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Abstract

The ubiquitous adoption of linearity for quantitative predictors in statistical modeling is likely 

attributable to its advantages of straightforward interpretation and computational feasibility. The 

linearity assumption may be a reasonable approximation especially when the variable is confined 

within a narrow range, but it can be problematic when the variable’s effect is non-monotonic or 

complex. Furthermore, visualization and model assessment of a linear fit are usually omitted 

because of challenges at the whole brain level in neuroimaging. By adopting a principle of 

learning from the data in the presence of uncertainty to resolve the problematic aspects of 

conventional polynomial fitting, we introduce a flexible and adaptive approach of multilevel 
smoothing splines (MSS) to capture any nonlinearity of a quantitative predictor for population-

level neuroimaging data analysis. With no prior knowledge regarding the underlying relationship 

other than a parsimonious assumption about the extent of smoothness (e.g., no sharp corners), we 

express the unknown relationship with a sufficient number of smoothing splines and use the data 

to adaptively determine the specifics of the nonlinearity. In addition to introducing the theoretical 

framework of MSS as an efficient approach with a counterbalance between flexibility and stability, 

we strive to (a) lay out the specific schemes for population-level nonlinear analyses that may 

involve task (e.g., contrasting conditions) and subject-grouping (e.g., patients vs controls) factors; 

(b) provide modeling accommodations to adaptively reveal, estimate and compare any nonlinear 

effects of a predictor across the brain, or to more accurately account for the effects (including 
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nonlinear effects) of a quantitative confound; (c) offer the associated program 3dMSS to the 

neuroimaging community for whole-brain voxel-wise analysis as part of the AFNI suite; and (d) 

demonstrate the modeling approach and visualization processes with a longitudinal dataset of 

structural MRI scans.

1. Introduction

There are two types of variables in statistical modeling. The first type is categorical (e.g., 

sex, group, condition), and its possible categories are treated as the levels of a factor. The 

other type is quantitative, in which numerical values represent measurements (e.g, BOLD 

response, age, reaction time). Sometimes a variable can be treated one way or another 

depending on the research focus and hypothesis. For example, when a group of subjects are 

scanned once during each of five consecutive years, the five time points can be modeled as a 

factor with 5 levels when the differences among them, irrespective of order, are of interest. 

On the other hand, if the investigator wants to probe the trend over time, the same five points 

can be modeled as values of a quantitative variable, typically some version of the subject’s 

age.

From a temporal perspective, there are two types of experimental study designs: cross-

sectional and longitudinal. A cross-sectional study compares single-time-point observations 

or measurements across different groups of subjects without respect to time. In contrast, a 

longitudinal study involves repeated observations or measurements of the same subjects over 

a defined period of time, with potentially variable times for subjects’ individual 

observations. Longitudinal studies are of great import in neuroimaging, addressing 

fundamental issues such as neurodevelopment, aging, and medication effects over time. An 

important benefit of a longitudinal study is that the investigator can detect changes or 

developmental trajectories at both the population and subject level, extending beyond a 

single point in time and potentially providing greater opportunity to assess causal 

contributors to the response variable. In general, the choice between cross-sectional and 

longitudinal designs will be driven by the nature of the research goal and associated issues 

of practicality. For example, an investigator interested in understanding group differences in 

a measurement (e.g., between individuals with and without an illness) will be well-served by 

a cross-sectional design, whereas if the hypothesis being tested involves changes over time 

(e.g., the trajectory of a measurement over the course of an illness’ progression), a 

longitudinal design may be more appropriate. However, some temporal questions may be 

better suited to cross-sectional study because of pragmatic considerations, such as time 

constraints, as generally, cross-sectional studies can be executed more quickly than 

longitudinal studies. An investigator studying how a measurement changes across the entire 

human lifespan, for instance, may select a cross-sectional design so that the study can be 

completed within their lifetime.

The proper handling of a quantitative predictor (especially in a longitudinal dataset) can be a 

daunting task for an analyst or modeler. When such a variable is incorporated into a model, 

the investigator may be interested in either exploring its effect or controlling for its 

variability. A typical approach is to assume a linear relationship. From the modeling 
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perspective, a longitudinal study is signified by its specific treatment of the time variable and 

the dependence of repeated measurements collected. Depending on the number of time 

points, the analyst may treat the time variables as categorical or continuous/quantitative. For 

instance, when only a few time points are involved or the order of the time points is not 

critical, one may simply consider them as the levels of a within-subject or repeated-measures 

factor. The general linear model (GLM) is a powerful statistical tool especially when no 

within-subject or repeated-measure factors (e.g, a task factor with three levels of positive, 

negative and neutral) are involved. However, despite the relative simplicity, correctly 

incorporating a repeated-measures factor into a population-level model through a univariate 

GLM framework remains a challenge in neuroimaging (Chen et al. (2014); McFarquhar 

(2019); Telzer et al. (2018)), even though more flexible and appropriate frameworks such as 

multivariate GLM and linear mixed-effects (LME) modeling have been used for decades. 

Specifically, whenever a repeated-measures factor is involved, the univariate GLM 

framework may struggle to properly partition the relevant effects due to the difficulty of 

accurately characterizing the multiple levels embedded in the data hierarchy and can be 

further hamstrung by its inability to handle the presence of any quantitative explanatory 

variables (Chen et al. (2014)). These limitations can be readily addressed under a 

multivariate GLM framework (e.g., as implemented in the program 3dMVM in AFNI). An 

additional consideration is that missing data are very common in longitudinal studies, 

presenting another challenge for population-level analysis, and the LME platform (Chen et 

al. (2013)) can effectively characterize the data variability through the use of variance-

covariance structures such as varying intercept/slope and stratified/crossed effects (e.g., as 

implemented in the programs 3dLME and 3dLMEr in AFNI) and can handle missing data as 

long as the absences can be considered random.

One may convert a quantitative predictor into a factor by categorizing the quantitative 

variable into two or more intervals for a conventional ANOVA. However, this methodology 

of binning or discretization should be discouraged despite its expediency. First, it can lead to 

the loss of information, precision and inferential power. Any arbitrariness in the choice of 

cutoff points comes with an assumption of equal intervals between consecutive bins and 

artificial discontinuities at the cutoff points. Representing the variables as continuous will 

avoid information loss, but the default approach when handling the effect of a quantitative 

variable is to assume linearity. With rare exceptions, linearity is the underlying assumption 

for modeling a quantitative covariate, including, to some extent, approaches using a higher-

order relationship (e.g., quadratic or cubic), since these can be considered as special cases of 

interactions (i.e., a variable interacting with itself).

Most statistical models are constructed with an assumption of linearity for the sake of 

simplicity. A linear relationship has two properties per the superposition principle: additivity 

(i.e., aggregate responses reflect the sum of individual component effects) and homogeneity 

of degree one (i.e., scaling effects by a given factor results in an equivalently scaled 

response). These qualities make linearly parametric models fairly intuitive to construct, 

which has likely contributed to their widespread adoption in the literature. In addition, 

solving a linear system is relatively economic computationally, allowing solutions within a 

reasonable period of runtime. Linearity might pragmatically be a reasonable approximation 

of the first-order Taylor expansion2 in some cases, especially when the range of the 
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explanatory variable is relatively small (e.g., age spanning over a few years). However, even 

if the effect of a predictor can be mechanically treated as linear in the model, one cannot 

expect that the linearity assumption would be always reasonable. For example, a simple 

variable such as reaction time may have a nonlinear effect in some regions of the brain 

(Chen et al. (2020b)). Similarly, processes of human brain development or aging (e.g., 

measured functionally with regional BOLD response or structurally with anatomical scans) 

are not necessarily expected to follow a strictly linear trajectory across different life stages 

(e.g., Faghiri et al. (2019); Fjell et al. (2013)).

To account for nonlinear relationships, one may increase the order of polynomials from 

linearity to a higher order. Polynomial models are popular for several reasons, including 

their simple formulation, well known and easily-understood properties, relatively flexible 

shapes, and low computational cost. However, such a strategy faces several challenges.

• The selection of the order of the polynomials can be complicated and arbitrary. It 

is also difficult to predetermine the order of polynomial fitting, especially with 

the heterogeneity across brain regions: one particular order of polynomials may 

work for some regions but not necessarily for others.

• One may have a poor trade-off between model complexity and goodness of fit. 

For instance, a lower order (e.g., quadratic) polynomial might not be flexible 

enough to account for adequate variance, while a higher order curve could track 

the data too closely (leading to potential overfitting), which could cause 

numerical stability problems (Wood (2017)) or incur artificial oscillations at the 

edges of an interval over a set of equally-spaced interpolation points (e.g., 

Runge’s phenomenon (Runge (1901))).

• It is difficult to assess the statistical evidence for the overall difference between 

two curves. Even if one could identify the specific terms (e.g., linear, quadratic 

or cubic) with strong evidence, the interpretation tends to be unwieldy and murky 

when one addresses such a question as what a cubic term means. For this reason, 

fitting a polynomial essentially amounts to imposing a predetermined and likely 

unverifiable structure on the data, rather than conforming the relationship to the 

data.

• Non-locality or instability is an undesirable property with polynomial modeling: 

the fitted curve at a particular location may be sensitive to the data far from that 

point. For example, the twisted turn of the fitted cubic polynomials on the upper 

left corner in Fig. 1a occurs because of the steep drop at the lower right corner.

• It is common to see polynomials perform poorly in interpolatory, extrapolatory 

and asymptotic settings, as documented in the literature (Gelman and Imbens 

(2019)). For example, even if polynomials fit well within the data at hand, their 

performance will usually deteriorate rapidly outside the data range; in fact, the 

two ends of any polynomial fit will extend to −∞ and +∞, respectively.

2In mathematics, a smooth function can be approximated by its Taylor series or polynomials in terms of the function’s derivatives at a 
single point.
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Modeling adaptivity is crucial in neuroimaging because the field faces unique challenges in 

model formulation, selection and improvement due to the large amounts of data involved. 

With the massively univariate approach, which is very common in neuroimaging, the same 

model formulation is applied across the whole brain with varying response variable values. 

As a result, the typical adoption of a linear fit approach for a quantitative variable of interest 

or no interest, could be hit-or-miss, as illustrated in Fig. 1. While a linear fit might be 

reasonable in one region, a cubic model could be required for another region. The flexibility 

of polynomial fitting, model selection and improvement is basically impeded by imposing 

the same polynomial order or model formulation across the brain, an organ whose 

development and functional biology are characterized by profound regional diversity. 

Further, because of these impediments, model assessments and fit visualizations are 

cumbersome with whole-brain data. Besides polynomial fitting, another possibility is to 

adopt a specific nonlinear function or transformation such as exponential or logarithmic 

relationships. However, this option usually requires some prior knowledge about the 

underlying mechanism of the trajectory. When such a prerequisite is absent, which is 

generally the case, we are left with the demand for a more flexible approach to handling 

nonlinearity.

Here we describe and propose a novel approach to modeling a quantitative predictor in 

neuroimaging data analysis: multilevel smoothing spline (MSS). Essentially, with MSS, the 

analyst does not pre-establish a specific functional form relating the variables; rather, it is 

the data that determine the shape and specifics of the relationship. This methodology, as an 

alternative to the ubiquitous linear or polynomial fitting, is more aligned with the principle 

of letting the data speak for itself. In other words, we prefer to have the model follow the 

data, rather than the other way around (Benzécri (1973)).

The MSS approach can be conceptualized as an adaptive calibration process. Specifically, 

we seek to find the right balance between, on the one hand, simply adopting a linear fit to 

the quantitative variable, and on the other hand, fully relying on the data and tracing the 

trajectory faithfully through each data point, regardless of the wiggliness of the fitting curve. 

Between these two extremes, the MSS approach endeavors to learn from the data by 

searching for a “sweet spot” through an adaptive process of optimization or partial pooling. 

This partial pooling mechanism has been applied to various scenarios in our previous work, 

including handling multiple testing (Chen et al. (2019a, 2019b, 2020a) and accounting for 

cross-trial variability (Chen et al. (2020b)). The methodology elaborated here can be applied 

to any situation with a quantitative predictor. Even though the demonstration data is of 

longitudinal nature, the modeling framework is not limited to longitudinal applications. In 

fact, it can be adopted for cross-sectional, population- or subject-level data as long as the 

range of the quantitative variable is wide enough to support a spline fit.

Here we introduce the program 3dMSS that is publicly available as part of the AFNI suite 

(Cox (1996)) to the neuroimaging community for whole-brain voxel-wise analyses. In 

addition, we seek to

1. discuss the basic theory of MSS as a counterbalance between flexibility and 

stability;
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2. lay out the schemes for population-level nonlinear analyses that involve 

experimental manipulation factors;

3. provide modeling accommodations to estimate and compare nonlinear effects;

4. demonstrate the modeling approach and visualization processes with a 

longitudinal dataset.

Throughout this article, regular italic letters in lower case (e.g., β) stand for scalar 

parameters or variables; boldfaced italic letters in lower (b) and upper (X) cases for column 

vectors and matrices, respectively.

2. Methods

2.1. Vanilla fitting: Linearity

We start with the simplest scenario by laying down the data structure and model foundation. 

Suppose that we want to account for the effect of a quantitative predictor x (e.g., age) on a 

response variable y at each spatial unit (e.g., voxel, surface node, region of interest, or 

whole-brain measure such as intracranial volume). Let {(xi, yi) : i = 1, 2, …, m} be the data 

from one subject with i indexing the m samples of the explanatory variable x. The 

distributional model can be formulated as follows,

yi ∼ N μi, σ2
i = 1, 2, …, m, (1)

where σ2 is the variance for the likelihood (or prior) distribution (i.e., Gaussian) of the 

response variable y. The distribution mean μi stands for the effect associated with the ith 

data point (xi, yi) that can be fitted as a linear relationship with the predictor x,

μi = β0 + β1xi, (2)

where β0 is the intercept while the slope β1 captures the marginal effect of x. The simple 

regression model can be reformulated in a concise vector-matrix form,

y ∼ N Xβ, σ2I (3)

where vector ym×1 = (y1, …, ym)T represents the data for the response variable, Xm×2 = [1, 

(x1, …, xm)T] is a two-column model (or design) matrix, vector β2×1 = (β0, β1)T contains the 

two model parameters (intercept and slope) each of which is associated with a column in the 

model matrix X. Under the conventional statistical framework, the regression or general 

linear model (GLM) in (3) assumes a Gaussian distribution; however, the exposition herein 

can be readily extended to the popular exponential family distributions such as binomial, 

Poisson and Gamma.

Linearity can capture long-range trends or overall associations between explanatory and 

response variables. The modeling strategy of straight-line fitting is frequently adopted in the 

literature because of its simplicity whenever a quantitative covariate is involved in, for 

example, a regression model solved through ordinary least squares (OLS). The slope directly 
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reveals the marginal effect: a positive (or negative) slope indicates the amount of increase (or 

decrease) on average when the predictor changes one unit. Similarly, correlation can reveal 

the overall strength of the relationship between two variables: a positive (or negative) 

correlation means that both variables generally move in tandem (or opposite direction). The 

graphic demonstration of linearity, as illustrated in the solid black line against the raw data 

of Fig. 1, is an omnipresent commodity in publications. For instance, it is fair to say that a 

substantial proportion of resting-state data analysis is based on linearity in the form of 

correlativity.

The information condensed in a linear model can be excessively crude. Whenever a local 

relationship or a short-range trend is of interest, linearity may fail to identify or may even 

distort the subtle relationship. For example, even though the linear fit in Fig. 1a provides a 

compact assessment of the general relationship, close examination shows substantially poor 

characterization across the left, middle and right segments of the x values: the predicted 

values of y are considerably larger than the raw data at both ends of the x values while it is 

the opposite problem in the middle range of x. When the relationship between two variables 

fluctuates or changes regularly or irregularly, the failure of the linearity assumption (Fig. 1b) 

may wreak havoc on data analysis and ultimately undermine efforts toward research 

reproducibility. It is this failure or distortion that necessitates more accurate modeling 

strategies than the default approach of linearity.

2.2. Modeling beyond linearity: Spline interpolation

We intend to extend the linear model (2) by overcoming the limitations of polynomial 

fitting. Despite its unwieldy data fitting across the whole range, polynomials have several 

desirable properties such as differentiability, smoothness, numerical simplicity, and 

computational efficiency. Instead of assuming one full polynomial function for the whole 

range of x values, we may divide the data domain into multiple segments and fit each 

segment with a separate polynomial and keep the desirable functional properties but avoid 

the pitfalls listed in the Introduction. To achieve a degree of adaptivity to a set of data under 

consideration, suppose that we fit the data {(xi, yi) : i = 1, 2, …, m} with a smooth function 

f(x) that replaces the linearity in the formulation (2),

μi = f xi . (4)

One solution is to fit f(x) through splines so that it does not have a specific predetermined 

form such as polynomial, exponential, logarithmic or trigonometric functions. 

Etymologically, the word spline refers to a flexible thin strip of wood or metal that can be 

used as a tool to draft different shapes of smooth curves. As illustrated by the line segment 

tool in Microsoft PowerPoint, various curves can be shaped with appropriate weights at 

various positions. Similarly, splines are smooth functions that are usually low-order 

polynomials with locations where adjacent splines meet each other as knots.

Two trade-offs are involved in the process - the spline type and the number of knots - both of 

which will have an impact on the fitness of the curves. The smoothness of a function is 

usually measured by its differentiability. A higher degree polynomial is more differentiable 

but computationally costly, while a lower order may result in jagged fitting around knots. 
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Cubic polynomials are generally considered a well-balanced choice for their smoothness at 

knots that are guaranteed through the continuity up to the second order of derivatives. In 

addition, we adopt natural or restricted splines with their second and third derivatives set as 

0 at the first and last knots so that the fitting is linear beyond the domain of the data at hand. 

As for the second trade-off, fitting with more knots may lead to overfitting, but smoothness 

and flexibility may suffer with a lower number of knots. For a specific set of knots, we build 

a set of basis functions so that any continuous function can be represented as a linear 

combination of basis functions.

We start with one type of natural cubic splines: cardinal basis functions. With K ordered 

knots ξ0 = x1 < ξ1 < …< ξK−1 = xm, the constraints applied to natural cubic splines include: 

1) f(x), f′(x) and f″(x) are continuous at the knots, and 2) f″(x) = f″′(x) = 0, when x = ξ0, 

ξK−1. These constraints lead to K basis functions (and K free parameters) for K knots. With 

Δξk+1 = ξk+1 − ξk, βk = f(ξk), γk = f″(ξk), k = 0, 1, …, K − 1, the smooth function in (4) 

can be parameterized (Wood (2017)) as,

f(x) = ξk + 1 − x
Δξk + 1

βk + x − ξk
Δξk + 1

βk + 1 + 1
6

ξk + 1 − x 3

Δξk + 1
− Δξk + 1 ξk + 1 − x γk

+ 1
6

x − ξk
3

Δξk + 1
− Δξk + 1 x − ξk γk + 1, when ξk ≤ x ≤ ξk + 1

= ∑
k = 0

K − 1
βkck(x),

(5)

where {ck(x) : k = 0, 1, …, K − 1} are the cardinal cubic basis functions. One nice feature of 

the cardinal splines is that the kth basis function peaks with a value of 1 at the associated 

knot ξk while having the value 0 at all other knots (see an example with K = 6 knots in Fig. 

2a); thus, each coefficient βk can be directly interpreted as the fitted value at the knot ξk. We 

can update the formulation (1) as

μ = Xβ, (6)

where μ = (μ1, μ2, …, μm)T, β = (β0, β1, …, βK−1)T, and the model matrix X is of 

dimensions m × K with its (i, k)th element being ck(xi). The formulation (6) under the 

distribution (1) can be solved through, for example, OLS when K < m. However, overfitting 

cannot be effectively controlled under (6), and predictive accuracy may suffer when the 

model is applied to out-of-sample data. Thus, a balancing mechanism should be considered 

to counteract the danger of overfitting.

2.3. Regularization through bayesian multilevel modeling

Now we wish to resolve the second trade-off with respect to the number of knots. The 

challenge is to adaptively find a point of balance in the tug of war between two forces: too 

few knots may result in underfitting and rough curves, while too many would lead to 

overfitting or even an unidentifiability problem. The solution involves the second derivative 

of a function, which is related to the curvature or concavity of its curve: a positive second 

derivative corresponds to upwardly concave, and vice versa for a negative second derivative. 
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Under the Bayesian framework, one technique to achieve adaptivity is partial pooling. When 

the potential risk of overfitting exists, we calibrate or leverage the peer effects (e.g., fitted 

values across multiple locations or knots) through a prior distribution. To differentially, 

instead of equally, calibrate those fitted values, we control the smoothness, roughness or 

curvature of spline function f(x) by tuning the integrated square of the second derivative that 

can be formulated (Wood (2017)) per (5),

∫ξ1

ξK
f″(x) 2dx = βTPβ, PK × K = CTB−1C, (P )ij = ∫ξ1

ξK
ci″(x)cj″(x)dx, (7)

where the matrices B and C (defined in Appendix A) are composed of the (usually equal) 

distances Δξk among two neighboring knots. With the notations Q = B−½C and b = Qβ, we 

have QT Q = P. Now we formulate the spline model (6) under the Bayesian multilevel 

(BML) framework,

μ = Xβ, β ∼ N 0, θ2P + , (8)

where P+ is the pseudo inverse of the penalty matrix P and plays the role of regulation 

through the prior distribution β ∼ N 0, θ2P + . Similar to B and C, the elements of P and Q 

are just the distances Δξk among the neighboring knots. Thus, each element of the vector b 
is a weighted combination of the model coefficients βk that are associated with the cardinal 

basis functions ck(x). Essentially, the prior β ∼ N 0, θ2P +  can be directly translated to a 

regularization on the basis weights b ∼ N 0, θ2I .

The fitting adaptivity with a wide range of knots can be achieved through the Bayesian 

framework (8). Specifically, Xβ embodies the closeness of the fitting curve to the data, while 

b regulates the complexity of the curve through its distribution assumption. In other words, 

the prior distribution of b plays the role of partial pooling as revealed by the two extreme 

scenarios. When the variance θ2 = ∞, no pooling is executed, the model fully interpolates 

the data and may result in rough or zigzagged fitting; on the other hand, θ2 = 0 means 

complete pooling, which corresponds to f″(x) = 0 or a linear fit. However, θ2, as a 

hyperparameter, is inferred from the data at hand; in other words, the amount of pooling 

between the two extremes is adaptively determined, and the specific number of knots 

becomes inconsequential as long as it surpasses some minimum threshold (e.g., 10).

One practical hurdle of adopting the BML framework (8) is the high computational cost. For 

whole-brain voxel-wise analyses, the computational burden depends on three factors: the 

number of subjects, the number of voxels and model complexity (e.g., number of knots, 

number of variables). Several features of Bayesian modeling are superior to the conventional 

approach, including straightforward results interpretation and presentation, easy 

incorporation of prior knowledge and flexible adaptation to data distributions. For whole-

brain voxel-wise analysis, the computational challenge currently remains prohibitively 

costly, and we need alternative approaches to achieving the goal of regularization. 

Nevertheless, the BML model (8) provides a crucial platform for deriving uncertainties of 

predicted values in smoothing spline modeling.
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2.4. Regularizing knots through LME and penalized least squares

One alternative to BML is to translate it to a linear mixed-effects (LME) counterpart. Denote 

β* = (β0, β1)T, and b* = Q(β2, …, βK−1)T, and define two matrices Xm × 2*  and Zm × (K − 2)*

as the first two columns and the rest of the columns, respectively, of 

Xm × K
I2 02 × (K − 2)

Q(K − 2) × K

−1
. With the following reparameterization (Wood (2017)),

Xβ = X
I2 0

Q

−1 I2 0
Q

β0
β1
⋮

βK − 1

= X* Z* β*
b* = X*β* + Z*b*,

the BML model (8) is updated to an intuitive and familiar LME format,

y = X*β* + Z*b* + ϵ, b* ∼ N 0, θ2I(K − 2) × (K − 2) , ϵ ∼ N 0, σ2Im × m , (9)

where the first two basis coefficients β* are conceptualized as fixed effects, and the 

remaining K − 2 components b* in b = Qβ, as the combinations of all the basis coefficients 

β (including the first two), play the role of random effects that follow a Gaussian 

distribution, same as the prior distribution for b in the BML model (8). Under some 

scenarios, including the current context, the two frameworks of BML and LME are 

conceptually parallel with each other. However, the LME model (9) can be solved in much 

less computationally demanding ways, through, for example, optimizing the restricted 

maximum likelihood (REML).

Another alternative to BML is conventional ridge regression. Instead of minimizing (y − 

Xβ)T (y − Xβ) through OLS, we add a quadratic penalty term, the integrated square of the 

second derivative of f(x), to the regression model (6) and solve it through penalized least 

squares (PLS),

argmin
β

y − Xβ T(y − Xβ) + λ∫ξ1

ξK
f″(x) 2dx

= argmin
β

(y − XβT(y − Xβ) + λβTPβ

= argmin
β

y − Xβ T(y − Xβ) + λbTb,

(10)

where λ ≥ 0 is the tuning or smoothing parameter. In contrast to the conventional ridge 

regression approach, here we do not equally penalize the basis weights β, but instead apply 

the L2 regularization to b or various combinations of the basis weights β. It is for this reason 

that P is referred to as the penalty matrix. Similarly, the intuitive interpretation of PLS is the 

counterbalance between the two forces of under- and over-fitting: λ = 0 corresponds to no 

penalization while λ = ∞ leads to full penalty (straight line). If λ is known, the PLS 

solution can be obtained through
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β = XTX + λP −1XTy . (11)

Similar to typical ridge regression, the smoothing parameter λ is usually determined through 

various cross-validation methods or Akaike information criterion (Wood (2017)).

The three models - BML, LME and PLS - are essentially equivalent. In fact, their 

equivalence is represented by a correspondence between the penalty parameter λ and the 

relative magnitude of variance for the prior and random-effects distribution:λ = σ2

θ2 . To put it 

another way, the prior distribution under BML can be alternatively expressed as 

β ∼ N 0, σ2
λ P + , and the posterior distribution as

β ∣ y ∼ N β , XTX + λP −1σ2 . (12)

In addition, the LME formulation (9) can be directly treated as a BML model through the 

conceptualization of the distributional assumption of the random effects b as a prior. Each of 

the three modeling frameworks has unique pros and cons in terms of inference formulation, 

interpretation and computational consideration. In the current context, all three models are 

complimentary to each other in the development and applications of smoothing spline 

modeling.

2.5. Statistical inferences with smoothing spline modeling

To broaden the applicability in real practice and numerical implementations, a few 

modifications are warranted. First, to increase the flexibility in basis function selection, we 

consider a different type of smoothing basis, thin plate spline. Historically, thin plate splines 

were developed for two or more predictors with the analogical concept of a thin sheet of 

metal that is resistant to bending (Duchon (1977)). Most types of basis functions (including 

the cardinal cubic set) for smoothing spline modeling are knot-based in the sense that a set 

of knots has to be specified before the basis functions are constructed as shown in the 

formulation (5), and the determination of knot number and their locations may add some 

extent of arbitrariness. By contrast, with thin plate smoothing splines we directly focus on 

the number of basis functions rather than the number of knots. Specifically, we start with as 

many basis functions as the unique sampled data points of the explanatory variable and then 

construct a specific number of basis functions by reducing the dimensionality through eigen-

decomposition. In consequence, we adopt approximate thin plate splines and achieve a 

counterbalance between the effectiveness in smoothness regularization and computational 

cost (Wood (2003, 2017)). A set of thin plate splines with 6 basis functions within [0, 1] is 

illustrated in Fig. 2b.

Thin plate splines have some advantageous features that lead to intuitive interpretations. For 

example, the linear components of intercept and slope are part of the basis functions (b0(x) 

and b1(x) in Fig. 2b). Subsequently, we could parameterize the BML/LME formulation (9) 

in such a way that the two linearity components are directly associated with matrix X*. In 
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other words, the two model coefficients β1 and β2 in β* are the intercept and slope of the 

linear components. This straight interpretation offers convenient model formulations and 

statistical inferences as elaborated below.

Research focus may vary in terms of the linear and nonlinear components in a model. One 

accommodation is to modify our basic formulation of smoothing splines in (4) by extracting 

the intercept or baseline from the smooth function f(x),

μi = β0 + s xi . (13)

In this formulation the linear component remains part of the smooth function s(x). 

Specifically, column centering is required across the rows of matrix X* to achieve 

indentifiability under the intercept formulation (13); that is, we need to reduce the number of 

the basis functions from K to K − 1 (Fig. 2c,d). Another modification is to separate both the 

intercept and linear term from the smooth function f(x) in the formulation (4),

μi = β0 + β1xi + s xi . (14)

Under these reformulations, some adjustments are needed. Specifically, under the model 

formulation (9) shared by both BML and LME, reparameterization may be needed. Thus, as 

the baseline and linear basis functions are directly part of the thin plate basis functions, 

indentifiability can be accomplished through the reduction of the number of the thin plate 

basis functions from K to K − 2, for the formulations (14), by separating both the baseline 

and linear components (solid black and dashed red lines in Fig. 2b) from the thin plate basis 

functions.

Statistical inferences can also be performed separately for the linear components (or 

parametric coefficients, e.g. intercept β0 and slope β1) and the nonlinear components (or 

smooth terms) in s(x). The statistical evidence for each component in the linear terms is 

usually constructed for the coefficient through the Wald test using the associated standard 

errors embedded in the variance-covariance matrix of the posterior distribution (12) under 

the Bayesian formulation (8). In contrast, a χ2-statistic can be adopted to assess the strength 

of the nonlinear terms using the uncertainty measures under the BML framework (Wood, 

2013,Wood (2017)); in this case, the statistical evidence is assessed against the nonlinear 

term being s(x) = 0. Specifically, s(x) = 0 corresponds to an intercept (constant or horizontal 

line) in the formulation (13) or f′(x) = 0 in the formulation (4). On the other hand, s(x) = 0 is 

associated with a linear relationship in the formulation (14) or f″(x) = 0 in the formulation 

(4). The smoothness of the fitted curve can be assessed by the effective degrees of freedom 

for the associated χ2-distribution.

In addition to statistical inferences, one is often interested in tracing the estimated trajectory 

from the data and visualizing the smooth relationship. Such an undertaking can be fulfilled 

through predictions based on the model. At specific values of the predictor x that are not 

necessarily aligned with the sampled data xi, the expected responses are estimated through 

interpolation and extrapolation per the model generation mechanism. In this regard, the 

Bayesian framework offers another important mechanism in assessing the uncertainty (e.g., 

standard error) through the posterior covariance matrix of the basis coefficients βk.
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2.6. Modeling extensions

So far, we have focused on the basic concepts of smoothing spline modeling. These models 

(e.g., (4), (5), (13) and (14)) can be adopted to capture the nonlinearity of between-subjects 

quantitative variables that do not vary within subject in the context of cross-sectional 

analyses (e.g. brain volume, cortex thickness, IQ, age). With just a few extensions, a wider 

range of applicability can be further achieved. For example, to be able to perform 

population-level data analysis with within-subject predictors (e.g., age in a longitudinal 

study), we include subjects as a variable (factor) in the model, justifying the adoption of the 

adjective ”multilevel” in the acronym MSS for multilevel smoothing splines. In the 

following three model variations of handling within-subject predictors, we simultaneously 

intertwine two pooling processes: one pools the variations across subjects toward the 

population effects, while the other drags or penalizes the smoothness toward the straight 

lines.

1) Varying-intercept MSS.—Suppose that we want to account for the effect of a 

quantitative explanatory variable x (e.g., age) on a response variable y at each spatial unit 

(e.g., voxel, surface node, region of interest) from n subjects. Let (xij, yij) be the data from 

jth subject’s ith observation (i = 1, 2, …, mj; j = 1, 2, …, n), where the number of 

observations, mj, may vary across the n subjects. A simple extended model for handling a 

dataset at the population level is to add a subject-specific intercept,

yij ∼ N μij, σ2 ; μij = β0 + β0j + s xij ;
β0j ∼ N 0, τ2 ; i = 1, 2, …, mj; j = 1, 2, …, n; (15)

where μij stands for the effect associated subject j at the data point xi, β0 is the intercept or 

the population effect shared across all n subjects, β0j is the intercept deviation of subject j 

from the population intercept β0 and is assigned a prior Gaussian distribution with a variance 

τ2, and σ2 is the variance for the likelihood (or prior) distribution (Gaussian) of the response 

variable.

2) Varying-intercept-and-slope MSS.—Further extending the varying-intercept MSS 

model (15), we may allow both intercept and slope to vary across subjects,

yij ∼ N μij, σ2 ; μij = β0 + β0j + β1jxij + s xij ;
β0j, β1j ∼ N 0, T2 × 2 ; i = 1, 2, …, mj; j = 1, 2, …, n; (16)

where β0j and β1j are the subject-specific intercept and slope, and their joint prior 

distribution is Gaussian with a 2 × 2 variance-covariance matrix T. Notice that, with thin 

plate splines, the population-level slope effect is embedded in the smooth term s(xij) in the 

formulation (16) with the corresponding basis function shown as the dashed red line in Fig. 

2d. Nevertheless, one could extract the population slope effect as an explicit term if the 

assessment of nonlinearity is desirable.

3) Varying-smooth-curve MSS.—The most complex and most flexible extension is to 

allow each subject to have a unique smooth curve,
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yij ∼ N μij, σ2 ; μij = β0 + s xij + sj xij
sj xij = β0j + β1jxij + zjb; β0j, β1j ∼ N 0, T2 × 2
b ∼ N 0, θ2I(K − 2) × (K − 2) ; i = 1, 2, …, mj; j = 1, 2, …, n;

(17)

where sj x  is the smooth fitting deviation of subject j from its population-level counterpart 

s(x), β0j and β1j are the first two basis coefficients of intercept and linearity at the subject 

level that correspond to their counterparts β* in the BML/LME formulation (9) while T is 

the associated variance-covariance matrix for the joint prior distribution of those first two 

basis coefficients, and b is the counterpart of b in the BML/LME formulation (9) while θ2 is 

the variance for the prior distribution of b.

All three population-level models, despite their varying complexity, can be conveniently 

parameterized, accommodated to and subsumed under the same BML/LME formulation,

y = Xβ + Zb + ϵ, b ∼ N 0, θ2G , ϵ ∼ N 0, σ2IM × M , (18)

where G is a block diagonal matrix and M = ∑j = 1
n mj. This unified model, as an extended 

version of its counterpart for a single subject (9), is achieved through matrix augmentation 

and integration across subjects, rendering an appealing platform for numerical algorithms. In 

fact, the previously elaborated numerical algorithms, statistical inferences and predictions 

can be readily applied to these three models.

2.7. MSS With more than one predictor

Many data analysis scenarios, including neuroimaging analyses, may involve more than one 

predictor. For example, an experiment may be designed with multiple groups of subjects or 

multiple conditions; in that case, a subject-grouping or within-subject factor has to be taken 

into consideration in the model formulation. Two modeling possibilities exist in terms of 

statistical inferences with MSS. The investigator may be interested in comparing the 

trajectories or trends of a quantitative predictor across groups, conditions and various 

interactions. Alternatively, one could seek to focus on the interaction between the two 

experimental manipulation variables (e.g., groups and conditions) while adjusting the effect 

of a quantitative variable through smoothing splines instead of the typical approach of linear 

fitting.

Parallel to the conventional GLM and ANOVA platforms, a similar expansion can be 

formalized for MSS modeling. Here we utilize a concrete example to showcase the 

formulation process. Suppose that there are two experimental manipulation factors, forming 

a 2 × 2 factorial structure: one is a between-subject factor with two levels (patient and 

control) while the other a within-subject factor with two levels (positive and negative 

condition). We consider the data structure for two scenarios. One is to compare the trajectory 

or trend along a within-subject quantitative variable x (e.g., age) between the two groups, 

between the two conditions and their interaction, similar to the two main effects and the 

interaction in a conventional two-way ANOVA layout. In other words, the research 

hypothesis hinges on the comparisons among the smooth curves, not the comparisons of the 
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average effects at a particular x value (e.g., mean). The other scenario is to perform ANOVA 

on the two factors while accounting for the effect of within-subject quantitative variable x as 

a confounder.

We formulate the ANOVA-analog MSS model through an old-fashioned dummy coding 

approach. Specifically, we choose a dummy coding method through which a factor of L 
levels is represented with L − 1 quantitative variables. With deviation coding, we set one 

level as baseline or reference that is coded as −1, and each of the other L − 1 levels is 

separately coded as 1. With two levels for both factors in this particular example, we 

formulate two quantitative variables, say d1 and d2, each of which is associated with one of 

the two factors and takes the values of −1 and 1. Then let d3 be the product of d1 and d2, 

representing the interaction between the two factors. Further suppose we adopt a varying-

intercept MSS model as shown in (15) and use the indices i, j and r to track observations, 

subjects and the four factorial combinations between the two factors, respectively,

yijr ∼ N μijr, σ2 ; μijr = β0 + β0j + s xij + d1rs xij + d2rs xij + d3rs xij ;
β0j ∼ N 0, τ2 ; i = 1, 2, …, m; j = 1, 2, …, n; r = 1, 2, 3, 4; (19)

where d1r, d2r and d3r are the deviation coding values based on the four factorial 

combinations. Under this formulation (19), β0 is the overall intercept at the population level 

accompanied with its subject-level intercept β0j; s(x) embodies the overall smooth 

trajectory; d1rs(xij), d2rs(xij) and d3rs(xij) reveal the differences of the smooth trajectory 

between the two groups, between the two conditions, and the interaction (difference of 

differences) between the two factors, respectively. As discussed previously, the MSS 

formulation (19) can be parameterized and numerically solved under the BML, LME and 

PLS platforms. Furthermore, statistical assessments about the two main effects and the 

interaction regarding the smoothing trajectory can be completed as prescribed before, and so 

are the predictions for each of the four combinatorial scenarios.

The formulation for the ANOVA of the two factors with x as a confounding variable is more 

straightforward. With p and q coding the levels of the two factors, we decompose the effects 

as below,

yijpq ∼ N μijpq, σ2 ; μijpq = βpq + β0j + spq xij ;
β0j ∼ N 0, τ2 ; i = 1, 2, …, m; j = 1, 2, …, n; p = 1, 2, q = 1, 2; (20)

where β0j is the varying intercept with a prior Gaussian distribution N 0, τ2 , and spq(xij) is 

the smooth trajectory for the (p, q)th combination of the two factors. For meaningful 

interpretations of βpq and their various comparisons, the xij values should be properly 

centered. Essentially, instead of a priori assuming a linear confounding effect of x as in the 

conventional treatment, here we replace a straight line fitting with more generic smooth 

functions spq(x) in the formulation (20). While surely more computationally demanding, the 

MSS model (20) more accurately accounts for the data variability when nonlinearity is 

substantially present in the data.
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One last modeling complexity is when there are two or more quantitative predictors to be 

modeled through smoothing splines. Without loss of generality, we use two quantitative 

predictors x and z as an example to briefly cover this extension, and simply expand, for 

example, the 1D formulation (13) with s(x) to,

μi = β0 + s xi, zi , (21)

where s(x, z) is a bivariate smooth function. If x and z are isotropic in the sense that they are 

naturally on the same scale (e.g., 2D surface), a unit change in one marginal predictor x 
corresponds to the same meaning as a unit change in the other marginal predictor z; 

therefore, 2D thin plate basis functions can be directly adopted in this context to transform 

the formulation (21) to our familiar BML, LME and PLS model forms with only one prior 

distribution N 0, τ2I , one tuning parameter λ and one penalty matrix as in the single 

quantitative variable case. On the other hand, when x and z are anisotropic in the sense that 

they are in different units (e.g., age and brain volume), we need two separate sets of basis 

functions; consequentially, we have two separate prior distributions, two different tuning 

parameters, and two separate penalty matrices in a tensor product form, one for each of the 

two predictors. Nevertheless, despite the further complexity, the formulation (21) for the 

anisotropic case can, without exception, be turned into the same model platform as described 

previously (Wood (2017)).

2.8. MSS Implementation for whole-brain voxel-wise analysis in neuroimaging

We offer an MSS program 3dMSS that is publicly available as part of the AFNI suite for 

whole-brain voxel-wise data analysis. Using the R (Team (2020)) package gamm4 (Wood 

and Scheipl (2020)), all the basis function options, including cardinal cubic splines, thin 

plate splines and tensor products are available. The modeling capabilities, as elaborated here, 

have been incorporated into 3dMSS through a shell scripting interface (see a template in 

Appendix B). The respective model is applied at the voxel level through the conventional 

mass univariate approach; in other words, each voxel is fitted with unique smooth curves. 

All the predictors and input data (in either text format for 1D and 2D or NIfTI format for 3D 

neuroimaging data) are fed through a table in the R long data format. Depending on the 

amount of data, spatial resolution, number of predictors and model complexity, 

computational time may range from minutes to hours. Parallelization, making use of 

multiple CPUs and/or high-performance computing clusters, is recommended for demanding 

cases.

Statistical inferences and predictions are provided in the 3dMSS output. The effect 

magnitude and the associated statistical evidence in Z-value are included for each of the 

linear components. The statistical evidence for each of the nonlinear components or their 

comparisons is assessed through a χ2-value; as the effective degrees of freedom vary across 

the spatial units, all the χ2-values are converted to have 2 degrees of freedom for the 

bookkeeping convenience of results storage. To make predictions for the trajectory of a 

quantitative predictor, the user can specify the predictor values and factor levels through the 

long data format, and obtain prediction values and their uncertainty (i.e., standard errors) in 

the output. One can then interactively examine the trajectories and their comparisons, for 
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example, at the voxel level through the graph window in the AFNI graphical user interface. 

The adjusted coefficient of determination Radj
2  in the output can be utilized to assess the 

goodness of fit in model comparison. The conventional R2 can be directly interpreted as the 

proportion of variance explained by the model under, for example, GLM. The relative 

magnitude of the adjusted Radj
2  under MSS remains an important tool for model comparison, 

but the proportionality interpretation becomes somewhat opaque due to the presence of 

nonlinearity and the data hierarchy. In addition, the adjusted Radj
2  may occasionally become 

negative, indicating a model fit worse than a model based on an intercept alone.

3. MSS Modeling of MRI brain data

To demonstrate the utility of the MSS approach, we applied the technique to a set of 

longitudinal VBM-style data cumulatively acquired from participants in the NIMH 

Intramural Longitudinal Study of the Endocrine and Neurobiological Events Accompanying 

Puberty (Cole et al., 2021), along with typically developing controls from The NIMH 

Longitudinal Study of Children with 7q11.23 Copy Number Variations (Gregory et al. 

(2019)). This analysis was designed to assess the development of cortical asymmetries from 

childhood through adolescence. Previous cross-sectional adult studies examining asymmetry 

based on gray matter volume (Dorsaint-Pierre et al. (2006)) or cortical thickness/area (Kong 

et al. (2018)) have found hemispheric differences in planum temporale and/or Heschls 

Gyrus, which contain primary auditory cortex, but the developmental nature of these 

asymmetries remains to be fully characterized.

3.1. Experimental data

The MRI data information is as below. We acquired T1-based structural scans 

(MEMPRAGE, sagittal acquisition, 1-mm isotropic voxels, 256 × 256 × 176, TE/

TR=1.828/10.556 ms, flip angle = 7°) on a GE 3T MR-750 scanner from 125 right-handed 

children (72 males, 53 females) in a longitudinal fashion, collecting 2–11 visits per 

participant over the age range of 7–20 years, for a total of 472 separate visits. Study 

procedures were approved by the NIH Combined Neuroscience IRB (NIH protocols 

10M0112 and 11M0251). Participants were screened for eligibility based on history and 

physical examination by a clinician, by routine laboratory testing, and by a radiologist-

reviewed MRI examination. Participants 18 or older and parents of minor participants 

provided written informed consent, and minor children provided assent. Three scans 

collected at each visit (each scan combined the four individual echos) were averaged and 

intensity-normalized, and gray matter was segmented in SPM12. Spatial normalization was 

performed within individuals and then on a group basis. Specifically, scans for all of an 

individual’s visits were spatially normalized to create a mid-time-point average image for 

that participant using SPM12’s longitudinal normalization tool (Ashburner and Ridgway 

(2012)). Advanced Normalization Tools (ANTS) software (Avants, 2009) was used to derive 

a symmetric group template based on structural images from 22 participant visits that were 

representative based on age and sex, including both the original and left-right reversed 

versions of each image. To ensure complete symmetry, the ANTS-based template was itself 

left-right reversed and averaged with the original. Following construction of the symmetric 
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template, mid-time-point average images for each subject in the analysis were warped into 

this symmetric template space. Then, for each visit of each participant, ANTS was used to 

concatenate the deformation fields from the two spatial normalization stages (i.e., visit-to-

subject-average, followed by subject-average-to-group-template), enabling the 

transformation to be performed with a single interpolation step. This transformation was 

used to warp gray matter images into the common symmetric group space, followed by 

smoothing at 8 mm and Jacobian modulation to account for local expansion or contraction 

based on the composite transform.

MSS modeling was adopted to explore asymmetries in developmental trajectories of cortical 

gray matter volume (GMV) on a voxelwise basis across the whole brain. For purposes of this 

analysis, original images from all participant visits were treated as belonging to one 

condition, while the corresponding left-right-flipped images were treated as belonging to 

subjects in a second (synthetic) condition. In other words, the asymmetry in gray matter 

developmental trajectory would be revealed through modeling the two conditions as two 

levels of a within-subject factor and contrasting the two conditions. From these data, three 

MSS models of voxelwise longitudinal gray matter trajectories across the brain were 

employed using 3dMSS (scripts shown in Appendix B). The first model explored the 

asymmetry of developmental trajectories by contrasting the two conditions using the 

ANOVA platform of MSS (19) with the condition factor of two levels. The second model 

explicitly looked for the asymmetry of nonlinear trajectories after including both linear and 

nonlinear terms as formulated in the MSS model (14). As a basis for comparison of 

goodness-of-fit measures, the third model only accounted for the linear trajectory of age by 

adopting the MSS template (14) with the constraint s(xi) = 0. Predictions of gray matter 

volume trajectories were specified across the 7–20 year age range at specified half-year 

increments. With the input dataset consisting of 944 1-mm isotropic volumes, multi-threaded 

parallelization utilizing 16 threads within 3dMSS yielded computation times of less than an 

hour for each of the output slices. Additional parallelization was made possible with a high 

performance computing cluster (the NIH HPC Biowulf cluster - http://hpc.nih.gov), such 

that each output slice was computed in parallel, allowing each of the two whole-brain 

voxelwise analyses to be completed in roughly one hour.

3.2. MSS Modeling results

Our first model, based on the formulation (19), detected asymmetries of age-related 

trajectories in gray-matter volume with strong statistical evidence at several regions. The 

3dMSS output included the effect estimates and their statistical evidence in χ2-distribution 

for each parametric term in the specified model, as well as predictions of gray matter volume 

trajectories across the 7–20 year age range. The results shown in Fig. 3 illustrate findings of 

asymmetry in age trends of regional cortical gray matter volume as well as the statistical 

evidence through color-coded p-value. Specifically, the findings included a robust region of 

left-lateralized (left > right) asymmetry in Heschl’s gyrus, which is consistent with previous 

cross-sectional studies in the literature for adults (Dorsaint-Pierre et al. (2006); Kong et al. 

(2018)). Examination of the spline-based trajectories of age by hemisphere shown in Fig. 3a 

offers some longitudinal insight regarding this asymmetry, indicating that this difference is 

likely present by the age of seven. Results also included (Fig. 3b) a region of similarly left-
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lateralized asymmetry in inferior temporal cortex, in which predicted trajectories showed an 

initial difference that diminished over the 7–20 age range modeled. Also, as illustrated in 

Fig. 3c, a small region was found within the anterior insula in which trajectories “crossed 

over” in the 14–15 year range. Although multiple regions demonstrated asymmetry with 

strong statistical evidence, the findings in these three regions were selected as a 

representative sampling of the types of differences between the original and flipped gray 

matter volumes in age trends that were discovered.

Some subtle nonlinear trajectory differences were revealed from our second model. Fig. 4 

illustrates findings based on the second model that specifically separated linear and 

nonlinear effects, showing the statistical evidence of regions for which asymmetry was 

expressed strongly in the nonlinear terms of the model. As the nonlinear components (with 

expected weaker statistical evidence) in the second model are embedded in the overall 

trajectory captured in the first model, Fig. 4 confirms that the regions associated with 

asymmetry based on nonlinear components were a subset of the regions revealed by the 

overall trajectory asymmetry (Fig. 3). Fig. 4a shows a right-lateralized region within the 

intraparietal sulcus (IPS) for which both hemispheres show gray matter reduction that 

increases in the 10–15 year range. Similarly right-lateralized regions within the temporo-

parietal junction (TPJ shown in Fig. 4b) and frontal pole (Fig. 4c) reveal an increased rate of 

reduction over approximately the same age range. The IPS region, thought to be a part of 

right-lateralized visuospatial processing systems (Kitada et al. (2006)) and of a right-

lateralized dorsal attention network (Corbetta, 2002), may undergo particularly aggressive 

specialization-based pruning during this time period. TPJ is likewise a recognized hub 

region, with evidence supporting its role in a right-lateralized ventral attention network (de 

Schotten M. et al. (2011)) and thus may be similarly subject to accelerated pruning-based 

gray matter reduction within the same time frame.

4. Discussion

Linearity provides a convenient and irreplaceable framework for statistical models. Although 

it is appropriate for some experimental settings, its popularity can probably be largely 

ascribed to educational resource accessibility, familiarity and computational scalability. By 

virtue of effects assumed to be additive or accumulative, a linear model benefits from nice 

properties, numerical simplicity and intuitive interpretations. For example, OLS is 

computationally efficient in solving GLM; in addition, the Gaussian assumption guarantees 

the optimality of the effect estimate and the distributional properties for statistical 

inferences. It is no surprise that a large proportion of statistical data analysis is primarily 

performed under the umbrella of the staple methods such as regression, AN(C)OVA, GLM, 

LME and generalized linear model. These ubiquitous models are broadly covered in 

conventional statistical literature and are easy to use, visualize and conceptualize.

Neuroimaging data have historically been largely analyzed in a linear fashion. For example, 

the temporal dynamics of the BOLD signal in a brain region is constructed by convolving 

the stimuli with a linear time-invariant system and modeled as an additive effect in a time 

series regression model (e.g., Cohen (1997)). At the population level, a quantitative variable 
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(e.g, age, cortex thickness), regardless of its being considered as an effect of interest or 

confound, is routinely modeled in a linear system.

4.1. Necessity of modeling nonlinearity

Nonlinear modeling broadens the capability and accuracy of data analysis. When the 

underlying mechanism is unknown or when a fundamental understanding of the root causes 

is deficient, the assumption of linearity as a first step may be helpful but not necessarily 

sufficient. Many relationships in child development, behavior, neurology, physiology and 

psychology are most likely nonlinear in nature and thus require appropriate analytic 

techniques. Additionally, nonlinear modelling can be an efficient way to explore complex 

phenomena when the specific relationships are initially opaque.

Among the wide variety of existing nonlinear modeling methods, smoothing spline 

modeling is well positioned as a tool for effectively capturing nonlinearity. At one end of the 

spectrum of methods, the analyst explicitly expresses the functional form with a fully 

parameterized model such as polynomials or logarithmic transformations. At the other 

extreme lie modern techniques that can arguably be described as “black box” approaches, 

including neural networks and their variations such as deep learning. Smoothing spline 

modeling positions itself somewhere in the middle of this spectrum.

Historically, the methodology of smoothing splines in a form suitable for functional data 

analysis first appeared 30 years ago, with the introduction of generalized additive models as 

an extension to generalized linear models in which the response variable can be linearly 

accounted for through unknown smooth functions of explanatory variables (Hastie and 

Tibshirani (1990)). It has been widely adopted in fields such as ecology, geology, 

meteorology and human health. Its applications in neuroimaging are gradually growing 

(Pomponio et al. (2020); Sørensena et al. (2020)). The relatively easy adoption lies in the 

fact that once the number and type of basis functions are set, the model becomes linear in 

terms of the basis set, and the fitting proceeds as for conventional linear systems. Under 

flexible and relaxed assumptions regarding the actual relationship between the response and 

explanatory variables, smoothing spline modeling achieves improved fitting compared to 

conventional linear models, and strikes a balance between the goodness of fit, complexity 

and interpretability. A smoothing spline model is simply a GLM in which the explanatory 

variable partly depends linearly on some unknown smooth functions with the unknown 

nonlinearity transformed into a GLM through a set of smoothing splines. In parallel, an MSS 

model can be transformed into a BML or LME formulation, as elaborated in the Methods 

section. In fact, piece-wise splines have been adopted to more accurately capture the 

hemodynamic response (HDR) shape variations; instead of a presumed HDR shape, tent 

basis functions or cubic splines can be utilized at the individual subject level (Chen et al. 

(2015)) to achieve a higher modeling efficiency.

The characterization of nonlinearity through smooth splines hinges on the conventional 

concept of partial pooling. Without any prior knowledge regarding the specifics of the 

relationship, the only two prerequisites that play a significant role are the degree of 

smoothness and the prior distribution for the spline weights. The adoption of continuity up 

to second derivatives is partly for mathematical and pragmatical convenience (e.g., each knot 
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is associated with a basis) and partly for satisfactory appearance (e.g., not too little or too 

much smoothing). The prior distribution for the basis coefficients amounts to applying a 

penalty against curve roughness to achieve a counterbalance in terms of the integrated 

square second derivatives. To put things in a different perspective, we resist the temptation to 

fit too close to the current data; rather, we hold a reasonable predictive accuracy as a 

desirable property when the fitted model is applied for interpolation and extrapolation. In the 

end, an overall compromise of the smoothness is reached through “borrowing strength” 

among the basis weights, a process to some extent comparable to the classical OLS in GLM, 

L2 regularization in ridge regression, and the calibration strategy in LME and BML.

4.2. Neuroimaging population-level analysis through MSS

Here, we present a multifaceted modeling platform that can be exchangeably formulated as 

Bayesian multilevel (BML) model, linear mixed-effects (LME) model, or ridge regression. 

This exchangeability among the three formulations allows us some conceptual convenience 

and flexibility in numerical algorithms as well as in statistical inferences. For example, 

fitting a smooth curve can be conceptualized as a regularization process among the basis 

coefficients under BML and LME; in contrast, smoothing spline modeling is analogous to a 

kind of “weighted” ridge regression in which the basis coefficients serve as penalty weights. 

The counterbalance between model complexity and data interpretability is accomplished 

through a calibration process of partial pooling with the roughness of the fitting curve 

penalized in a quadratic fashion. Just as in typical BML and LME frameworks, all the 

subjects under MSS are not required to have observations at the same x values (e.g., subjects 

scanned at different ages), and missing data are allowed as long as they are considered 

missing at random. Below we discuss four practical aspects of data analysis using smoothing 

splines.

1) Choosing different types of smoothing splines—The basis set of thin plate 

splines is recommended unless the computational costs become unmanageable. Many basis 

types have been proposed over the years, but most of them either achieve roughly similar 

performance or are designed for niche usage (e.g., cyclic splines for periodicity). The two 

basis types discussed here are largely sufficient for most scenarios in neuroimaging: thin 

plate and cardinal cubic splines. The former has an intuitive aspect in the sense that its first 

two bases correspond to baseline and linear trend (black and red lines in Fig. 2b), offering 

the convenient flexibility to assess linearity versus nonlinearity as illustrated in the 

formulation (14) and in the second model adopted for our experiment dataset. On the other 

hand, the knot-based approach through cardinal cubic splines has a more direct 

interpretation with each basis coefficient corresponding to the estimated response 

magnitude. Practically, the thin plate spline basis is usually preferable by virtue of its slight 

edge in numerical performance (e.g., root-mean-square error) over other basis options 

including cardinal cubic splines. An approximate approach of thin plate splines starts with as 

many basis functions as the number of observations. To avoid wasteful computations and 

memory overhead, a reduction process of eigen-decomposition is adopted with a 

predetermined number of basis functions, K, and the first K components in the decomposed 

space are generated to retain most of the information through a low-rank basis set. This 

approximate basis set preserves much of the optimality of the conventional thin plate basis, 
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but at considerably higher computational efficiency for large datasets. Another unique 

feature of thin plate splines is its baseline and linear components (solid black and dashed red 

lines in Fig. 2b). With the flexibility of the inclusion/exclusion of these two components, one 

can accommodate various inferential scenarios elaborated here including the model (14) that 

separates linearity from nonlinearity.

In some circumstances, cardinal cubic splines can be advantageous in terms of computation 

cost compared to its thin plate counterpart. Due to the massively univariate nature of typical 

neuroimaging analysis, the same model formulation is applied across the spatial units (voxel, 

region or surface node) repeatedly. Thus, the overhead setup time with thin plate splines 

through eigen-decomposition can be substantial with a large number of spatial units (e.g. 

voxel size of 1 mm3), a complex model or many subjects. In comparison, there is little 

model specification process associated with cardinal cubic basis functions because their 

knot-based expressions are explicitly available. While the results of the two types are 

virtually identical most of the time, the low setup cost of cardinal cubic splines may 

substantially cut the overall computational times.

2) Determining the number of basis functions, K—The choice for the number of 

basis functions K is not as crucial and arbitrary as it appears to be. First of all, some 

minimum number of observations is required (e.g., at least 4 values per quantitative 

predictor among all subjects) to fit a meaningful curve; otherwise, under- or over-smoothed 

fitting may occur. With adequate amount of data, small K leads to underfitting while large K 
may result in unnecessary computational cost. Therefore, a basic principle is that K should 

be sufficiently large (thereby avoiding bias from an over-simplified model) but small enough 

to retain computational affordability. In doing so, the specific K value would not be too 

critical with the following practical strategy. With more than 10 observations, K = 10 is 

likely a suitable choice for most situations to avoid incurring unwanted high computational 

burden unless the relationship is expected to have many twists and turns. On the other hand, 

with less than 10 observations, choose K to be close or equal to the number of observations.

3) Tracking and comparing trajectories—Neuroimaging data analysis at the 

population level faces multiple challenges in modeling. First, the overwhelming amount of 

data is resource demanding on computational power. In addition, population-level 

neuroimaging analysis usually involves two or more cross-sectional dimensions. One 

hierarchical dimension is the cross-subject variability while another one is experimental 

manipulation variables such as groups (e.g., patients and controls) and tasks (e.g., positive, 

negative and neutral). With MSS modeling, yet another dimension is to handle the 

smoothness leveraging across basis functions. As a result, the analyst is not only motivated 

to track the trajectory under one particular condition for each group, but more likely 

interested in comparing trajectories across conditions or groups and exploring their potential 

interactions.

4) Centering of a quantitative variable—Centering for a quantitative variable can be 

crucial for the interpretation of some effects. A predictor is frequently categorized in 

practice into one of two varieties: either of interest or of no interest, with the latter typically 

labeled as a “covariate” in neuroimaging.3 For instance, whether and how such a covariate is 
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centered is usually not revealed in the literature. As a practical issue, centering is trivial to 

apply and usually not discussed or emphasized in textbooks. In addition, any potential 

interactions of a variable with other explanatory variables in the model are likely not 

considered nor discussed in the literature. Nevertheless, centering can be important in proper 

interpretation and numerical stability, and in typical practice it may not be as straightforward 

to determine whether and when centering should be performed within (or across) groups (or 

conditions). On the one hand, centering would not matter when the slope or the marginal 

effect of the quantitative variable is of interest. On the other hand, without centering, for 

example, the difference between two sexes would be interpreted when the quantitative 

variable (e.g. body weight) is adjusted to 0, which might not be necessarily meaningful. 

Furthermore, if the two groups intrinsically differ on average regarding the quantitative 

variable, centering becomes subtle or even pivotal as an effect of the group difference would 

be associated at zero, overall or group mean of the quantitative variable depending on how it 

is centered. For example, for the trajectory of a quantitative predictor, centering is not 

necessary in 3dMSS. On the other hand, when effects such as intercept (e.g., β0 in 

formulations (13) and (14)) and factor effects (e.g., βpq in the model (20)) are of interest, 

one should consider centering for a quantitative predictor before providing the variable 

values as input for 3dMSS.

4.3. Model formulation options

We believe that the MSS framework can work in parallel with traditional population-level 

analyses. Instead of a linearity assumption for a quantitative variable, a smooth function can 

be easily inserted into the conventional model structure. Through the introduction of 

smoothing splines for nonlinear modeling, we sketch out the modeling formulations for four 

analytical scenarios as routinely practiced in neuroimaging. First, one may pivot on either 

tracing the trajectory of the quantitative variable or treating it as a confound. In addition, 

given sufficient data, different levels of model complexity can be explored by considering 

cases of varying intercept, varying intercept and slope, as well as varying nonlinearity. 

Furthermore, through the same contrast coding schemes as traditionally employed for 

factors, we build up the model platforms that assist the analyst in comparing the smooth 

trajectories across conditions and groups as well as in investigating interaction effects. 

Lastly, it is possible to separate the linear effects from nonlinear and to make respective 

inferences through, for example, the model formulation (14).

It is worth noting that a quantitative predictor in MSS modeling can be either within- or 

between-subject in nature. Without doubt, a within-subject design is usually preferable by 

virtue of the statistical efficiency and robustness. Using age as an example, we emphasize 

that a within-subject experiment with data collected across various ages from each subject 

3The word covariate generally may have three different meanings in common usage. It is sometimes used to simply denote a predictor 
that coexists with other predictors in the same model. In the second popular usage, a covariate is a quantitative predictor in the context 
of general linear model, while the third case is to mean a predictor that is of no interest to the investigator. Likely due to software 
design, the word covariate is typically employed in neuroimaging to mean a predictor, regardless of its nature (categorical or 
quantitative), that is of no interest to the investigator (e.g., age, sex, scanner, handedness, reaction time and intracranial volume). An 
implicit assumption in the widespread practice is that the effect of the predictor regardless of its strength, can be put behind the scenes 
as long as it is included in the model somehow. In some cases, the vague description and sometimes loose usage of the word covariate 
seem to serve as a protective umbrella so that the authors are immune to any request for the full revelation of modeling and result 
details.
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(e.g., in a longitudinal study) would provide more accurate and efficient assessment about 

the age trajectory due to a lower within-subject variation than a cross-subject design. On the 

other hand, a within-subject design is not always pragmatic due to constraints in resources 

and time. Nevertheless, this does not imply that one could not model and trace the age 

trajectory in a between-subject study. In fact, with enough number of subjects, an MSS 

model with the data collected from a cross-sectional study would still allow the investigator 

to explore and trace the age trend provided that the quantitative variable spans a reasonably 

wide range, and can be applied to big datasets such as Human Connectome Project (HCP), 

the Alzheimer’s disease neuroimaging initiative (ADNI), the International Neuroimaging 

Data-sharing Initiative (FCP/INDI) and the UK Biobank. The modeling limitations with this 

kind of data are reflected in the inability to capture or account for within-subject variability 

in terms of varying intercepts, slopes or smooth curves across subjects, as shown in the 

model formulations (15), (16) and (17).

All modeling formulations elaborated here are directly available at the whole-brain voxel 

level via the program 3dMSS. Through an experimental dataset, we demonstrated the 

scripting interface (Appendix B) and usability of 3dMSS. To avoid potential bias introduced 

into the literature by selective reporting and to improve reproducibility, it is important to 

report full results and to focus on effect magnitude and its uncertainty, as illustrated in our 

demonstration of gray matter volume development trajectory results (Figs. 3 and 4). 

Modeling at the voxel level through 3dMSS shares the same multiplicity issue as the typical 

mass univariate methodology in neuroimaging; therefore, one should take appropriate 

measure to adjust the voxel-level statistical evidence when making statistical inferences.

4.4. Advantages and limitations of MSS modeling

Model fit verification is important but largely absent in most neuroimaging analyses. In fact, 

it is almost an impossible undertaking in neuroimaging to visualize and verify a linear or 

polynomial fit due to the large amount of data and the same formulation imposed across the 

brain. For instance, the massively univariate approach cannot accommodate a situation 

where a quadratic fit may suit one region while a cubic or quartic function could be a better 

choice for another region. Besides modeling challenges, a practical hurdle is that, whether or 

not a research variable is of interest, the goodness of the linear fit is rarely examined or 

verified in neuroimaging. Essentially, the willingness to visualize, select and improve a 

model is hampered by the overwhelming amount of data and the inflexibility of the 

massively univariate approach.

Alternative and more flexible approaches exist, but they either focus on different aspects or 

are usually more computationally costly. For example, K-nearest neighbor regression 

maintains a counterbalance between bias and variance, but does not enforce any smoothness 

of the fitting relationship. On the other hand, smoothing spline modeling can be considered 

as a special case of functional data analysis (Wang et al. (2016)) under which each sample 

element is considered to be a function. Another more adaptive framework is Gaussian 

process regression that assigns a probability distribution over an infinite number of possible 

functions and the mean function can be considered as the maximum a posteriori estimation. 

In fact, a smoothing spline model is equivalent to a special case of Gaussian process 
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regression with a proper covariance function through kriging (Kimeldorf and Wahba, 1970; 

Bay et al. (2016)). However, these more generic methods typically pay a prohibitive 

computational cost with, for example, Gaussian process regression scaled as O n3

(Rasmussen and Williams (2006)), rendering them largely impractical especially when 

applied to neuroimaging data.

To summarize, smoothing spline modeling provides an elegant and compact analytical 

framework under which nonlinearity can be captured with minimal assumptions about the 

functional form that might best represent the underlying data. As long as the underlying 

relationship is more likely to be smooth rather than wiggly, the process of uncovering 

nonlinear effects through MSS becomes automatic and robust. In addition, much of the 

conventional model selection is now subsumed under the fitting formulation: the estimation 

of the basis coefficients is adaptively positioned on the basis of model simplicity, 

predictability and data fitness. Such adaptivity is especially important and appealing in 

neuroimaging, and can substantially alleviate issues of mis-fitting resulting from the 

inflexibility of conventional polynomial modeling when utilized in a massively univariate 

fashion. Aside from revealing potentially complex and interacting nonlinearity, the modeling 

framework also provides mechanisms for controlling, understanding and making inferences 

about those relationships. Sitting between model-driven and data-driven approaches, the 

methodology may serve as an exploratory tool before a bolder theory is proposed. The 

derived relationship is likely more robust and reliable than the alternatives determined via an 

assumption of linearity. The computational cost of MSS modeling for neuroimaging data is 

usually scalable and comparable to LME.

A few limitations of smoothing spline modeling are worth noting. With the linearity 

constraints (or zero curvature) levied upon the two end points of the observed data, the 

cardinal cubic splines approach may pay a price in poor predictability near the boundaries, 

especially when little information exists at the extremes of the range and beyond. 

Furthermore, the revealed relationship from the model does not necessarily provide insight 

into the relevant underlying physical/biological mechanism, nor can the model meaningfully 

make predictions beyond the range of the observed data. Lastly, if the sampled intervals of 

the quantitative explanatory variable are too large relative to the frequencies of the 

underlying mechanism, smoothing splines will likely result in over-smoothing or under-

fitting; in this case, one cannot expect to estimate more than what the data could offer unless 

prior information or further constraints are available. For example, when the data are sparse 

or unevenly distributed within the modeled interval, the fitted trajectories, linear or 

nonlinear, might be excessively smooth; one should be more cautious toward the fitted 

trajectory and avoid solely relying on the statistical evidence.

5. Conclusions

Smoothing spline-based modeling extends conventional linearity-based modeling 

frameworks using quantitative predictors. Under the assumption that the underlying 

relationship is likely to be smooth rather than rough, nonlinear effects can be effectively 

uncovered. The flexibility of MSS modeling may help uncover hidden patterns in the data 

without knowing a priori the specifics of an underlying functional relationship. The 
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approach avoids the pitfalls of higher order polynomial fitting and can achieve a higher 

predictive accuracy. We hope that the MSS framework, with the associated program 3dMSS, 

will contribute to improvements in neuroimaging data analysis.
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Appendix A.: Matrices B and C in (7) for smoothness regularization

B(K − 2) × (K − 2)

=

1
3 Δξ1 + Δξ2

1
6Δξ2 0 0 ⋯ 0

1
6Δξ2

1
3 Δξ2 + Δξ3

1
6Δξ3 0 ⋯ 0

⋮ ⋮ ⋯ ⋮ ⋮ ⋮

0 0 ⋯ 0 1
6ΔξK − 2
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,
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=
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⋮ ⋮ ⋯ ⋮ ⋮ ⋮

0 0 ⋯ 1
ΔξK − 2

− 1
ΔξK − 2

− 1
ΔξK − 1

1
ΔξK − 1

.

Appendix B.: Script and tables for running 3dMSS

The experimental dataset employed in the study contained two conditions of MRI brain 

volumes for each of the 125 subjects: one original and the other flipped. We intended to 

trace the age trajectories of gray matter volume from 7 to 20 years old and to assess the 

asymmetry by comparing the two conditions. The first MSS model compared the overall age 

trends and was specified with the AFNI program 3dMSS as below:

3dMSS -prefix output

       -jobs 16

       -mrr ‘s(age)+s(age,by=condition)+s(subject,bs=“re”)’
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       -vt subject ‘s(subject)’

       -qVars ‘age,condition’

       -prediction @prediction.txt

       -dataTable @data.table

The output filename and number of CPUs for parallelization are specified through -prefix 

and -jobs, respectively. The expression s() in the formulation under model specification -mrr 

represents the smooth function, and the three terms s(age), s(age,by=condition) and 

s(subject,bs=“re”) code the overall age trajectory, the difference between the original and 

flipped conditions, and the cross-subject variability in intercept. The option bs=“re” 

indicates the random-effects variable (e.g., subject in this case). The number of thin plate 

spline bases was set to the default K = 10. The option -vt reveals the varying term (or 

random effects) in the model specification while -qVars identifies quantitative variables (age 

in this case plus dummy-coded condition). The last two specifiers -prediction and -dataTable 

list a table for prediction and input data information, respectively. A prediction table stored 

in the text file prediction.txt is of the following format:

 label    age    condition

 age1     7         −1

 age1     7          1

 age2     7.5       −1

 age2     7.5        1

 age3     8         −1

while the input data table has a structure as below:

...

 subject   age   condition   InputFile

 subject1   7       −1      s1.t1.c1.nii

 subject1   7        1      s1.t1.c2.nii

 subject1   9       −1      s1.t2.c1.nii

 subject1   9        1      s1.t2.c2.nii

 subject1   12      −1      s1.t3.c1.nii

 subject1   12       1      s1.t3.c2.nii

...

The second MSS model was constructed to capture and compare the nonlinear trajectories 

between the two conditions. The only difference from the first model was to replace the 

model specification by

-mrr ‘condition+age+condition:age+s(age,m=c(2,0))+s(age,by=condition, 

m=c(2,0))+s(subject, bs=“re”)’
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The linear effects were expressed in the terms age and condition:age while their nonlinear 

counterparts were modeled through s(age,m=c(2,0)) and s(age,by=condition,m=c(2,0)). The 

option m=c(2,0) specifies a second order spline basis with 0th order penalty (ridge 

regression).
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Fig. 1. 
Comparisons of data fitting among three polynomial models and a smoothing spline 

approach. Linear fitting (black line) between BOLD response and age in a region, as 

typically adopted in neuroimaging analysis, sometimes may render a roughly acceptable 

performance with a general sign (positive or negative) for the association between x and y 
such as (a) here, but other times it could fail badly as shown in (b). Quadratic fitting (green) 

performs better, and the cubic model (orange) is a further improvement. Furthermore, the 

curve estimated through smoothing splines (blue) provides the best fit without any prior 

knowledge of parameters such as the order of polynomials. More crucially, smoothing spline 

modeling is largely self-adaptive without the daunting undertaking of order selection in 

polynomial fitting.
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Fig. 2. 
Basis functions b0(x), b1(x), …, bK−1(x) with K = 6. Two spline types are discussed here: 

cardinal cubic splines (a, c) and thin plate splines (b, d). Cubic splines are knot-based; with 6 

knots at 0, 0.2, 0.4, 0.6, 0.8, and 1.0 within [0, 1], there are 6 cardinal basis functions (a). 

Each cardinal basis function (e.g., b4(x) in blue) peaks at the associated knot (x = 0.6) with a 

value of 1, and takes the value 0 at all other knots. Therefore, the fitted value at a knot 

corresponds to the weight for the associated basis function. In contrast, as shown in (b, d), 

each of the thin plate basis functions within [0, 1] is not knot-specific. As the baseline 

(intercept) is usually modeled separately in real practice, we only utilize K − 1 basis 

functions to maintain model identifiability (c, d).
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Fig. 3. 
Statistical evidence of asymmetry in age trends of cortical gray matter volume (GMV) 

shown at voxelwise p < .05 (top) and three selected regions (highlighted in cyan) filtered at 

voxelwise p < 10−5 (below), based on smoothing spline modeling of trends with age. 

Trajectories are averaged across voxels within the three selected regions, and their 

uncertainty bands extend one standard error above and below the trajectories. Adjusted R2 

values (Radj
2 ) indicating goodness-of-fit were higher for the smoothing spline model than for 

a linear model (ranges for voxels within regions are shown below). (a) Heschl’s gyrus, 

demonstrating left-lateralized asymmetry with trajectories for left and right hemispheres that 

have roughly similar shape across the age range 7–20 (Radj
2  in (0.786, 0.997) for MSS vs. 

(−0.020, 0.353) for linearity); (b) Inferior temporal gyrus, also showing left-lateralized 

asymmetry, but with trajectories that reveal decreasing asymmetry over the same age range 

(Radj
2  in (0.978, 0.998) for MSS vs. (0.065, 0.116) for linearity); (c) Anterior insula, where 

trajectories of right and left hemispheres can be seen to “cross over” (Radj
2  in (0.951, 0.983) 

for MSS vs. (−0.049, −0.022) for linearity).
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Fig. 4. 
Statistical evidence of regions for which asymmetries were captured by a nonlinear 

trajectory (top, voxelwise threshold of p < 0.05) of cortical gray matter volume (GMV) and 

three selected regions (highlighted in cyan) (below, voxelwise p < 0.005). These regions 

were a subset of the general asymmetries shown in Fig. 3. The nonlinear trends are averaged 

within the three selected regions, and their uncertainty bands extend one standard error 

above and below the trajectories. (a) shows a right-lateralized region within the intraparietal 

sulcus where both hemispheres exhibit an increased rate of gray matter reduction in the 10–

15 year range (Radj
2  in (0.993, 0.996) for MSS vs. (0.001, 0.044) for linearity). (b) and (c) 

illustrate similarly right-lateralized regions within the temporo-parietal junction (Radj
2  in 

(0.993, 0.998) for MSS vs. (−0.086, 0.018) for linearity) and frontal pole (Radj
2  in (0.984, 

0.991) for MSS vs. (0.051, 0.102) for linearity), respectively, with an increased rate of 

reduction over a similar age range.
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