of the relationship of TRIM28
with LIHC. In order to develop and propagate LIHC, a
variety of causative mechanisms and risk factors must be
considered in its pathogenesis and development. There is a
strong association between higher TRIM28 expression and
poor prognosis among the diagnostic criteria, outcome
events, and influencing factors. Moreover, GO and KEGG
analyses revealed that TRIM28 was involved in appendage
development, cell cycle control, amino acid, and fatty acid
metabolism. We also explored the correlation between
TRIM28 and TIICs. This research investigated the function
of TRIM28 in LIHC and explored effective molecules to
diagnose and treat LIHC.

2. Materials and Methods

2.1. Data Acquisition and Mining. The applied data, includ-
ing clinical data, immune system infiltrates, and gene
expression data (workflow type: HTSeq-TPM) were
obtained from the TCGA database [19]. Samples will also
be excluded from the study if data sources are missing, insuf-
ficient, or unclear. Analyzing and investigating the data was

based on both RNA-sequences and clinical data which were
selected for further study. Our research included 424 sam-
ples, 374 of which were LIHC tissues and 50 of which were
normal healthy liver tissues. As part of the investigation of
mechanisms of TRIM28 expression, LIHC patients were
grouped into two groups: those with high or low expression
levels of TRIM28. In accordance with the publication guide-
lines offered by TCGA, we conducted our research [20]. We
used the Gene Expression Omnibus (GEO) database to
collect 3 gene expression profiling datasets (GSE14520,
GSE63898, and GSE87630) to determine the expression
and diagnostic value of TRIM28 [21–23].

2.2. Validation of TRIM28 Expression. TCGA dataset was
analyzed to confirm the potential prognostic role of TRIM28
gene in LIHC. In order to compare TRIM28 gene differences
between LIHC samples and normal tissues, independent
sample t-test was used for nonpaired samples and paired t
-test was used for paired samples. In order to plot the results,
boxplots were generated using the ggplot2 R package.

2.3. Survival Analysis Based on TRIM28 Expression. To sum-
marize, survival analysis was performed by graphing K-M
survival curves with the R packages survival and survminer.
The K-M survival curve was used to compare the OS and
progression-free interval (PFI) between the high and low
TRIM28 groups. Based on the OS and PFI time, we calcu-
lated the relationships between TRIM28 expression level
and patients’ survival outcomes. Additionally, ROC curves
were generated using the R language package pROC to
assess further the outcomes of K-M survival analysis [24].

2.4. GO and KEGG Pathway Enrichment Analyses. We con-
ducted ssGSEA by normalizing RNA-sequences data [25].
With default parameters, gene-set permutations were set to
1,000. TRIM28 was analyzed using ssGSEA for GO pathway
enrichment and KEGG pathway enrichment to determine
function. Statistics were considered significant when enrich-
ment results with two conditions ((NOM) P value <0.05 and
false discovery ratio (FDR) P value <0.25) was considered.

2.5. Construction of the Predicted PPI Network. In the PPI
network, protein complexes are formed either by biochemi-
cal events or electrostatic forces, and each complex performs
a unique biological function. PPI networks act as an organ-
ism’s skeleton, allowing it to respond to genetic and environ-
mental signals. By understanding these circuits, we may be
able to better predict gene function and cellular behaviour.
PPI can be predicted using an online biological tool called
STRING that includes direct (physical) as well as indirect
(functional) associations [26]. The differentially expressed
genes (DEGs) were identified with the help of the PPI data-
base STRING version 11.0. DEGs must meet the following
criteria: the threshold values of ∣ log2 fold − change ðFCÞ ∣ >
2:0 and adjusted P value (adj. P value) <0.05. As a cut-off
criterion for significant interactions in this network, a
medium confidence score (0.400) was required. Using
Cytoscape (version 3.8.2), the network was visualized [27].
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Figure 1: TRIM28 expression in tumors. High TRIM28 expression in LIHC predicts a poor prognosis and serves as an oncogene in tumor
disorders. (a) Human TRIM28 expression levels in pancancer from TIMER database. (b) TRIM28 in LIHC samples from TCGA. (c)
TRIM28 in paired LIHC samples from TCGA. (d, e) TCGA survival status and TRIM28 expression (∗P < 0:05, ∗∗P < 0:01, ∗∗∗P < 0:001).
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2.6. Immune Infiltrates Analysis. Infiltrates of immune cells
across a variety of tumor types can be systematically ana-
lyzed using TIMER, a comprehensive and publicly available
resource [28]. TIMER was used for investigating the rela-
tionship between the expression of TRIM28 and tumors.
As part of this LIHC study, the TIMER correlation module
was used to analyze the relationship between tumor-
infiltrating immune cells and gene expression profiles. The
deconvolution statistical method is used to examine the
association between infiltrating immune cells and TRIM28
genes in TIMER. As a result of the gene modules, we exam-
ined the correlation between TRIM28 and the abundance of
immune infiltration in LIHC. A picture of TRIM28 against
tumor purity was drawn by TIMER [29]. CIBERSORT
(https://cibersort.stanford.edu/), a deconvolution algorithm
by evaluating the expression of related genes based on gene
expression, served as examination of the relevance between
TRIM28 expression and the infiltration of immune cells in
LIHC [30]. To build gene expression datasets, we used stan-
dard annotation files with a 1,000 permutation default signa-
ture matrix. Based on Markov chain Monte Carlo (MCMC)
methods, CIBERSORT calculated the P value of the decon-
volution method. We split 375 tumor samples into two
groups to investigate how TRIM28 expression affects the
immune microenvironment. Based on the P value <0.05,
we identified the types of lymphocytes which were affected
by TRIM28. The content of immune cells in LIHC TCGA

samples were quantified via ssGSEA package and “GSVA”
R package.

2.7. Comprehensive Analysis. GEPIA analyzed the expression
of RNA-sequencing data of 8587 normal and 9736 tumor
samples from public databases (TCGA and GTEx) [31].
Overall survival was analyzed by GEPIA for TRIM28 expres-
sion in LIHC. Additionally, to calculate differential expres-
sion of TRIM28, boxplots were generated via tumor or
normal state. The interaction between TRIM28 expression
and LIHC survival information were examined by K-M
analysis of survival curves [32]. Using the log-rank P value
and the hazard ratio (HR), the risk of death was calculated.
P value <0.05 was counted as statistically significant.

2.8. Immunohistochemistry-Based Validation of Hub Genes
in THPA. THPA, a database funded by a Swedish grant,
was used for finding information of immunohistochemically
stained tissues and cells for 26,000 human proteins. Anti-
body proteomics allows THPA detection of normal and
LIHC tissues, which commonly regarded as hub gene valida-
tion. In this way, THPA can verify TRIM28 gene in normal
tissues and LIHC tissues.

2.9. Cell Culture. The human normal liver cell lines (MIHA)
and hepatocellular carcinoma cell lines (Hep3B, SMMC7721,
and MHCC97H) were purchased from the cell bank of the

Table 1: Correlation between overall survival and multivariable characteristics in TCGA patients via Cox regression and multivariate
survival model.

Characteristics Total (n)
Univariate analysis Multivariate analysis

Hazard ratio (95% CI) P value Hazard ratio (95% CI) P value

Age 373

≤60 177 Reference

>60 196 1.205 (0.850-1.708) 0.295 1.396 (0.855-2.281) 0.183

Gender 373

Female 121 Reference

Male 252 0.793 (0.557-1.130) 0.200 0.945 (0.574-1.555) 0.823

Histologic grade 368

G1 & G2 233 Reference

G3 & G4 135 1.091 (0.761-1.564) 0.636 0.968 (0.589-1.589) 0.897

Pathologic stage 349

Stage I & stage II 259 Reference

Stage III & Stage IV 90 2.504 (1.727-3.631) <0.001 0.421 (0.023-7.620) 0.559

T stage 370

T1 & T2 277 Reference

T3 & T4 93 2.598 (1.826-3.697) <0.001 6.493 (0.370-113.852) 0.200

M stage 272

M0 268 Reference

M1 4 4.077 (1.281-12.973) 0.017 1.790 (0.513-6.244) 0.361

N stage 258

N0 254 Reference

N1 4 2.029 (0.497-8.281) 0.324 3.099 (0.406-23.637) 0.275

TRIM28 373 1.578 (1.272-1.958) <0.001 1.687 (1.252-2.275) <0.001
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Institutes for Biological Sciences (Shanghai, China). An STR
profiling test was conducted in order to verify the authenticity
of cell lines. Cells were cultured in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum
(FBS) at 37°C and 5% CO2 in a humidified incubator.

2.10. Quantitative Reverse-Transcription Polymerase Chain
Reaction. According to the manufacturer’s instructions, the
maximum amount of RNA from the cell lines was extracted
using TRIzol reagent (Invitrogen, Thermo Fisher Scientific,
Inc.) and reverse transcription was accomplished with the
PrimeScript™ RT Reagent kit (Takara, Shiga, Japan). The
TRIM28 mRNA expression level was measured by Applied
Biosystems® 7500 Fast Real-Time PCR System (Thermo
Fisher Scientific, Waltham, MA) and accompanying Applied
Biosystems® 7500 Software (version 2.0.6). A gene called
GAPDH served as a housekeeping gene. In order to amplify
TRIM28, we used forward primer TTTCATGCGTGATAGT
GGCAG and reverse primer GCCTCTACACAGGTCTCAC
AC. The GAPDH sequences of the primers used were for-
ward, GCCTTTGATGACTCAGCTCC and reverse, TTCC
TGAAAAGTCACCACCC.

2.11. Statistical Analysis. Statistical software R was used for
conducting all statistical analyses. Univariate Cox analysis

was used to determine the multivariate HR and 95% confi-
dence intervals (95% CI). The R packages rms and survival
were used to formulate the nomogram model and calibra-
tion curves. After that, we examined how TRIM28 expres-
sion and other clinical and pathological features affected
OS. The significance threshold was set as probability P value
<0.05. Logistic regression was used to evaluate the associa-
tions between TRIM28 expression and clinical characteris-
tics (T stage, pathologic stage, histologic grade, AFP, OS
event, weight, and BMI).

3. Results

3.1. Survival Outcomes and Variable Analyses. Firstly, data
was analyzed to confirm TRIM28 expression levels in pan-
cancer via TIMER datasets. According to the analysis,
expression levels of TRIM28 are upregulated in most tumors
(Figure 1(a)). It has not been studied whether TRIM28 plays
a role in human liver cancer, particularly in LIHC. To vali-
date TRIM28’s prognostic influence in LIHC, we analyzed
the TCGA datasets to determine how TRIM28 expression
differed between normal and tumor tissue and discovered
that the level of TRIM28 was increased in all LIHC tissues
compared to normal liver tissue (Figure 1(b)).
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Figure 2: Prognostic analysis of the TRIM28. (a) Multivariate Cox analysis of TRIM28 expression and other clinicopathological variables.
(b) TRIM28 expression distribution and survival status. (c) ROC curves of TRIM28.
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Figure 4: Continued.
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The same outcome was obtained in paired LIHC tissues
compared with normal tissues (n = 50) (Figure 1(c)). Addi-
tionally, LIHC patients with low TRIM28 expression had
better OS and PFI (Figures 1(d) and 1(e)). A Cox analysis
was performed as valuing the relationship between TRIM28
expression and OS, as well as other multivariable character-
istics in LIHC patients, as shown in Table 1. Based on uni-
variate regression analysis, it appears that pathological
stage, T stage, M stage, and OS are highly correlated with
TRIM28. Based on the multivariate analysis shown in
Figure 2(a), TRIM28 expression (P value <0.001) has been
found to be an independent predictor of poor prognosis
for oncologist-patients (Table 1). Figure 2(b) shows the
expression distribution of TRIM28 as well as survival status
and TRIM28 expression profiles for patients with LIHC. In
Figure 2(c), the ROC curve found that TRIM28 was associ-
ated with prognosis since its AUC for survival prediction
was 0.687.

3.2. Construction and Prediction of Nomogram Model. In
order to establish a clinically applicable way that could assess
the prognosis of LIHC patients, the nomogram prediction
for predicting the survival probability at 1-, 2-, and 3-year
for LIHC patients in TCGA cohort. The predicting model
nomogram was constructed by involving the clinical and
pathological elements, such as gender, age, histologic grade,
pathologic stage, neoplasm staging (T, M, and N stage),
and TRIM28 level in Figure 3(a). Based on the clinicopatho-

logical characteristics, each patient was assigned a
nomogram-based score to predict 1-, 2-, and 3-year survival
probability. We found that the nomogram model had perfect
performance for predicting the 1-year OS, 2-year OS, and 3-
year OS of LIHC patients by calibration curves (Figure 3(b)).

3.3. Relationship between TRIM28 Expression and
Clinicopathology. As part of the TCGA database, 424 tumor
tissues have been analyzed, which includes gene expression
data and clinical characteristics collected from patients. LIHC
with increased TRIM28 expression was significantly related to
the T stage (Figure 4(a)), pathologic stage (Figure 4(b)), histo-
logic grade (Figure 4(c)), AFP (Figure 4(d)), OS event
(Figure 4(e)), weight (Figure 4(f)), and BMI (Figure 4(g)). As
a result of the study, it was found that high TRIM28 patients
had worse T stage, pathologic stage, histological grade, AFP,
OS, weight, and worse nutritional status outcomes compared
to those with low TRIM28 levels.

3.4. GO and KEGG Enrichment Analyses. To better under-
stand how TRIM28 impacts LIHC progression, we then
preformed GO term and KEGG analyses by using GSEA.
The NES, FDR Q value, and nominal P value were used to
select significantly enriched KEGG pathways and GO terms.
As shown in Table 2 and illustrated in Figure 4(h), GO func-
tional analysis showed that these DEGs were associated with
positive correlation terms containing appendage develop-
ment, embryonic skeletal system morphogenesis, appendage
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Figure 4: Based on the TCGA data, TRIM28 expression was linked to clinicopathological features of LIHC followed by GO term/KEGG
pathway enrichment results. (a) Expression of TRIM28 correlated significantly with T stage. Pathologic stage (b), histologic grade (c),
AFP (d), OS event (e), weight (f), and BMI (g). GO term analysis/KEGG pathway revealed five positively correlated groups and five
negatively correlated groups (h). (i, j) PPI network. (∗∗P < 0:01, ∗∗∗P < 0:001).
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morphogenesis, regulation of hair follicle development, and
embryonic appendage morphogenesis. According to Table 2
and Figure 4(h), GO functional analysis found that these
DEGs play a role in negative correlation terms comprising
organic acid catabolic process, cellular amino acid catabolic
process, alpha amino acid catabolic process, fatty acid cata-
bolic process, and monocarboxylic acid catabolic process.

As demonstrated in Table 2 and illustrated in Figure 4(i),
KEGG enrichment analysis uncovered that these DEGs were
concerned with positive correlation terms containing ribo-
some, cell cycle, DNA replication, primary immunodeficiency,
and hypertrophic cardiomyopathy (HCM). As demonstrated
in Table 2 and depicted in Figure 4(i), KEGG enrichment
analysis revealed these DEGs to be involved in negative
correlation terms comprising complement and coagulation
cascades, fatty acid metabolism, peroxisome, retinol metabo-
lism, glycine serine, and threonine metabolism. These results
suggest that cell cycle, amino acid, and fatty acid metabolism
which are critical in LIHC patients, were closely associated
with TRIM28 expression.

3.5. PPI Network Construction. A total of 606 DEGs were
included in the PPI network via the STRING database.

Using 254 nodes and 471 edges, the PPI network was con-
structed to examine the interactions of DEGs correlated with
LIHC risk.

In STRING database, 606 DEGs were incorporated into
the PPI network in total, including 254 nodes and 471 edges,
which could examine the interaction of DEGs related to
LIHC risk. (Figure 4(j)).

3.6. Relationship between TRIM28 Expression and Tumor-
Infiltrating Immune Cells. Tumor-infiltrating lymphocytes
(TILs) were considered to be an independent predictor
of OS and sentinel lymph node status in cancer. Therefore,
we analyzed the relationship between TRIM28 and
immune infiltration level by selecting the TIMER
(Figure 5(a)). It was found that there was a positive corre-
lation between TRIM28 expression levels and B cell
(P value = 1:98 × 10−17), CD8+ T cell (P value = 2:15 × 10−6),
CD4+ T cell (P value = 4:79 × 10−10), macrophage
(P value = 6:45 × 10−13), neutrophil (P value = 1:39 × 10−6),
and dendritic cell (P value = 1:83 × 10−12). Based on above
results, an important and pivotal role was played by TRIM28
in immune infiltration. Our study also sought to determine
if there was a difference in tumor immune microenvironment

Table 2: Signaling pathways most significantly correlated with TRIM28 expression based on their normalized enrichment score (NES)
and P value.

(a)

GO NAME NES NOM p-value FDR p-value

Positive

GO_APPENDAGE_DEVELOPMENT 2.415 0.001 0.031

GO_EMBRYONIC_SKELETAL_SYSTEM_MORPHOGENESIS 2.398 0.001 0.031

GO_APPENDAGE_MORPHOGENESIS 2.379 0.001 0.031

GO_REGULATION_OF_HAIR_FOLLICLE_DEVELOPMENT 2.314 0.002 0.032

GO_EMBRYONIC_APPENDAGE_MORPHOGENESIS 2.301 0.001 0.031

Negative

GO_ORGANIC_ACID_CATABOLIC_PROCESS -3.277 0.016 0.079

GO_CELLULAR_AMINO_ACID_CATABOLIC_PROCESS -3.095 0.007 0.052

GO_ALPHA_AMINO_ACID_CATABOLIC_PROCESS -3.062 0.006 0.046

GO_FATTY_ACID_CATABOLIC_PROCESS -3.045 0.006 0.048

GO_MONOCARBOXYLIC_ACID_CATABOLIC_PROCESS -3.001 0.008 0.054

(b)

KEGG NAME NES NOM p-value FDR p-value

Positive

KEGG_RIBOSOME 2.301 0.001 0.036

KEGG_CELL_CYCLE 1.969 0.001 0.036

KEGG_DNA_REPLICATION 1.885 0.001 0.036

KEGG_PRIMARY_IMMUNODEFICIENCY 1.865 0.001 0.036

KEGG_HYPERTROPHIC_CARDIOMYOPATHY_HCM 1.822 0.002 0.036

Negative

KEGG_COMPLEMENT_AND_COAGULATION_CASCADES -2.972 0.004 0.038

KEGG_FATTY_ACID_METABOLISM -2.802 0.004 0.036

KEGG_PEROXISOME -2.795 0.005 0.040

KEGG_RETINOL_METABOLISM -2.683 0.005 0.038

KEGG_GLYCINE_SERINE_AND_THREONINE_METABOLISM -2.571 0.003 0.036
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Figure 5: Continued.
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between LIHC patients with low TRIM28 levels and patients
with high TRIM28 levels. Analyzing the difference between
24 immune cells with high and low TRIM28 expression was
done using the CIBERSORT algorithm (Figure 5(b)). A signif-
icant difference between high and low TRIM28 levels existed
in T cell lines, with B cells, cytotoxic cells, dendritic cell
(DC), neutrophils, CD56bright NK cells, T helper cells, T fol-
licular helper cells (TFH), T γδ (gamma delta) cells (Tgd),
helper T type 1 (Th1) cells, helper T type 2 (Th2) cells, helper
T type 17 (Th17) cells, and T regulatory cell (Treg) influenced
by TRIM28 levels. B cells, NK CD56bright cells, T helper cells,
TFH, Th1 cells, Th2 cells were increased compared to the
group with low TRIM28 expression while cytotoxic cells,

DC, neutrophils, Tgd, Th17 cells, and Treg were decreased
the group with high TRIM28 expression. The further investi-
gation of possible correlations between 24 immune cell types
was performed (Figure 5(c)). According to the heat map, there
were moderate to strong correlations between subpopulations
of TIICs. Finally, the relevance between TRIM28 and other
immunocytes was assessed for yet again by using the GSVA
package (Figure 5(d)).

3.7. Data Validation. First, we used the GEPIA database to
analyze TRIM28 expression. The TRIM28 expression was
increased in the LIHC group in Figure 6(a). The immuno-
histochemistry (IHC) images also showed that TRIM28
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Figure 5: The analysis of TRIM28 expression in LIHC correlated with immune infiltration levels by TIMER. (a) The relationship between
TRIM28 expression and immune infiltration. (b) The varied proportions of 24 subtypes of immune cells in high and low TRIM28 expression
groups in tumor samples. (c) The heat map shows the infiltration of 24 immune cells into tumor samples. (d) The correlation between
TRIM28 and immunocytes was calculated via ssGSEA.
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was more expressed in tumor tissues than in nontumor tis-
sues (Figure 6(b)). There was a significant correlation
between high TRIM28 level and poor OS for LIHC
(P value = 0:021 < 0:05, Figure 6(c)). In addition, we per-
formed K-M survival plots to confirm this result. As shown
in Figure 6(d), the K-M survival plots revealed that high

TRIM28 expression groups had a significant correlation with
poor OS rates (P value = 0:00055 < 0:05).

3.8. TRIM28 Possesses a Higher Specificity than AFP for
LIHC Diagnosis and qRT-PCR for an External Validation.
As a final step in evaluating the diagnostic value of TRIM28,
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Figure 6: Synthesized analysis of TRIM28 mRNA expression and prognosis in patients with LIHC. (a) From GEPIA, TRIM28 mRNA
expression levels in normal and LIHC tissues. (b) Hepatic expression of TRIM28 protein was visualized using immunohistochemistry via
THPA. (c) The level of expression of TRIM28 mRNA and OS as determined by GEPIA. (d) Validation of the correlation between
TRIM28 expression and OS based on K-M survival plots.
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Figure 7: Continued.
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we used ROC analysis to analyze GSE14520, GSE63898, and
GSE87630 datasets. LIHC is commonly associated with AFP,
a diagnostic tumor marker. The TRIM28 expression in
GSE14520 was significantly higher than nontumor tissue
(Figure 7(a)), and the AUC of TRIM28 in GSE14520 was
0.853, which was higher than that of AFP (0.685)
(Figure 7(b)). In GSE63898, the expression of TRIM28 in
nontumor tissues was notably lower than that in tumor tis-
sues (Figure 7(c)). The AUC value of AFP in this dataset
was 0.566, which was lower than that of TRIM28(0.706)
(Figure 7(d)). The TRIM28 expression in GSE87630 was
obviously higher than nontumor tissue (Figure 7(e)), and
the AUC of AFP was 0.711, which was lower than that of
TRIM28 (0.929) (Figure 7(f)). In Figure 7(g), qRT-PCR
was performed on multiple cell lines to confirm TRIM28
expression. These results demonstrated that TRIM28 could
be useful as a diagnostic marker for LIHC patients.

4. Discussion

Cancer deaths from LIHC are the 3rd leading cause of death
from cancer, and it is one of the five most commonly diag-
nosed types [33]. The prevalence of LIHC has continued to
increase over the past two decades [34]. Prevention and
treatment are essential for the survival of this devastating
disease. Bioinformatics analysis was found to be the most
suitable solution [35]. A number of previous biomarker
studies have proved the effectiveness of this method in
LIHC. It was recently discovered that MAST2 is a biomarker
that can be used to diagnose and prognosis LIHC by dry-lab
analyses. There was a correlation between high MAST2 and
late clinical state [36].

As part of our research on LIHC, we were evaluating
TRIM28 as a prognostic biomarker. By analyzing the TCGA
database, we evaluated TRIM28’s prognostic value for

patients with LIHC. Further analysis showed that TRIM28
was an independent prognostic factor, and the higher the
expression of TRIM28, the worse the survival rate. A high
expression level of TRIM28 was associated with the follow-
ing factors: T classification, pathologic stage, histologic
grade, AFP, OS event, weight, and BMI. In conclusion, these
results suggest that the expression level of TRIM28 may
affect the occurrence, development, and immune microenvi-
ronment of LIHC.

GO and KEGG pathway analyses revealed that TRIM28
was participated in cell cycle, amino acid, and fatty acid
metabolism. The function of cell cycle pathways in the regu-
lation of tumor had been previously demonstrated [37].

Immunomodulation by antitumor cell cycle inhibitors
could be the promising targets of cancer therapy [38–40].
At the same time, amino acid and fatty acid metabolism
also were considered as a potential targeted therapeutic
strategy for cancer therapy [41, 42]. Studies have shown
that fatty acid receptor and synthase represent a potential
strategy and attractive target for tumor treatment [43].
Furthermore, all of those pathways are both recognized as
playing a major role in tumor immunity [44–47]. As a next
step, we investigated the relationship between TRIM28 and
immune cell infiltration.

The purpose of this study was to examine the relation-
ship between TRIM28 and immuno-cell infiltration level in
LIHC by using the TIMER database. It was found that
TRIM28 was positively related with B cell, CD8+ T Cell,
CD4+ T Cell, macrophage, neutrophil, and dendritic cell.
By the CIBERSORT algorithm, we confirmed that high
TRIM28 expression was related with upregulation of
CD56bright NK cells, T helper cells, TFH, Th1 cells, Th2
cells and downregulation of cytotoxic cells, DC, neutrophils,
Tgd, Th17 cells, and Treg. Among the functionally special-
ized antigen-presenting cells, DC played an important role
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Figure 7: GEO and qRT-PCR verification of the diagnostic value of TRIM28 in LIHC patients. (a) Violin plot showing TRIM28 mRNA
levels in patients with nontumor (n = 220) and LIHC (n = 225) on the GSE14520 dataset. (b) ROC curve for LIHC on the GSE14520
dataset. (c) Violin plot showing TRIM28 mRNA levels in patients with nontumor (n = 168) and LIHC (n = 228) from the GSE63898
dataset. (d) ROC curve for LIHC on the GSE63898 dataset. (e) Violin plot showing TRIM28 mRNA levels in patients with nontumor
(n = 30) and LIHC (n = 64) from the GSE87630 dataset. (f) ROC curve for LIHC on the GSE87630 dataset. (g) TRIM28 expression level
in LIHC by using qRT-PCR.
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in innate antitumor immunity by activating specific T cells
[48]. Tumor development was also inhibited by DC through
regulation of humoral immune responses [49]. Secondly,
cytotoxic cells and neutrophils played an important role in
killing tumor cells [50, 51]. As such, our hypothesis was that
TRIM28 overexpression could reduce the activity of DCs,
cytotoxic cells, and neutrophils. As a result of these studies,
TRIM28 is critical for modulating LIHC immune responses.
The mechanism by which TRIM28 promotes LIHC immune
responses activation is unclear; however, it is necessary to
conduct multicenter, randomized, controlled clinical trials,
and mechanism studies to better understand the relationship
between TRIM28 and LIHC [52–56].

As a final step, GEO datasets and its ROC curve analysis
are used to validate our results. Meanwhile, qRT-PCR was
used to further verify the expression of TRIM28 in multiple
cell lines. It was found that expression levels of TRIM28
were higher than those of nontumor tissues and AUC values
of TRIM28 also were higher than those of AFP, the main-
stream biomarker for LIHC in 3 datasets. It was demon-
strated that liver cancer cell lines expressing TRIM28 were
highly expressed. In summary, these results showed TRIM28
was a positive predictive tumor marker for LIHC patients.

Several drawbacks remain in our study. With regard to
the first point, let us look at data sources that are sourced
from public databases. We solely validated the result by
using qRT-PCR in cell lines. Sufficient serum samples from
clinical patients will be necessary for the validation of these
biomarkers in the future. Next, we will discuss the 2nd point.
Because the effectiveness of markers is considerably depen-
dent on mechanism, we need to validate the hypothesis
experimentally and elucidate its mechanisms in cancer cells
by siRNA or plasmid. Moreover, transgenic animal research
is needed to further verify the TRIM28 functions. Fortu-
nately, we have demonstrated that TRIM28 was highly
expressed in liver cancer cells line. There was sufficient
evidence to initiate further study.

5. Conclusions

Based on bioinformatic analysis and qRT-PCR, TRIM28
associated with LIHC has been identified. There is a novel
and independent prognostic LIHC biomarker, TRIM28, that
correlates with immune infiltrates. The TRIM28 gene will
provide a novel perspective on LIHC mechanisms with
further study in the future. As an effective diagnostic and
intervention gene, TRIM28 will be able to diagnose and treat
LIHC at an early stage.
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