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Abstract: Polymers are generally considered thermal insulators because the amorphous arrangement
of the polymeric chains reduces the mean free path of heat-conducting phonons. Recent studies
reveal that individual chains of polymers with oriented structures could have high thermal
conductivity, because such stretched polymeric chains effectively conduct phonons through polymeric
covalent bonds. Previously, we have found that the liquid crystalline assembly composed of one
of the filamentous viruses, M13 bacteriophages (M13 phages), shows high thermal diffusivity
even though the assembly is based on non-covalent bonds. Despite such potential applicability
of biopolymeric assemblies as thermal conductive materials, stability against heating has rarely
been investigated. Herein, we demonstrate the maintenance of high thermal diffusivity in smectic
liquid crystalline-oriented M13 phage-based assemblies after high temperature (150 ◦C) treatment.
The liquid crystalline orientation of the M13 phage assemblies plays an important role in the stability
against heating processes. Our results provide insight into the future use of biomolecular assemblies
for reliable thermal conductive materials.
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1. Introduction

The increasing interest in flexible electronics has facilitated the development of new organic
polymers that provide seamless integrated structure-property relationships required for a variety of
efficient configurations in electronic devices, such as organic solar cells and organic light emitting
diodes. Generally, the thermal conductivity of bulk organic polymers is very low due to strong phonon
scattering caused by various defects and interfaces [1]. Typical methods for improving polymer
thermal conductivity have often focused on the construction of composite materials, which contain
additives (so-called fillers) such as metals or ceramics [2]. However, large amounts of fillers are
required to sufficiently increase the thermal conductivity, which can significantly increase the materials
cost and may change the original characteristics of the polymer, such as electrical, optical, and
physical properties [3,4]. In contrast, the alignment of the polymer chains can greatly enhance their
thermal conductivities along the axis of the polymer chains without the use of other additives [5,6].
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Not only synthetic polymers [4,6,7] but also biomacromolecular proteins [8] can have high thermal
conductivities, due to efficient phonon propagation along the oriented polymeric covalent bonds.
Nevertheless, the practical applications of thermal conductive polymeric materials are still limited due
to the inherent difficulties in processing the materials [9].

M13 bacteriophage (M13 phage), a filamentous virus, has a regularly assembled structure
composed of multiple proteins and genomic DNA. In the past two decades, M13 phage has been
used as various material components such as sensors, electronics, and devices [10–18]. M13 phage
is an attractive biomaterial because of the ease by which its surface can be functionalized via genetic
engineering [19] and/or chemical methods [20]. Furthermore, due to their uniform size, uniformity of
dimensions, high aspect ratio (4.5 nm width and 900 nm length), dipole properties, and charge densities,
M13 phage showed liquid crystalline properties with various phases in concentrated solutions [21–24].
Such liquid crystalline properties have been utilized for the construction of M13 phage-based materials
with ordered structures [11,14,25–33]. Recently, we developed M13 phage-based assemblies with
ordered structures in various scale (so called hierarchical assemblies) with high thermal diffusivity,
even though the assemblies were based on non-covalent bonds, and found that macroscopic phage
orientation in the assemblies is essential for high thermal diffusivity [34]. Despite the promising
potential of biomacromolecular assemblies as thermal conductive materials, the stability against
heating of the assemblies, which are generally regarded as low heat resistance objects, have rarely
been investigated.

Biomacromolecular proteins are well known to denature upon heating, and typical denaturing
temperature in an aqueous phase is approximately 60 ◦C, except for hyperthermophile proteins,
viral assembled capsids, and similar systems [35,36]. To utilize M13 phage-based assemblies for
reliable thermal conductive materials, the characterization of their thermal stabilities is an important
requirement. Here we demonstrate the high structural stability against heating of M13 phage-based
assemblies with high thermal diffusivities. Microscopic observations, infrared (IR) spectroscopic
measurements, and small angle X-ray scattering (SAXS) measurements revealed that the molecular
packing, secondary structures, molecular assembled structures, and macroscopic orientation of the
assemblies had a smectic liquid crystalline orientation with little change upon thermal treatment at
150 ◦C. Importantly, the high thermal diffusivity of the assemblies was maintained after the thermal
treatment. The thermal diffusivities of assemblies with nematic liquid crystalline orientation or with
non-orientation are significantly decreased by thermal treatment; therefore, smectic liquid crystalline
orientation plays an essential role in providing stability against heating. These results provide insight
into the future use of biomolecular assemblies for reliable thermal conductive polymeric materials.

2. Materials and Methods

2.1. Preparation of M13 Phage-Based Films

The M13 phages were expressed using the Ph.D. Peptide Display Cloning System (New England
Biolabs, Inc., Ipswich, MA, USA). Phagemid DNA was heat-shocked into competent Escherichia coli
ER2738 cells. The M13 phages expressed were amplified using the Escherichia coli and purified by
precipitation and re-dispersion procedures using a mixed solution composed of 5 w/v% poly(ethylene
glycol) (average molecular weight of 7000–10,000) and 2.5 M NaCl. M13 Phage solutions (15 mg/mL,
500 µL) were mounted on glass plates circularly patterned with a highly water-shedding coating
based on fluororesin (glass diameter: 15 mm, Matsunami Glass Ind., Ltd., Osaka, Japan) followed by
incubation for 24 h at 25 ◦C in a dry atmosphere [34].

2.2. Polorized Optical Microscopy (POM) Observation

The phage films were set onto the stage of a polarized optical microscope (Eclipse LV100ND,
Nikon). Then, the samples were observed at ambient temperature. Images with a sample rotation of
45◦ were recorded to identify the liquid crystalline-oriented structures.
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2.3. Atomic Force Microscopy (AFM) Observation

The phage films were set onto the stage of an AFM. Then, the samples were observed. The AFM
images were obtained using an SPM-9600 (Shimadzu, Kyoto, Japan) in tapping mode with standard
silicon cantilevers. All images were scanned at a scan rate of at least 1 Hz with a maximum number of
pixels (512 × 512).

2.4. Thermal Diffusivity Measurements

Thermal diffusivity (regarded as the ratio of the thermal conductivity of the material to the
specific heat capacity) of the films in the thickness direction was measured using an ai-Phase mobile
1u (ai-Phase Co. Ltd., Tokyo, Japan) based on the temperature wave analysis method [37]. Thermal
diffusivity (α) was calculated from the relationship of the square root of the angular frequency (

√
ω)

and the phase delay (∆θ) of the temperature wave as shown in the following Equation (1):

∆θ = −
√
ω

2α
d− π

4
(1)

where d is the thickness of the film.

2.5. SAXS Measurements

SAXS measurements of the phage films were performed at BL-10C (λ = 0.1488 nm) and 6A
(λ = 0.1500 nm) of Photon Factory in KEK (Japan). The two-dimensional SAXS intensity was detected
using PILATUS3 2M and 1M. A series of X-ray structure analyses were performed using homemade
GUI software [38]. Full width at half maximum (FWHM) was determined by fitting with the
pseudo-Voigt function to calculate the degree of orientation, which indicates the orientation states of
the phage molecule in entire film, as in the following equation:

Degree of orientation =
180− FWHM

180
(2)

3. Results and Discussion

M13 phage-based films of highly oriented liquid crystalline assembled structures with high
thermal diffusivity were prepared according to a previously reported flow-induced method on a
glass plate that had been circularly patterned with a hydrophobic coating based on fluororesin [34]
(Figure 1b). We have previously found that the film thickness at the outside edge of the circular
pattern (outside) is thicker than at the center (center) or part-way between the center and the outside
(midpoint). This observation can be explained due to solute condensation that occurred by capillary
flow induced by the differential evaporation rates across the drop at the outside of the pattern (so-called
coffee-ring effect), resulting in different assembled structures [39]. It is noted that near the center,
the film breaks when it is peeled off the glass substrate in order to measure the thermal diffusivity.
In a control experiment, a non-oriented film composed of M13 phages was also prepared by a simple
solution casting method. In military electronics, the desired high temperature target is 125 ◦C, whereas
in automotive applications, it is 140 ◦C [40]. Therefore, the films were thermally treated at 150 ◦C for
30 min to evaluate their thermal stability. Rare differences were visually observed before and after
thermal treatment (Figure 1c).

To characterize the effects of the thermal treatment on the thermal conductive properties of the M13
phage-based assemblies, thermal diffusivity values of the phage films at the three positions (outside,
midpoint, and center) were measured by temperature wave analysis (Figure 2a). It was previously
found that the thermal diffusivity value on the outside of the as-prepared film was approximately 10
times greater than that of non-oriented films due to the formation of extremely oriented structures in the
assemblies, which might lead to a decrease in phonon scattering at structural defects [34]. The thermal
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diffusivity value at the outside of the thermally treated films was the same within experimental error
as the as prepared films (that is, untreated films). On the other hand, the thermal treatment caused
thermal diffusivity values to slightly decrease at the midpoint and center of the oriented films as well
as across the non-oriented film (Figure 2a, inset). Importantly, thermal diffusivity values showed no
further changes when cyclic testing of thermal treatments was performed, demonstrating thermal
stability of the films (Figure 2b). Therefore, it was demonstrated that the assembled structures at the
outside of the film are essential to maintain the thermal diffusivity after the thermal treatment (details
are discussed later).
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POM was performed to evaluate the ordered structures of the M13 phages in the films before and
after thermal treatment. In the POM images before thermal treatment, it was observed that the M13
phage films possessed differently oriented structures at the different positions on the film, as previously
reported [34] (Figure 3a–c, inset). In brief, M13 phages on the film outside showed highly oriented
smectic liquid crystal structures through a clearly layered birefringence (Figure 3a, inset). On the other
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hand, oriented structures consisting of nematic liquid crystals were observed at the midpoint and
center positions of the film due to the absence of layered structures (Figure 3b,c, inset). The orientation
regularity was higher at the outside of the film. Importantly, the POM images after thermal treatment
exhibited the same oriented states at all three positions (Figure 3). Therefore, thermal treatment under
the conditions applied here, (150 ◦C for 30 min) did not affect the liquid crystalline oriented states of
M13 phages across the whole of the film at the POM scale.

The assembled structures of the M13 phages in the films were characterized by atomic force
microscopy (AFM). Before thermal treatment, layered domains with a width of approximately 1
µm, which corresponds to the length of the M13 phage, were observed at the outside of the film,
supporting smectic liquid crystal orientation on the micrometer scale, as previously reported [34]
(Figure 3d). Similarly, nematic crystal orientation of the assembled domains with a width of 0.5–1 µm
and a length of approximately 1 µm was observed at the midpoint and center positions (Figure 3e,f).
Therefore, the M13 phages in the film were oriented in a plane direction and the orientation regularity
was higher at the outside of the film, as observed in the POM studies. After thermal treatment,
the layered domains at the outside were maintained even though the bending of the domains
disappeared (Figure 3g), suggesting that the M13 phages still formed smectic liquid crystalline
orientation. In contrast, the nematically-oriented domains at the midpoint and center positions
were more packed or aggregated after the thermal treatment (Figure 3h,i), indicating that relaxation of
the smectic-oriented domain structures was suppressed. These observations suggested that smectic
liquid crystalline oriented states of the assembled M13 phages on the film outside appears to affect the
thermal diffusivity values.
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Figure 3. Microscopic observations of the M13 phage films prepared by flow-induced orientation
methods. (a–c) Polarized optical microscopy (POM) images of the thermally treated M13 phage films.
(a) Outside, (b) midpoint, and (c) center positions of the film were observed. Insets represent the POM
images of the as prepared M13 phage films at the same positions. (d–i) Atomic force microscopy (AFM)
images of the as prepared (d–f) and thermally treated (g–i) M13 phage films. Images (d,g) were taken
from the outside, (e,h) the midpoint, and (f,i) the center of the film. Some of the observed domains
have been highlighted by white oblongs in images (d–f). Scale bars are shown in the images.
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The secondary structures of the M13 phages in the film before and after the thermal treatment
were characterized by attenuated total refraction (ATR)/IR spectroscopy measurements (Figure 4a–c).
The IR spectra revealed two sharp peaks at approximately 1535 and 1630 cm−1 in all cases, which were
primarily assigned to the α-helix structures of N-H bending (amide II) and C=O stretching (amide
I) [41], respectively. After thermal treatment, peaks assignable to other secondary structures, such as
the β-sheet conformation or random coil structures, were not observed. Importantly, the positions
and half-band widths of the peaks were unchanged by the thermal treatment, suggesting that the
original α-helical conformation was maintained. These results indicated that the slight structural
changes, observed on the micrometer scale after thermal treatment, were not caused by changes in
secondary structures. Such structural stability in proteins against high temperatures (150 ◦C) generally
cannot be explained by the structural and/or conformational stability of proteins. On the other hand,
the thermal stability of the secondary structures of M13 phage molecules in solution was characterized
by circular dichroism (CD) spectroscopy (Figure 4d,e). The CD spectra revealed negative Cotton effects
at 208 and 222 nm (Figure 4d), which were assigned to α-helical structures corresponding to the major
coat proteins of M13 phages. The negative Cotton effects decreased with increasing temperature,
demonstrating deformation of the α-helical structures. It is well known that the CD signal at 222 nm
correlates to α-helical formation; thus, the signal values, as a function of the temperature, were obtained
(Figure 4e). The decrease in the Cotton effect is saturated at approximately 80 ◦C, demonstrating
that deformation of the M13 phage structures (i.e., denaturing) in a solution progressed sufficiently
by heating at 80 ◦C. Therefore, the formation of liquid crystalline ordered structures in a solid state
yielded structural stability against heating and resulted in the maintenance of high thermal diffusivity
after thermal treatment.
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Figure 4. Secondary structural analyses of M13 phages. (a–c) Attenuated total reflection/infrared
(ATR/IR) spectra of the (a) outside, (b) midpoint, and (c) center of the films. Solid and dotted lines
represent the thermally treated and as prepared films, respectively. (d,e) Circular dichroism (CD)
spectra of M13 phages in an aqueous solution. (d) CD spectra of M13 phages at different temperature
(5–95 ◦C, every 5 ◦C). (e) CD intensity at 222 nm as a function of temperature. Phage concentration is
5 nM.

SAXS experiments were performed to examine the stabilities based on a detailed structural
characterization of the films (Figure 5a–c). In the resulting scattering profiles of the outside of the
film, intense peaks at 8.21, 4.94, and 4.18 nm were observed with a reciprocal d-spacing ratio of 1:

√
3:2

(Figure 5d), which indicates hexagonally packed structures of the M13 phages. The scattering profiles
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for the midpoint and center of the film were also characteristic of hexagonally packed structures
(Figure 5e,f). This packing structure of M13 phages at all positions on the thermally treated films was
the same to that of the as prepared films, demonstrating that the packing of the M13 phages on a
molecular level was essentially the same during the thermal treatment.

The degree of orientation, which represents the macroscopic orientation states, was calculated to
quantitatively investigate the macroscopic orientation of the structures by full width at half maximum
of the azimuth scan of the primary peaks at approximately 8 nm (Figure 5g–i), fitting with the
pseudo-Voigt function according to a previous report [34]. The degree of orientation of the M13 phages
in the entire film ranged from 0 to 1 (a higher value represents a higher orientation state). The resultant
degree of orientation at the outside of the film after thermal treatment (0.76) was comparable to that
of the outside of the as prepared films (0.78). These structural characterizations of the assemblies
demonstrated that the smectic liquid crystalline oriented assemblies of M13 phages at the outside
of the film were not affected by thermal treatment, indicating structural stability. In contrast, the
degree of orientation values at the midpoint (0.18) and center (0.06) after thermal treatment were
comparable or lower than those before treatment (0.19 and 0.01), respectively. The observed structural
properties in the nematically oriented assemblies led to the scattering of phonons, possibly due to
the presence of structural defects. Therefore, the hierarchical assembly of smectic liquid crystalline
oriented M13 phages plays an important role in providing stability against heating in order to achieve
reliable thermally conductive soft materials of biomolecular assemblies.
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the center and increases in a clockwise direction in the 2D small angle X-ray scattering (SAXS) images.

4. Conclusions

We investigated the thermal diffusivity of thermally treated M13 phage-based assemblies (films).
Thermal diffusivity measurements demonstrated that the high thermal diffusivity of smectic liquid
crystalline oriented assemblies of M13 phages (edge of the film) could be prepared through suitable
convective assembly, remained unchanged by thermal treatment (150 ◦C for 30 min) and were
approximately 10 times greater than those of nematic liquid crystalline oriented assemblies (midpoint
and center of the film) and a non-oriented cast film. Thermal diffusivity values at the midpoint and
center positions, as well as for the non-oriented film, slightly decreased upon thermal treatment.
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Structural characterization by microscopic observation, IR spectroscopy, and SAXS indicated that the
structures of the smectic liquid crystalline assemblies with high thermal diffusivity were unaffected by
the thermal treatment, which was in contrast to the nematic liquid crystalline oriented assemblies (with
lower thermal diffusivity), in which the packing or aggregated states of the assembled domains
changed over the micrometer scale. Even though the M13 phage is composed of biomolecular
proteins, the smectic liquid crystalline orientation caused remarkable thermal stability. Additionally,
our results indicating that ordered biomolecular assemblies were related to their thermal stability
might help explain the evolution of life in high temperature environments, such as thermal vents.
This biomolecule-based structurally regular assembly will open up attractive opportunities for the
next generation of reliable thermal conductive materials composed of biomacromolecular assemblies.
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