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Bladder cancer (BC) is one of the world’s most frequent cancers. Surgery

coupled with adjuvant platinum-based chemotherapy is the current standard

of therapy for BC. However, a high proportion of patients progressed to

chemotherapy-resistant or even neoplasm recurrence. Hence, identifying

novel treatment targets is critical for clinical treatment. Current studies

indicated that the Hippo-YAP pathway plays a crucial in regulating the

survival of cancer stem cells (CSCs), which is related to the progression and

reoccurrence of a variety of cancers. In this review, we summarize the evidence

that Hippo-YAP mediates the occurrence, progression and chemotherapy

resistance in BC, as well as the role of the Hippo-YAP pathway in regulating

bladder cancer stem-like cells (BCSCs). Finally, the clinical potential of Hippo-

YAP in the treatment of BC was prospected.
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Introduction

Worldwide, BC is the 11th most common malignancy, with more than 570,000 new

cases and 210,000 deaths in 2020 (1), and the incidence is increasing (2). BC is divided

into nonmuscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer

(MIBC). NMBIC is less malignant, and the routine treatment is based on TURBT

(transurethral resection of bladder tumor) combined with bladder perfusion

chemotherapy or immunotherapy (3). MIBC is more aggressive, and the classical

treatment is radical cystectomy combined with platinum-based chemotherapeutic (4).

The preferred treatment for metastatic MIBC is platinum-based chemotherapy. In

cisplatin-ineligible patients, immunotherapy is preferred for PD-L1-positive patients,
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and carboplatin is chosen as an alternative therapy for PD-L1-

negative patients (4, 5). Unfortunately, even with the

tremendous efforts of current research on BC, the mortality

rate of BC patients is still high (1). The most important factor

affecting the prognosis of BC patients is that a large proportion

of patients relapse after the first treatment for BC and are

resistant to existing treatment regimens (6), with no effective

therapeutic target to date (7, 8). Therefore, it is necessary to

further investigate the mechanisms of BC pathogenesis,

recurrence and drug resistance, and to screen effective targeted

drugs for the treatment of advanced metastatic BC.

The Hippo-YAP signaling pathway plays a key role in stem

cells and cancer cells (9, 10). The Hippo pathway, first identified

in Drosophila melanogaster, has a role in regulating organ size

(11) and is conserved in a variety of species, including humans

(12). It is an important regulator of organ development, cell

proliferation, dynamic balance, and regeneration (10, 13).

Extracellular matrix, nutrition, cell density, cell polarity,

mechanical transduction, and G protein-coupled receptors are

all factors that regulate the Hippo-YAP pathway (14–17). The

cytoplasmic kinase cascade and the nuclear transcription

module are the two primary components of the Hippo-YAP

pathway. The Hippo-kinase cascade is mainly composed of

MAP4K, MST1/2, and LATS1/2 (18, 19). The nuclear

transcriptional module of the Hippo pathway is a

transcriptionally active motif with oncogenic effects composed
Frontiers in Oncology 02
of YAP (yes-associate protein), TAZ (transcriptional co-

activators with PDZ binding sequences), and TEAD-1 (TEA

domain family member 1), which are mainly regulated by the

Hippo-kinase cascade (Figure 1). YAP/TAZ has a dominant role

in numerous solid tumors (9, 13, 17, 41, 42), and increasing

significance of elevated YAP/TAZ activity in BC (43).

In this review, we summarized the evidence that YAP would

be a promising therapeutic target, regarding the association of

YAP with BC onset, progression, postoperative recurrence,

chemoresistance, and metastasis. In addition, we emphasized

the role of the Hippo-YAP pathway in regulating BCSCs

(bladder cancer stem-like cells), as well as the hitherto

unanswered question that how the nuclear transcriptional

module of the Hippo pathway is over-activated in BC. At last,

the clinical potential and pharmacology direction of Hippo-YAP

were discussed in this paper.
Aberrant activation of YAP/TAZ
in BC

The role of YAP in BC has received increasing attention, and

many studies have shown that YAP is a clinical marker of BC

progression (44) and a key molecule contributing to

postoperative recurrence and chemotherapy resistance in BC

(45). Levels of YAP correlate positively with pathological grade
FIGURE 1

The Hippo pathway’s upstream serine-threonine kinase cascade regulates YAP/TAZ. MST1/2 and MAP4K families are the main kinases of the
Hippo- kinases cascade. When they are phosphorylated, which subsequently inhibits the transcriptional activity of YAP (20) and TAZ (21) through
phosphorylating LAST1/2 (22–25). On the contrary, when the Hippo-kinase cascade is “inactive”, it leads to YAP dephosphorylation, which
translocates to the nucleus and binds to TEAD1–TEAD4, following with the transcription of downstream genes (26–28). Such as multiple anti-
apoptotic and proliferative genes, including CTGF (connective tissue growth factor) and CYR61 (cysteine-rich angiogenic factor) (26–28). Other
molecules regulating YAP/TAZ phosphorylation have also been reported in the literature, such as NDR1/2 (Nuclear Dbf2-related 1/2) (29), SRC
(30–33), NLK (Nemo-like kinase) (34, 35), AMPK (5’adenosine monophosphate-activated protein kinase) (36–38), and JNK (c-Jun N-terminal
kinase) (39) have all been found to directly phosphorylate and hence control YAP/TAZ. Finally, YAP/TAZ is regulated in a kinase-independent
manner (18, 19, 40).
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of BC (46), and enhanced YAP activity has been shown in the

majority of solid tumors (42), including lung, liver, sarcoma,

pancreas, and breast (9, 10, 41).

Recent studies have reported that YAP is highly expressed in

BC tissues and that knockdown of the YAP gene impaired the

proliferation and migratory capacity of BC cells (47). High YAP

expression correlates with poor prognosis in patients with BC

(48). It is not clear how YAP becomes overactivated and forces

BC initiation and progress, but several possible mechanisms

have recently been identified (Figure 2 and Table 1).
Mutant GNA13 gene activates YAP/TAZ

Heterotrimeric G-proteins are important signal transduction

molecules triggered by a large class of GPCRs (G-protein-

coupled receptors) (56). Dysregulation of the GPCRs-G-

protein pathway in cancer has been reported to be very

common (57–59). G-protein family mutations were related to

several malignancies, such as GNAQ or GNA11 (Gq/11 family)

mutations are found in 90% of uveal melanomas (60, 61), 70% of

pancreatic ductal carcinomas present GNAS (Gs family)

mutations (62, 63), and 24% of epithelial T-cell lymphomas

(64) GNAI2 (Gi/o family)mutation. In vitro, tumorigenic

experiments found that the Gi/o family, Gq/11 family, and G12/

13 (GNA12 and GNA13) family mutation can promote

oncogenic transformation (65–70).

Recent research based on bioinformatics analysis has shown

that GNA13 mutation may be an oncogene in BC (59, 71, 72)

and that the mutated GNA13 gene produces oncogenic effects by
Frontiers in Oncology 03
activating YAP/TAZ (51). This was confirmed by research by

Dr. Maziarz, who showed that the Arg-200 mutation of GNA13

in BC can significantly increase YAP/TAZ transcriptional

activity by upregulating the RhoGEF-Rho GTPase cascade in

TCGA database and cellular experiments (51)(Figure 3A). In

vitro, tumorigenic experiments showed that the GNA13Arg-200

mutant induced cancerization of cells (control group of

unmutated cell lines) (51). Dr. Maziarz’s findings back up the

theory that GNA13 hotspot mutations are a potential cause of

BC, and that pharmacological inhibition of the Hippo-YAP

pathway might be a feasible treatment option (51). This

conclusion should be taken with a grain of salt because Dr.

Maziarz’s experiment lacks clinical validation in multiple data

centers and in vivo tumorigenic assays.
NUAK2-LAST-YAP/TAZ positive feedback
regulation loop

NUAK2 is a member of the AMPK kinase family, which has

been extensively examined for its regulation of the Hippo-YAP

pathway by regulating the Hippo kinase cassette (36–38, 73–76).

Recent studies have shown that NUAK2 activity is significantly

associated with aggressive, high-grade BC. Separate extracts of

tumor cells from patients with high-grade and low-grade BC

were tested and showed that NUAK2 expression in tumor cells

was significantly higher in high-grade patients than in low-grade

patients. Knockdown of NUAK2 gene in various cancer cell lines

such as BC cell lines (TCCSUP, T24), colon cancer cell lines

(SW480) and breast cancer cell lines (MDA-MB231 and MDA-
FIGURE 2

The mechanism of aberrant activation of YAP/TAZ.
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TABLE 1 Functions of genes associated with the Hippo-YAP pathway.

Gene Function of Hippo-YAP Function of BC Refere-nce

ALDH1 Activated YAP/TAZ Progression and chemotherapy resistance (49)

CDC42 Activated YAP/TAZ Progression and recurrence (45)

FAK Activated YAP/TAZ Progression and recurrence (45)

FOXM1 Activated YAP/TAZ Progression and chemotherapy resistance (50)

GNA13 Activated YAP/TAZ Progression (51)

ITGB1 Activated YAP/TAZ Progression and recurrence (45)

LATS1/2 Inactivated YAP/TAZ Inhibition (18, 19)

MINDY1 Activated YAP/TAZ Progression (52)

MST1/2 Inactivated YAP/TAZ Inhibition (18, 19)

miRNA-217 Activated YAP/TAZ Progression (53)

NUAK2 Inactivated LATS1/2 Progression (46)

NRF2 Activated YAP/TAZ Progression and chemotherapy resistance (50)

RhoA/B/C Activated YAP/TAZ Progression (51)

RASSF1 Inactivated MAST1/2 Progression (54)

PDGFB Activated YAP/TAZ Progression and chemotherapy resistance (55)

PP1A Activated YAP/TAZ Progression and recurrence (45)
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MB468) significantly inhibited the transcriptional activity of

YAP/TAZ and the proliferation ability of cancer cells (46).

Further experiments revealed that the expression of NUAK2

was positively related to YAP/TAZ activity and negatively

correlated with LAST activity. The regulatory effect of NUAK2

on YAP/TAZ was significantly diminished when LAST was

knocked down, and the knockdown of YAP/TAZ decreased

the expression of NUAK2. The Above research suggests the

existence of a NUAK2-LAST-YAP/TAZ positive feedback

regulatory loop in BCs with high activity of NUAK2

(46) (Figure 2).
The ubiquitin-protease system regulates
the Hippo-YAP

The ubiquitin proteasomes system (UPS) is a protein

degradation pathway that exists in all eukaryotic cells. UPS is

the most important regulated protein degradation system, which

participates in the cell cycle process, cell survival, apoptosis,

DNA repair, and antigen presentation (77). The imbalance of

UPS can lead to increased or reduced degradation of key

proteins that promote tumorigenesis (78). Recently, it has been

reported that several ubiquitin-protein ligases (E3) in UPS, such

as PRAJA1, ITCH, SIAH2, FBXW7, and WWP1, play an

important role in regulating the expression of YAP. These

enzymes can regulate the stability of YAP protein in cancer

cells through ubiquitin and proteasome degradation (79, 80).

The protein level of LATS kinase is controlled by E3 ubiquitin
Frontiers in Oncology 04
ligase-mediated degradation. In addition, LATS has a unique E3

chain, and MST1 also has its unique E3 ligase C-terminal

recognition (81). The de-ubiquitin enzyme (DUB) is an

enzyme with the opposite function of E3, such as MINDY1,

which can increase its stability by removing the K48-linked

ubiquitin chain from YAP. When it is exhausted, it can reduce

the level of YAP protein and inhibit the YAP-TEAD-1

transcriptional activity, weakening the proliferation and

invasiveness of cancer cells (52) (Figure 3B).
ECM stiffness activates YAP

More and more studies have found that the extracellular

matrix (ECM) determines the fate and behavior of cancer cells,

including differentiation, proliferation, apoptosis, and migration

(82). In addition to perlecan, fibrillary collagen, and laminin in

ECM, overexpression of agrin leads to increased density of ECM

and ECM stiffness (83), leading to abnormal signals activating

integrin (mechanosensory receptor) and related pathways (83).

It is reported that collagen stiffness in ECM promotes NMIBC to

MIBC, which may also be one of the causes of postoperative BC

recurrence (84). However, the function and role of the proteins

in ECM and the related signal transduction pathways are still

opaque. Fortunately, according to the latest research, it has been

found that the integrin-FAK-CDC42-PP1A (45)signaling

pathway leads to ECM stiffness to promote the progression

and recurrence of BC (Figure 3C). In addition to the high

expression of b1-integrin (encoded by ITGB1), FAK, and
frontiersin.org
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CDC42, high ECM stiffness is also associated with increased

nuclear localization of YAP (45). Molecular docking data

showed that integrin binds to FAK through hydrogen bonding

(45). FAK activates CDC42-PP1A kinase and dephosphorylates

YAP (85), thus increasing the nuclear localization of YAP (45).
Other pathways related to YAP activation

RASSF1 is a tumor suppressor (86). Its inactivation leads to

the occurrence and development of many kinds of tumors

including BC (87, 88). Low expression of RASSF1 in BC is

strongly associated with high expression of YAP, CTGF, and

CYR61, in addition to high-risk BC (54). Further studies have

found that decreased expression of RASSF1 in BC inactivated

MST1/2, which leads to increased activity of the YAP-TEAD-1

and promotes the occurrence and development of BC

(54)(Figure 2).

The role of exosomes as novel biological markers in

tumorigenesis, progression, diagnosis, and treatment is being

increasingly emphasized (89–91). The miRNA-217 is secreted

through exosomes by BC mesenchymal cells (53), and miRNA-

217 expression is significantly higher in BC cell lines than in

normal human bladder cell lines (53). The miRNA-217 affects

BC proliferation, migration, and apoptosis by regulating the
Frontiers in Oncology 05
transcription factor YAP and its target proteins CTGF, CYR61,

and ANKRD1 (53) (Figure 2).
Role of HIPPO-YAP pathway in
BCSCS

Role of BCSCs in BC

BCSCs are a subgroup of BC cells, which have stem-like

properties such as high proliferation, self-renewal, and drug

resistance (92). Progression, chemotherapy resistance, and

heterogeneity of BC are significantly related to cancer stem-

like cells (CSCs) (93–95). At present, the markers commonly

used to identify BCSCs are CD44, CD133, ALDH1, OV6, BMI1,

and ABCG2 (49, 55, 96, 97). Although, the specific mechanism

of preserving the stem-like qualities of BCSCs remains unclear,

encouragingly, several signaling pathways have recently been

reported to regulate the proliferation, tumorigenesis, and

chemoresistance of BCSCs, including the Hippo-YAP signaling

pathway, Hedgehog signaling pathway, Wnt/b-catenin pathway,

E2F1-EZH2-SUZ12 and KMT1A-GATA3-STAT3 cascade (49,

55, 98–101). A recent single-cell sequencing study showed that

variants of GPRC5A, MLL2, and ARID1A drive the proliferation

of BCSCs (102). The revelation of the molecular mechanism of
FIGURE 3

The mechanism of YAP regulation in bladder cancer. a: Mutation of G12/13 can significantly increase the transcriptional activity of YAP/TAZ by
upregulating the RhoGEF-Rho GTPase cascade. b: MINDTY1 increases its stability and avoids degradation by removing the ubiquitin chain from
YAP. c: ECM stiffness increases the nuclear localization of YAP by activating the integrin-FAK-CDC42-PP1A signaling pathway to
dephosphorylate YAP.
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maintaining BCSCs is a very significant breakthrough in the

therapeutic target of BC (92, 103).
YAP induces and preserves stem-like
qualities of BCSCs

Previous studies have shown that the Hippo-YAP pathway is

essential to maintain the stem-like properties of some CSCs (41),

such as BC, prostate cancer, breast cancer, lung cancer, and

glioblastoma. YAP is a key regulatory protein for CSCs

proliferation and carcinogenesis (55, 104–106). YAP is also of

great significance in BCSCs. The research of Dr. Wang and Dr.

Zhao shows that YAP is necessary for the proliferation and

maintenance of stem-like properties of BCSCs and is related to

its expressing OV6 and ALDH1 (49, 55).

OV6 is a unique marker of CSCs in epithelial malignant

t umor s , s u ch a s BC , hepa to c e l l u l a r c a r c i noma ,

cholangiocarcinoma, and esophageal cancer. CSCs are highly

expressed and are associated with poor prognosis (55, 107–110).

Dr. Wang et al. have found that BC cells in OV6+ have strong

characteristics of tumor stem-like cells, which can significantly

inhibit its proliferation and chemotherapy resistance when YAP

is knocked out. Further experiments showed that YAP

maintained the stem-like properties of BC cells of OV6+ by

activating PDGFB, and the cells lost the characteristics of stem-

like when PDGFB was knocked out. The use of YAP or PDGFR

inhibitors in a mouse model of BC can block the positive

feedback regulatory loop of BCSCs of OV6+, thereby

overcoming the resistance of advanced BC to cisplatin (55).

Dr. Wang’s research demonstrated that there is a positive
Frontiers in Oncology 06
feedback regulatory pathway in BC cells of OV6+. YAP

activates PDGFB gene transcription and translation through

TEAD-1 to produce PDGF-BB (Platelet-derived growth factor

subunit B protein), which in turn prevents YAP from being

phosphorylated by LATS1/2, thereby increasing the nuclear

localization of YAP (55) (Figure 4).

YAP activity was also found in BCSCs cells of ALDH1+.

When YAP was inhibited, the expression of ALDH1 decreased,

it was more sensitive to chemotherapeutic drugs, and the ability

of self-renewal and proliferation decreased significantly (49). In

addition, it was also found that Hippo-YAP and COX2/PGE2

pathways co-acted on the proliferation of BCSCs, and their

inhibitors successfully blocked the progression of BC (111).

Moreover, YAP induces non-CSCs into CSCs (17) and

maintains the characteristics of CSCs by inducing autophagy

(112). These researches suggest that the Hippo-YAP pathway

plays an important role in the proliferation and development of

BCSCs and BC.
The HIPPO-YAP in chemotherapy
resistance and immunotherapy

Mechanisms of chemotherapy resistance
in BC

Drug resistance to chemotherapy and targeted chemotherapy

remains a major obstacle to the treatment of various cancers,

including BC (4, 113). The causes of chemotherapy resistance are

very complex and can be divided into congenital resistance and

secondary resistance according to their essential causes.
FIGURE 4

YAP/TEAD-1/PDGFBB/PDGFR positive feedback regulatory loop in OV6+ BCSCs.
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Congenital resistance refers to mutations in the genome or

epigenetic mutations that have occurred before treatment.

Secondary resistance refers to genomic alterations that occur

after treatment with the appropriate drug (113). Several

prevalent mechanisms of drug resistance have been reported,

such as increased drug efflux, drug target mutations, cell

stemming, apoptotic escape, immune escape, and DNA damage

repair (114–118). Among them, the role of cell stemness and

apoptotic escape in chemotherapy resistance has been

emphasized. The active DNA repair capacity and resistance to

apoptosis that are characteristic of cell stemness are the main

mechanisms of its resistance (119–121). Therefore, further studies

targeting the mechanisms that maintain cell stemness are

important to improve chemotherapeutic efficacy.
The role of Hippo-YAP in chemotherapy
resistance of BC

YAP is reported to be associated with drug resistance, such

as cisplatin (122, 123), survivin and erlotinib inhibitors (124),

anti-tubulin drugs (125), and radiation therapy (126). The

sensitivity of cisplatin was negatively correlated with the

expression of YAP in BC (127). Overexpression of YAP in BC

was significantly correlated to resistance to cisplatin. Knocking

out of the YAP gene not only increased the sensitivity of BC to

cisplatin (50, 127) but also increased the sensitivity to other

DNA damage drugs (50). YAP was recently reported to mediate

chemotherapy resistance by maintaining tumor cell stemness

(49, 55). Although there is a lot of evidence that YAP plays an

important role in chemotherapy resistance of BC, the specific
Frontiers in Oncology 07
mechanism of YAP leading to chemotherapy resistance of BC

is limited.

Fortunately, a recent study showed that YAP crosstalk with

NRF2, thereby enhancing the antioxidant capacity of tumor cells

that mediated BC chemotherapy resistance (50). The escape of

apoptosis mediated by antioxidation is recognized as the

mechanism of drug resistance in BC (50, 113). NRF2 is a

classical regulator of cellular redox response (128, 129). With

further research, it has been found that NRF2 has a specific high

expression in cancer cells, can promote the progression (129)

and metastasis (130) of many kinds of cancer, and make the

human body resistant to chemotherapy and radiotherapy (131,

132). The interaction between NRF2 and YAP was found in BC

cells. Knocking-out of NRF2 not only inhibited the proliferation

and invasion of BC cells but also significantly restrained the

expression of YAP (50). When YAP was blocked, the growth,

invasion, and NRF2 expression of cancer cells were significantly

decreased (50). For example, the chemotherapeutic drug-

resistant cell lines were more responsive to Aila (YAP and

NFR2 inhibitors) (133). Researchers suggested that NFR2 may

interact with YAP through FOXM1 (50). A significant

correlation was found among the expression of NFR2,

FOXM1, YAP, and GSH in chemotherapy-resistant BC cell

lines (50). When NFR2 was knocked out, the expression of

YAP, FOXM1 and GSH decreased synchronously, along with

decreased proliferation ability of the cell line and increased

sensitivity to chemotherapeutic drugs (50). Although the

evidence of direct interaction between NFR2 and FOXM1 is

not sufficient but combined with the experiments of Dr. Gucci

and Professor Eric Ciamporcero, we can speculate that there is a

vague interaction between NFR2 and YAP in BC, which plays a

role in regulating chemotherapy resistance of BC (Figure 5).
FIGURE 5

YAP crosstalk with Nrf2 leads to BC progression and chemotherapy resistance.
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Potential role of Hippo-YAP in
immunotherapy

Immunotherapy has been widely demonstrated to be

effective in BC and is currently a second-line treatment option

for metastatic BC and a first-line treatment option for cisplatin-

ineligible PD-L1+ patients (4, 5). However, the benefit of

immunotherapy for BC patients is limited because of its

complex tumor microenvironment-mediated immune escape

and the low responsiveness of immunotherapy (5). Although

no studies related to the Hippo pathway with immune escape

and immunotherapy in BC. However, YAP was found to

increase tumor immune escape response by increasing PD-L1

expression in other cancers, such as melanoma (134), and

colorectal cancer (135). Interestingly, it was found that in lung

cancer, YAP expression increased anti-tumor immune response

by decreasing PD-L1 expression (136). Based on the available

evidence the Hippo-YAP pathway has a quite complex role in

tumor immunity with tissue heterogeneity. Therefore, revealing

the role of Hippo-YAP in anti-tumor immunity in bladder

cancer may be important for improving the efficacy of

immunotherapy in the future.
Clinical potential of HIPPO-YAP
pathway for BC therapy

The preclinical attempt targeted
YAP-TEAD

The aberrant activation of YAP in BC leads to tumor

recurrence and chemoresistance, which are major clinical

difficulties of BC therapy. Targeting Hippo-YAP possesses the

potential in solving this major obstacle. Since YAP exerts

transcriptional activity primarily by binding to the

transcription factor TEAD-1 (26, 27, 137, 138), inhibition of

this interaction makes it the most direct and effective (138).

Verteporfin (VP) inhibits the interaction of YAP with TEAD-1

by binding YAP (139). In vitro experiments demonstrate that VP

inhibits BC growth and the stem-like properties of BCSCs (140–

142). Although VP is used to treat macular degeneration, its low

metabolic rate and low specificity in vivo make it toxic (143,

144), hindering its future use in cancer therapy. VGLL4

(Vestigial like family member 4) binds TEAD-1 competitively

with YAP through the TDU (Tondu) structural domain, thereby

reducing the transcriptional benefit of YAP (145, 146). Super-

TDU (VGLL4-mimetic peptide) has significant anticancer

effects in a mouse gastric cancer model induced by

Helicobacter pylori (145). It has been reported that a YAP

analog, namely 17-peptide (147, 148), has now been designed

with a super-inhibitory effect on YAP-TEAD-1 and a significant
Frontiers in Oncology 08
inhibition of tumor proliferation in an ovarian cancer animal

model (149). Unfortunately, even though breaking the YAP-

TEAD-1 interaction is the most direct way to target the Hippo-

YAP pathway, there are still no relevant drugs approved for

clinical treatment of BC use.
Activating Hippo kinase cascade would
be a promising attempt

Hippo-kinase cascade, consisting mainly of the MST1/2,

LAST1/2, and MAP4K families, whose activation inhibits the

transcriptional function of YAP/TAZ (150). Thus, activation of

the Hippo-kinase cascade is a viable way to target the Hippo-

YAP pathway for cancer treatment. SHAP (STRN3-derived

Hippo-activating peptide), a potent activator of MST1/2

enzymes, has better inhibitory effects on YAP than drugs such

as VP and super-TDU, in addition to advantages toxicity and

physical properties (151). In a mouse model of gastric cancer,

SHAP exhibited stronger tumor-suppressive effects than drugs

such as VP and super-TDU (151). The RAF (rapidly-accelerated

fibrosarcoma) family was shown to inactivate MST1/2 by a

mechanism acting upstream of the MST1/2 kinase (152).

Therefore, inhibition of RAF leads to activation of MST1/2,

which acts as an anticancer agent. Previously, ISIS-1532

oligonucleotide was found to silence the expression of RAF

(153, 154). Although ISIS-1532 had a good response in lung

cancer (153, 154), however, it performed poorly in phase II

clinical trials in people with colon cancer, prostate cancer, and

ovarian cancer (154–157). Despite the lack of studies on Hippo-

kinase cascade activators in BC, this type of activator holds

remarkably positive promise in the treatment of BC (144).
Conclusion and perspective

Overexpression of YAP was verified, and current studies

indicated that YAP has a more extensive contribution to the

development of BC. YAP plays a key role in BC initiation,

progression, chemoresistance, and induction of BCSCs (44, 45,

47, 55). Interestingly, multiple mechanisms are now found to be

involved in YAP upregulation in BC. Therefore, the

development of inhibitors of YAP is a promising direction.

However, current molecular drugs faced a series of challenges,

including insufficient clinical trials, uncontrolled side effects,

metabolism difficulties, etc. Hence, drug metabolism and

toxicology are urgent in the future development of YAP-

related drugs. New drug design strategies, like antibody-drug

coupling (ADC), should be a promising direction. Moreover,

YAP-based chemicals are hard to compare favorably with

traditional chemotherapy drugs in killing cancer cells frankly.
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However, they would more adjuvant drugs in overcoming the

chemotherapy resistance than a single therapeutic target.

Although the mechanisms of Hippo-kinase cascade

regulation in BC are poorly understood. However, according

to recent findings, targeting the Hippo cascade may be more

effective than interfering with the YAP-TEAD combination. In

animal models of gastric cancer, SHAP was more efficacious

than the conventional direct inhibitors of YAP (151). Therefore,

we believe that activation of the Hippo-kinase cascade is a

promising direction for the treatment of malignancies.

However, developing protein activators is significantly more

challenging than protein inhibitors. Therefore, further

unraveling the mechanism of Hippo-kinase cascade

dysregulation and developing related drugs are important for

improving the clinical prognosis and developing individualized

treatment plans for BC patients in the future.
Review strategy and methods

The review strategy and inclusion criteria as listed below.

The Major review strategy: a total of 41 publications were

retrieved from Pubmed with the search terms Hippo/YAP and

bladder cancer/urothelial carcinoma/transitional cell

carcinomas, including 7 reviews and 34 research articles. The

final selection of 22 articles (19 articles and 3 reviews) was based

on the inclusion criteria (a. Subjects with bladder cancer or

bladder cancer cell lines; b. independent cohort validation with

relevant biomarker studies; c. Complete and appropriate

controlled experiments). The minor review strategy: 1. Hippo/

YAP and CSCs/cancer stem cells/bladder cancer stem cells 178

(58 reviews and 120 papers); 2. Hippo/YAP and chemotherapy

resistance/immunotherapy 82(22 reviews,60 papers); 3. Hippo/

YAP and therapy 481 (151 reviews and 330 papers).
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JL, et al. European Association of urology guidelines on non-muscle-invasive
bladder cancer (Ta, T1, and carcinoma in situ). Eur Urol (2022) 81(1):75–94.
doi: 10.1016/j.eururo.2021.08.010

4. Witjes JA, Bruins HM, Cathomas R, Compérat EM, Cowan NC, Gakis G,
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Glossary

ABCG2 ATP-binding cassette super-family G
Frontiers in Oncology
member 2
ADC antibody-drug coupling
ALDH1 Aldehyde dehydrogenase 1 fami ly ,
member A1
AMPK 5’ AMP-activated protein kinase
ANKRD1 Ankyrin repeat domain-containing protein 1
ARID1A AT-rich interactive domain-containing
protein 1A
BC Bladder cancer
BCSCs bladder cancer stem-like cells
BMI1 Polycomb complex protein BMI-1
CD133 antigen
CD44 CD44 antigen
COX2 prostaglandin-endoperoxide synthase 2
CSCs cancer stem cells
CTGF connective tissue growth factor
CYR61 Cysteine-rich angiogenic inducer 61
DUB de-ubiquitin enzyme
E3 ubiquitin-protein ligases
FBXW7 F-box/WD repeat-containing protein 7
FOXM1 Forkhead box protein M1
GNA11 Guanine nucleotide-binding protein subunit
alpha-11
GNA12 Guanine nucleotide-binding protein subunit
alpha-12
GNA13 Guanine nucleotide-binding protein subunit
alpha-13
GNAI2 Guanine nucleotide-binding protein G(i),
alpha-2 subunit
GNAQ Guanine nucleotide-binding protein G(q)
subunit alpha
GNAS Heterotrimeric G-protein alpha subunit
Gs-a
GPCRs G-protein-coupled receptors
GPRC5A Retinoic acid-induced protein 3
GSH Glutathione
14
ITCH itchy E3 ubiquitin protein ligase
LATS1 Large tumor suppressor kinase 1
LATS2 Large tumor suppressor kinase 2
MAP4K Mitogen-activated protein kinase kinase
kinase kinase
MIBC muscle-invasive bladder cancer
MINDY1 MINDY lysine 48 deubiquitinase 1
MLL2 Histone-lysine N-methyltransferase 2D
MST1 macrophage-stimulating 1
MST2 Serine/threonine-protein kinase 3
NMIBC nonmuscle-invasive bladder cancer
NRF2 Nuclear factor erythroid 2-related factor 2
NUAK2 NUAK family SNF1-like kinase 2
OV6 Ov6 protein
PDGFB Platelet-derived growth factor subunit B
PDGF-BB Platelet-derived growth factor subunit
B protein
PD-L1 Programmed cell death 1 ligand 1
PGE2 Prostaglandin E2
PRAJA1 E3 ubiquitin-protein ligase Praja1
RAF rapidly-accelerated fibrosarcoma
RASSF1 Ras association domain-containing protein 1
Rho GTPase Rho family of GTPases
RhoGEF RhoGEF domain
RhoA Ras homolog family member A
RhoB Ras homolog family member B
RhoC Ras homolog family member C
SHAP STRN3-derived Hippo-activating peptide
SIAH2 siah E3 ubiquitin protein ligase 2
Super-TDU VGLL4-mimetic peptide
TAZ Tafazzin
TEAD-1 TEA domain family member 1
TURBT transurethral resection of bladder tumor
UPS ubiquitin proteasomes system
VGLL4 Vestigial like family member 4
VP Verteporfin
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WWP1 WW domain containing E3 ubiquitin
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protein ligase 1
YAP Yes-associated protein 1
15
17-peptide YAP-like peptide
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