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Sleep is a critical biological process, essential for cognitive well-being. Neuroscientific
literature suggests there are mechanistic relations between sleep disruption and memory
deficits, and that varying concentrations of cortisol may play an important role in mediating
those relations. Patients with Addison’s disease (AD) experience consistent and
predictable periods of sub- and supra-physiological cortisol concentrations due to
lifelong glucocorticoid replacement therapy, and they frequently report disrupted sleep
and impaired memory. These disruptions and impairments may be related to the failure of
replacement regimens to restore a normal circadian rhythm of cortisol secretion. Available
data provides support for existing theoretical frameworks which postulate that in AD and
other neuroendocrine, neurological, or psychiatric disorders, disrupted sleep is an
important biological mechanism that underlies, at least partially, the memory
impairments that patients frequently report experiencing. Given the literature linking
sleep disruption and cognitive impairment in AD, future initiatives should aim to improve
patients’ cognitive performance (and, indeed, their overall quality of life) by prioritizing and
optimizing sleep. This review summarizes the literature on sleep and cognition in AD, and
the role that cortisol concentrations play in the relationship between the two.
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INTRODUCTION

Sleep is a critical biological process, an inevitable and essential aspect of normal human physiology.
Nonetheless, questions about the functions of sleep (e.g., whether it is necessary for more than
simple physical and mental restoration) remained unanswered until relatively recently. Available
neuroscience literature provides some of the sought-after answers, suggesting that healthy,
uninterrupted sleep is vital to ensuring that, for instance, consolidation of memory traces
acquired during waking hours occurs smoothly and efficiently. Of particular interest here is that
cortisol appears to play a particularly important role in mediating the sleep-memory relationship,
especially because of its function in maintaining the integrity of sleep architecture (1, 2).

Patients with Addison’s disease (AD) require lifelong glucocorticoid replacement therapy.
However, replacement medication does not restore the natural circadian rhythm of cortisol and,
n.org August 2021 | Volume 12 | Article 6940461

https://www.frontiersin.org/articles/10.3389/fendo.2021.694046/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.694046/full
https://www.frontiersin.org/articles/10.3389/fendo.2021.694046/full
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:m.henry@uct.ac.za
https://doi.org/10.3389/fendo.2021.694046
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://www.frontiersin.org/journals/endocrinology#editorial-board
https://doi.org/10.3389/fendo.2021.694046
https://www.frontiersin.org/journals/endocrinology
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2021.694046&domain=pdf&date_stamp=2021-08-27


Henry et al. Sleep and Cognition in AD
despite adherence, patients experience sub/supra physiological
cortisol concentrations, particularly during the night. Patients
with AD report and experience both poor-quality sleep and
cognitive difficulties (3–8). One possible (but as yet unexplored)
explanation for the sleep disruptions and memory deficits
experienced by these patients is that the periods of sub- and-
supra-physiological cortisol concentrations they experience may
have a specific negative impact on processes of sleep-dependent
memory consolidation.

This review aims to summarize and integrate the literature on
the relationships between cortisol concentrations, sleep
disruption, and cognitive functioning in patients with AD. This
review is needed because despite expanding scientific evidence
suggesting that sleep is a critical biological process and its
functional value extends well beyond simple physical and
mental restoration, very few published studies have investigated
whether disrupted sleep is a possible mechanism that underlies
the memory deficits experienced by patients with AD.
A BRIEF OVERVIEW OF HUMAN SLEEP

Human sleep is a natural state of reduced responsiveness
accompanied by a partial loss of consciousness. Sleep is regulated
by three different processes: the homeostatic process, which
determines its need, the circadian process that influences its timing,
and the ultradian process that determines its organization (9, 10).

Sleep is cyclical in nature, alternating between 4 and 6 repeated
cycles of rapid eye movement (REM) and non-rapid eye
movement (NREM) sleep, with each cycle lasting approximately
90–120 120 minutes (11–13). Human sleep patterns have some
predictable characteristics. Sleep onset is characterized by
rhythmic alpha waves, occurring particularly in the occipital
regions as discerned by electroencephalogram (EEG). Sleep then
follows with NREM (Stages 1-4 (N1-N4) before the first episode of
REM. The first sleep cycle usually begins with Stage 1 (N1), which
lasts for 1-7 minutes after sleep onset. Stage 2 (N2), which lasts for
10-25 minutes, is signaled by K-complexes. As N2 progresses,
high-voltage slow-waves appear, signaling the start of SWS.
Within SWS, Stage 3 (N3) lasts only a few minutes, whereas
Stage 4 (N4) lasts for 20-40 minutes. The body may re-enter
lighter stages of sleep (N1-N3) for approximately 5 minutes,
before the first REM episode is initiated. This episode is short-
lived, lasting only 1-5 minutes. Thereafter, NREM and REM
continue to alternate in a cyclic manner throughout the night,
with REM cycles becoming longer and slow-wave sleep (SWS)
shorter as the night progresses. Brief waking episodes occur in the
later night, usually near the transitions into REM sleep (13).
CIRCADIAN RHYTHMICITY – CONTROL
OF HORMONE RELEASE

The release of nearly all hormones follows daily oscillations,
which result from an interaction between 24-hour circadian
Frontiers in Endocrinology | www.frontiersin.org 2
rhythmicity and the sleep-wake cycle (9, 14–16). Circadian
rhythms are generated by the suprachiasmatic nucleus (SCN)
hypothalamus, by light, and by ultradian rhythms (17, 18). The
internal master clock in the SCN ensures we anticipate and
prepare for changes in our environment and act appropriately
(19, 20). These oscillators are synchronized with each other by
the SCN’s master clock (21). Regarding the circadian clock, its
timing mechanism is located in the SCN and incorporates three
different components: (a) input pathways that transmit light and
other environmental signals to the clock, (b) an endogenous
pacemaker that generates 24-hour rhythms, and (c) output
pathways that project to other brain regions and peripheral
organs (9). The circadian clock is responsible for daily
variations in body temperature, melatonin, and cortisol
secretion, and will align those rhythms with those of sleep and
other physiological processes (22). Circadian oscillators are also
located in numerous peripheral tissues, including the liver, lungs,
heart, and adrenal glands. These oscillators are synchronized
with each other by the master clock (21). The hypothalamic-
pituitary-adrenal (HPA) axis plays an important role in the
homeostatic processes of the body, the co-ordination of the
organism’s ability to adequately cope with environmental
stressors and sleep regulation. This physiological system
regulates the secretion of various hormones; of particular
concern to this review is the release of cortisol resulting from
HPA-axis activity.

In healthy people, cortisol has a robust diurnal secretory
pattern. The highest concentrations occur in the early hours of
the morning, with a peak just after waking. Concentrations then
decrease slowly throughout the day, with troughs in the mid-
afternoon and at midnight; the daily nadir typically happens
several hours after initiation of nocturnal sleep. Concentrations
then begin to rise from 02h00 to 03h00 and continue to rise until
awakening. The nocturnal rise in cortisol is thought be in
response to the greater energy demands of the brain as the
night ends (23–26). The daily rhythm of corticotropin-releasing
hormone (CRH) and adrenocorticotropic hormone (ACTH)
occur in close parallel with the daily rhythm of cortisol, all
highest in the morning and reaching a nadir during around
midnight (12, 25, 27). In contrast, melatonin is secreted from
the pineal gland and synchronized to light from retinal input and
growth hormone (GH) concentrations and are highest during
early sleep, suggesting a reciprocal relationship between the
HPA and hypothalamo-pituitary-somatotrophic (HPS)
systems (21).
THE HPA AXIS AND SLEEP

The HPA axis plays an important role in maintaining alertness
and modulating sleep [see Figure 1; (24, 28, 29)]. In fact, there is
a bidirectional relationship between sleep architecture and HPA-
axis activity. For example, cortisol exerts specific effects on sleep,
whereas changes to sleep affect the release of this hormone (25,
26, 30).
August 2021 | Volume 12 | Article 694046

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Henry et al. Sleep and Cognition in AD
Endogenous HPA Hormones and
Their Effect on Sleep
The circadian rhythmicity of specific hormones (e.g., cortisol,
ACTH, CRH, GH releasing hormone, melatonin) plays an
essential role in sleep timing and offset and in the distribution
of sleep stages across the night (28, 31–33). Inhibitory HPA-axis
actions, particularly during SWS, are responsible for attenuated
cortisol activity during the first half the night. The quiescent
period of HPA-axis activity starts prior to sleep, and continues
into the first half the night, when SWS occurs at a maximum.
Cortisol concentrations decrease rapidly in the first 20 minutes
after SWS onset, and there is a consistent inverse temporal
relationship between low cortisol concentrations and high SWS
(15, 24, 34–37). The optimal cortisol levels during early sleep
augments SWS via feedback inhibition of CRH (28, 33). In the
second half of the night, when REM sleep predominates,
inhibitory mechanisms are attenuated and HPA secretory
activity slowly increases (15, 38). Cortisol, CRH, and ACTH
secretion and SNS activity increase during the latter part of the
night. During the last sleep cycle, increases in cortisol are paired
with increases in REM (39). In summary, while the deepening of
sleep during SWS is associated with decreasing cortisol
concentrations and decreased sympathetic tone, high
autonomic and high cortisol activity occur during REM cycles
(25, 33).

The reciprocal relationship between growth-hormone
releasing hormone (GHRH) and CRH also plays an important
role in regulating sleep. GHRH inhibits HPA-axis activity during
early sleep, stimulating NREM and promoting sleep, whereas
CRH inhibits SWS, enhances REM and vigilance, and disrupts
sleep (27, 40, 41). This pattern points to a reciprocal interaction
between sleep architecture and hormones of the hypothalamic-
Frontiers in Endocrinology | www.frontiersin.org 3
pituitary-somatotrophic (HPS) and HPA systems. Confirming
the sleep-promoting role of GHRH and the sleep-disrupting
effect of CRH, in older adults the typical age-related reduction in
GH levels is accompanied by reduced SWS, whereas in both
older adults and in depressed younger adults increased CRH
levels contribute to the typically-observed sleep disruptions
(27, 42).

Finally, ACTH and melatonin also play a role in sleep
regulation. ACTH is the prime stimulus for cortisol release
during sleep, and primarily affects sleep through its impact on
cortisol secretion (29, 35). The secretion of melatonin, which has
a sleep-promoting effect, is dependent on the light-dark cycle and
is maximal during sleep periods (43). In fact, melatonin can
induce sleep even when there is an insufficient homeostatic drive
to sleep. Hence, melatonin administration has been used to treat
insomnia and circadian rhythm disorders as it can preclude the
drive for wakefulness and produce shifts in the circadian clock so
that sleep occurs at a desired time (44).

Effects of Sleep on HPA Hormones
Sleep appears to have a direct impact on cortisol secretion.
Specifically, sleep onset is associated with inhibitory effects on
cortisol secretion. These effects persist for 1–2 hours after sleep
onset (34, 45). In contrast, awakenings and the end of sleep are
accompanied by cortisol increases (29, 46). Nocturnal
awakenings are associated with releases of cortisol and
subsequent inhibition of cortisol secretion (34, 40, 46).

Nocturnal awakenings and final morning awakening elicit a
rapid increase in both ACTH and cortisol. Unlike nocturnal
awakenings, this cortisol awakening response (CAR), includes a
50–60% increase in cortisol secretion, lasting an hour, with a
peak at about 30 minutes after awakening (47–50). Some
FIGURE 1 | The hormonal control of sleep. Red arrows: negative feedback on the indicated brain structure.
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research suggests that the release of ACTH and cortisol during
late sleep is precipitated by the physiological expectation that
sleep will end at a certain time, and/or by the anticipation of the
stress of waking (51–53).

Effects of Sleep Disruption on
Circadian Rhythms
Acute shifts in the sleep-wake cycle (such as daytime sleeping or
napping or the consequences of jetlag and shift-work), reduced
sleep quality, and sleep deprivation all lead to HPA-axis
activation and hence can alter the normal circadian pattern of
cortisol secretion (34, 54–59).

Regarding poor sleep quality, its experience (and, in fact, even
its mere perception) is associated with increases in basal cortisol
levels. Such increases stimulate arousal and suppress sleepiness,
thus increasing sleep disturbances [which, in empirical studies,
are characterised by increased wake time and reduced REM
sleep; (16, 24, 60, 61)].

Regarding sleep deprivation, several studies report that
elevated cortisol concentrations are present during both the
sleep deprivation period and the subsequent day and evening
(33, 59, 62–66). Some researchers explain this physiological
pattern by speculating that the initial sleep deprivation period
activates the HPA axis as part of the stress response and may also
reflect a decrease in the negative feedback regulation of the HPA
axis. Thereafter, prolonged wakefulness increases sleep pressure
(the increased need to sleep after periods of wakefulness), leads
to fatigue and sleepiness, and causes a blunting of HPA-axis
activity (34).

However, sleep disruptions do more than just impact the
circadian rhythm of HPA-axis hormones. Disrupted sleep has
detrimental effects on health, quality of life, mood and cognition,
which is not surprising given the central role of sleep in
physiological restorative processes, emotion regulation and
memory consolidation (1, 10, 24, 67).
1On the other hand, acutely elevated GCs can either enhance (114, 134–138) or
impair memory depending on several factors, including but not limited to, the
time of day of cognitive testing, the stage at which a stressor is applied (i.e., at
encoding, consolidation or retrieval), and the dose of GC administered (139, 140).
SLEEP AND MEMORY

The ability to effectively remember relies upon three broad
cognitive processes: encoding (the transformation of new
information into a form that can be stored in memory),
consolidation (the stabilization of new memories in the brain),
and retrieval (68, 69). One of the most important ways in which
sleep affects cognition is by helping to consolidate memories (70–
72). The process ofmemory consolidation involves strengthening
of memory traces, which represent information of our
experiences, and the parallel integration of these experiences
with previously acquired knowledge (69, 73).

Whereas encoding of environmental events (i.e., acquisition
of information) and retrieval of those memories (i.e.,
reconstruction of previously acquired information) takes place
during waking hours, the process of memory consolidation is
incompatible with waking consciousness (1). Hence, when the
organism effectively loses consciousness for several hours during
sleep, physiological conditions are optimal for memory
Frontiers in Endocrinology | www.frontiersin.org 4
consolidation to take place. This is why theories regarding the
function of sleep have gradually come to accept that a central
aspect of this stage of consciousness is to strengthen memories
encoded during waking and to subsequently transfer their traces
into long-term storage (1, 74). Sleep-dependent memory
consolidation (see Figure 2) appears to involve (a) repeated
reactivation of information encoded during waking, and (b)
transformation of newly acquired unstable memories into
stable representations that become integrated into existing
knowledge networks, thus forming long-term memories. In
other words, during sleep the organism experiences “off-line”
periods (i.e., periods that do not feature the kinds of interference
experienced during waking) during which newly encoded
memories are transferred from temporary to long-term stores
(75, 76). The details of how these steps are accomplished, and
which neural regions and neurobiological processes support
them, remains somewhat controversial, however [for reviews,
see (1, 2, 77–79)].

Evidence for sleep-dependent memory consolidation is
provided by numerous studies indicating that sleep enhances
retention of information learned during waking hours, and that a
sleep-filled delay enhances performance on a variety of
declarative and non-declarative memory tasks (2, 80–89). In
contrast, when sleep is disrupted memory performance is poorer
than when individuals are allowed to sleep uninterrupted
(90–92).
CORTISOL: A FUNCTIONAL
ROLE IN MEMORY

Adequate concentrations of cortisol are essential for optimal
cognitive functioning (93–97). The hippocampus plays a vital
role in memory consolidation and in new learning, encoding, and
retrieval of declarative memories (97–105), while the prefrontal
cortex (PFC) is similarly important for integrating sensory
information, evaluating the significance of environmental
stimuli, and processing previously encoded materials (106–110).
Because both these structures contain particularly high
concentrations of glucocorticoid receptors (111), any alterations
in cortisol secretion have marked effects on their functioning. A
substantial body of data indicates that elevated cortisol
concentrations negatively impact performance on hippocampal-
dependent memory tasks [e.g., word list and paragraph recall
tasks; (94, 112–120)] and on PFC-dependent working memory
and executive functioning tasks [e.g., tests assessing set-shifting,
attention, abstract thinking, cognitive flexibility, mental rotation;
(120–129)].

Studies have consistently demonstrated that chronically
elevated glucocorticoids impair hippocampal-dependent
memory (130–134)1. The negative impact of elevated cortisol
on verbal declarative memory performance has been
August 2021 | Volume 12 | Article 694046
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demonstrated (a) following increases in endogenous levels of the
hormone (through laboratory-based stress induction procedures;
127, 139, 141–143), and (b) in studies that featured exogenously
administered corticosteroids (128, 144–148). For example,
Kirschbaum et al. (94) found that stress-induced cortisol
increases, and (separately) administration of 10 mg
hydrocortisone orally, were associated with poorer recall of
verbal material. Similarly, De Quervain and colleagues (149,
150) found that oral administration of 25mg of cortisone
acetate significantly impaired both free and cued recall of
verbal material, while leaving recognition memory (which is
not dependent on hippocampal substrates) unaffected, and that
the same dose of cortisone acetate impaired cued recall of a series
of word pairs. In that study, stress-level doses of cortisone acetate
reduced cerebral blood flow to the medial temporal lobe (MTL),
a memory network that broadly includes the hippocampus.
Several studies have also documented impaired performance
on spatial memory and navigation tasks in the presence of
elevated cortisol levels in humans (94, 127, 146, 151–162).
However, investigations of the impact of cortisol on spatial
memory are more abundant in the animal literature.
Furthermore, studies investigating spatial memory and cortisol
in humans have produced more variable results, compared to the
robust literature on impaired verbal memory in the presence of
elevated cortisol levels.

Although hippocampal-dependent forms of memory are
impaired by increased cortisol concentrations, non-
hippocampal forms of memory (e.g., procedural memory),
appear unaffected (e.g., 117, 163, 164). For example,
Kirschbaum and colleagues (94) found that oral administration
of 10mg cortisol to healthy subjects impaired performance on a
declarative (a word list) but not a procedural (a word priming
test) memory task. Furthermore, increased cortisol levels impair
verbal declarative memory whereas non-verbal memory appears
unaffected (165, 166). For example, Newcomer and colleagues
Frontiers in Endocrinology | www.frontiersin.org 5
(146) found that a 4-day period of oral administration of cortisol
to young adults impaired their performance on a paragraph
recall task, but did not significantly affect their recall of
previously presented geometric line drawings or their
performance on a spatial location task.

Regarding the PFC’s involvement in memory processing, this
brain structure plays an important role in the encoding and
retrieval of declarative memories (167). Specifically, after
retrieval, the PFC determines whether an event occurred in a
particular setting (168, 169), allowing accurate memories to be
reconstructed. The PFC is also involved in working memory
(WM). Specifically, it allows humans to (a) keep a mental
“sketch” of information and protect this information from
internal and external distractions, (b) inhibit inappropriate
responses and behaviour, and (c) regulate attention. As such,
the PFC allows for cognitive flexibility and goal-directed
behaviour (121, 122).

Chronically elevated cortisol concentrations lead to dendritic
atrophy in the PFC (170), and stengthens the noradrenalin
system, which reduces neuronal firing within the structure
(122, 171). Stress-induced cortisol increases also increase
dopaminergic activity and glutamate levels in the PFC (129,
172). Glutamate receptor-mediated synaptic transmission in the
PFC is particularly important for WM (173, 174). While acute
elevations in glutamate have a positive effect on WM (129),
excessive elevations cause impairment. Each of these hormones
(noradrenalin, dopamine and glutamate) has an inverted-U
influence on WM, with either too little or much impairing
PFC functioning (122).

Glucocorticoid Receptors and Memory
Glucocorticoids affect the human brain by their interaction with
two intracellular receptors (134). Glucocorticoids that enter the
brain change gene expression by binding to type 1
mineralocorticoid receptors (MRs) and type 2 glucocorticoid
A B

FIGURE 2 | The hippocampal-to-neocortical dialogue. (A) During NREM sleep, memories temporarily stored in the hippocampus are transferred to the long-term
store in the neocortex. (B) The dialogue involves the interaction between the slow oscillations, sleep spindles and hippocampal ripples to create spindle-ripple events
(magnified circle). From Born et al. (75). System consolidation of memory during sleep. Psychological Research, 76, 192-203.
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receptors (GRs). These two receptors bind cortisol with different
affinities (135). MRs have a high affinity for cortisol and become
heavily occupied at low cortisol concentrations (including the
evening nadir of the cortisol circadian profile, when 90% of MRs,
but only 10% of GRs, are occupied). In contrast, GRs have a
lower affinity for cortisol and only become heavily occupied
when cortisol levels reach a peak [e.g., after a stressor or after the
post-awakening cortisol surge; (97, 134, 146, 175)].

MRs are found predominantly in the hippocampus, whereas
GRs are distributed throughout the brain. Both play important
roles in cognitive function, however (176, 177). MRs are located
in brain regions involved in behavioral reactivity to new events,
which enables the encoding of new information and subsequent
retrieval, whereas GRs are located in brain regions involved in
the consolidation and storage of information learned (94, 132,
178, 179). Hence, the activation of both receptors is a necessary
for optimal memory functioning. For instance, de Kloet et al.
(135) showed that when cortisol levels were mildly elevated (and
therefore all MRs, but only some GRs, were activated), long-
term-potentiation (LTP; the reinforcement of synaptic
connections necessary for information storage) was enhanced.
However, at higher cortisol levels (when GRs were over-activated
and MR occupation was low), LTP was impaired. MRs play a
particularly important role in hippocampal-dependent memory,
executive function, and attention (126, 180–184). In
confirmation of the latter, Schultebraucks and colleagues (185)
found that, during high MR occupation, verbal memory was
significantly better and there were trends towards better
executive functioning.

Variations in Cortisol Concentrations and
Their Effects on Cognition
Most studies have focused on the deleterious effects of elevated
cortisol levels on cognitive functioning. The negative effects of
supra-physiological cortisol levels on brain structure and
cognitive functioning is well known and evident in both
healthy individuals and in patients known to experience
chronically elevated cortisol levels [e.g., Cushing’s syndrome,
depression, Alzheimer’s disease; (132, 175, 186–191)].

Elevated cortisol concentrations impair cognitive function
due to their effect on specific neurobiological systems.
Specifically, the relationship between glucocorticoids and
cognition usually follows an inverted-U shaped pattern (192–
195), where cognitive functioning is enhanced by a certain
concentration of cortisol (114, 196, 197) and concentrations
that are either too low or too high having impairing effects
(114, 115, 135, 155, 178, 197).

Given that altered cortisol secretion plays a role in the
etiology of many diseases marked by cognitive impairments
[e.g., Addison’s disease, Cushing’s syndrome, Alzheimer’s
disease, major depressive disorder, post-traumatic stress
disorder, and metabolic syndrome; (130, 181, 185, 198–202)],
and given the known alterations in cortisol concentrations in
patients with AD on replacement therapy, it is important to
determine the physiological mechanisms by which chronically
altered circadian rhythms impact cognitive functioning. One
Frontiers in Endocrinology | www.frontiersin.org 6
such mechanism may be through sleep, given that a
bidirectional relationship exists between circadian rhythmicity
and the sleep-wake cycle, and because successful memory
consolidation of information learned during the day is known
to rely on sleep (1, 90, 203).
ADDISON’S DISEASE

The diagnosis of AD is based on the measured presence of low
plasma cortisol, low aldosterone levels, high renin levels, and
elevated ACTH [loss of endogenous ACTH drive; (204)]. Patients
with AD need to be on glucocorticoid (GC) replacement therapy
for life, which is essential for survival (205). Cortisol is usually
replaced with oral hydrocortisone, prednisone, or cortisone
acetate (a l l of which act ivate predominantly GRs,
predominantly), plus a mineralocorticoid (fludrocortisone) for
sodium and potassium regulation (206, 207). Given the
bidirectional relationship between cortisol and the sleep-wake
cycle, the dosage, timing, and type of medication regimens used
by patients may impact their general well-being and sleep
patterns (28) due to the influence of GCs on circadian
rhythmicity. Typically, GCs are replaced in 2-3 daily doses (see
Figure 3), with the total daily dose ranging from 15-30mg. The
highest dose (one-half to two-thirds) is taken in the morning, a
reduced dose is taken in the afternoon, and (if required) a third
dose in the late afternoon/evening [typically around 5pm; (208–
210)]. Such a dosing schedule of GC replacement is meant to
imitate the normal diurnal cortisol rhythm, to reflect the peak
cortisol rise in the morning, and to avoid over-replacement in the
nadir of cortisol secretion during the night (208, 211). However,
despite efforts to find the best replacement regimen in terms of
dosage and timing (211–213), none mimic the physiological
circadian rhythm; there are still supra-physiological peaks
during the day and lower-than-expected concentrations during
the early hours of the morning (214–219). This over- and under-
replacement results from the biochemical properties of
replacement medications. Oral hydrocortisone (HC) is absorbed
rapidly, reaching maximum concentrations an hour after intake
(220). However, HC replacement produces extremely variable
peak concentrations within a supra-physiological range, followed
by rapid declines to <100 nmol/l at 5-7 hours after ingestion (221)
due to its short plasma half-life (around 1.5-1.8 hours; 215, 222).
This means that patients require regular dosing, and that they
nonetheless experience periods of cortisol deficiency, particularly
between midnight and early morning (223). Another problem
with GC replacement therapy is that it does not adequately
replicate the morning rise in cortisol levels experienced by
healthy individuals. In healthy individuals, the natural peak of
cortisol starts during the onset of REM sleep in the early hours of
the morning, whereas the peak level resulting from an early
morning dose of hydrocortisone comes several hours after the
medication has been taken (206). This temporary early-morning
cortisol insufficiency in patients with AD can account for
commonly reported symptoms such as fatigue, nausea, and
headaches, which are alleviated within an hour after taking the
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morning dose of hydrocortisone (224). Overall, conventional GCs
do not restore the normal circadian rhythm of hormone release
(215, 225). Instead, patients are over-replaced immediately
following therapeutic administration, and then under-replaced
within a few hours of that administration (211, 226), which may
have important implications for sleep regulation.

New Advancements in Treatment
As standard replacement therapy does not mimic the natural
circadian rhythm, newer treatments aim to imitate physiological
cortisol rhythms. These new treatments attempt to improve
biochemical control of the release of cortisol and to reduce the
long-term adverse effects typically associated with standard
replacement regimens (220). Continuous subcutaneous HC
infusion (CSHI) and modified release HC (MR-HC) tablets are
two promising new treatments.

Infusion of HC in patients with AD has been shown to mimic
normal circadian rhythmicity and improve quality of life (QoL;
226, 227). A crossover randomized clinical trial (N = 33 patients
with AD who received CSHI or thrice-daily conventional therapy
for a 3-month period), found that a 10mg/m2 daily dose of CSHI
normalized cortisol and ACTH levels in the morning, and
patients 24-hour cortisol curves approached normal circadian
variation compared with conventional oral replacement. The 24-
hour area under the curve (AUC) did not differ between infusion
and conventional oral therapy, but daytime AUC (8am-
midnight) was higher for oral replacement therapy, and night-
time AUC (midnight-8am) was higher for CSHI. Infusion
improved vitality and physical functioning (228) but did not
improve sleep (except that sleep length increased, as measured by
the Pittsburgh Sleep Quality Index (PSQI) and actigraphy).
Another randomized double-blind placebo-controlled clinical
trial (N = 10 patients with AD) assessed whether CSHI
improved QoL and fatigue, compared to standard GC therapy
(229). CSHI did not improve health status in AD patients who
had mild deficits in well-being at baseline. Overall, it appears that
CSHI benefits some, but not all, patients in that it restores the
usual circadian cortisol rhythmicity and improves QoL (226).

A significant disadvantage of subcutaneous infusions is their
impracticality. An alternative is for patients using HC to wake up
at 3am and take a dose of medication. This alternative is perhaps
Frontiers in Endocrinology | www.frontiersin.org 7
even more impractical and, moreover, may cause more daytime
fatigue as well as supra-physiological peaks. MR-HC offers a
more practical and sustainable approach to normalizing cortisol
circadian rhythms due to its immediate and extended hormone
release characteristics. MR-HC has been shown to mimic natural
physiological cortisol circadian rhythm (230, 231). Johannsson
and colleagues (231) demonstrated that taking a once-off
morning dose of either 5 or 20mg MR-HC led to a closer
mimicking of physiological cortisol circadian rhythms, except
for the early-morning cortisol peak. However, if MR-HC is taken
late at night (thus allowing for a delayed and sustained release), it
can mimic the rise in cortisol that typically occurs during the
early hours of the morning. For example, Debono et al. (230)
showed that taking 15-20mg of MR-HC at 23h00 and 10mg at
07h00 reproduced the normal physiological cortisol circadian
rhythm in healthy controls (see Figure 4). In that study,
participants’ cortisol concentrations peaked, on average, at
08h32 and decreased throughout the day, reaching a nadir, on
average, at 00h18. Dual-release hydrocortisone (DR-HC;
Plenadren) has both an immediate-release coating and
extended-release core. This form of replacement therapy better
mimics the normal cortisol profile (218) and improves patients’
quality of life (232–234). However, despite normalizing cortisol
patterns, DR-HC has shown to have little effect on cognitive
functioning or sleep (235). Although Krekeler and colleagues
(235) showed that patients with adrenal insufficiency treated
with DR-HC tended to show better executive functioning
compared to patients on conventional HC, other cognitive
domains appear unaffected, and they found no between-group
differences in terms of sleep.

Sleep Disruptions in AD
Numerous studies suggest that, in patients with AD, clinically
relevant fatigue persists despite replacement therapy. For instance,
Løvâs, Logeŧ, and Husebye (236) found that patients with AD self-
reported reduced general health perception and vitality despite
receiving replacement therapy with cortisone acetate and
fludrocortisone. Similarly, van der Valk and colleagues (237)
found that 48% of their patient sample (N = 328) self-reported
abnormal fatigue; 61% reported severe fatigue. Researchers
postulate that reports of increased daytime fatigue may be due
FIGURE 3 | Simulated cortisol profile for a patient [broken line] following thrice-daily hydrocortisone administration [10mg at 06:00, 5mg at 12:00 and 2.5mg at
18:00, shown as solid arrows]. The normal circadian rhythm of cortisol [solid line]. From Mah et al. (211). Weight‐related dosing, timing and monitoring
hydrocortisone replacement therapy in patients with adrenal insufficiency. Clinical Endocrinology, 61(3), 367-375.
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to reduced quality of sleep in patients with AD and that relatively
increased doses of HC may contribute to these sleep disruptions
(3, 236, 238).

Løvâs, Husebye, Holsten, and Bjorvatn (3) found that 34% of
the 60 patients with AD in their sample self-reported weekly
sleep disturbances (difficulties falling asleep [13%], repeated
awakenings [14%], and early morning awakenings [20%]).
Similarly, Henry et al. (7) found that 60 patients with AD self-
reported poorer sleep quality and efficiency, longer sleep latency,
shorter sleep duration, more sleep disturbances, and greater
daytime dysfunction compared to healthy controls. In terms of
objectively measured sleep quality, Henry et al. (5) found, using
actigraphy, that patients with AD experienced interrupted sleep
characterized by worse sleep efficiency and a greater amount of
time spent awake compared to healthy controls, who achieved a
fuller night of uninterrupted sleep. These data present a pattern
showing that patients with AD report frequent sleep
disturbances, including difficulty falling asleep, nighttime
awakenings, and a lower sleep quality. In all of the
abovementioned studies, although patients were on
replacement therapy, their cortisol secretion differed from
healthy individuals. Because of cortisol’s key role in regulating
our circadian rhythms and ensuring the transitions between
sleep stages (33), it is unsurprising patients on replacement
therapy still experience poor-quality sleep.

In terms of objectively measured sleep quality via
polysomnography, limited information exists on the impact of
low cortisol concentrations on sleep architecture. Similarly, few
studies report on sleep in patients with AD when replacement
medication is administered by conventional replacement. In
terms of low cortisol concentrations, Gillin et al. (239)
reported that patients with AD whose replacement medication
was withheld for longer than 24 hours (and who therefore had
undetectably low concentrations of cortisol at bedtime), showed
increased time spent in SWS and correspondingly reduced time
Frontiers in Endocrinology | www.frontiersin.org 8
spent in REM sleep. Similarly, Garcia-Borreguero et al. (238)
reported that patients with AD who were deprived of
glucocorticoid medication for 1.5 hours prior to bedtime (and
who therefore had undetectably low levels of cortisol at bedtime)
showed increased wake after sleep onset (WASO) and REM
latency and decreased amount of time spent in REM sleep,
compared to patients who took their medication just before
bedtime. These results suggest that the initiation and
maintenance of REM sleep is facilitated by cortisol. In contrast,
high cortisol concentrations appear to reduce the amount of time
spent in SWS (27, 35, 240), and, consistent with this, relatively
lower cortisol concentrations in healthy controls (administration
of metyrapone) and patients with AD (replacement medication
was withheld) are significantly associated with increased delta
sleep (239).

Gillin et al. (239) reported that when medication was
administered by conventional replacement, patients with AD
had similar sleep to controls, except that patients took
significantly longer to fall asleep and spent significantly more
time in delta sleep (i.e., SWS). More recently, Henry and
colleagues (4) found that when medication was administered
by conventional replacement, patients with AD (compared to
healthy matched controls) spent significantly less time in SWS
and that there was a trend towards patients experiencing
significantly shorter REM latency and more time in Stage 2 sleep.

Overall, few studies have objectively assessed sleep in patients
with AD, despite that fact that an abundance of scientific
evidence suggests that these patients experience disruptions to
the cortisol circadian rhythm and, consequently, are at risk for
experiencing negative effects on sleep architecture. For instance,
patients with psychiatric conditions that exhibit elevated cortisol
concentrations (e.g., depression and post-traumatic stress
disorder) experience less time in SWS, shortened REM latency,
increased REM sleep and density, and sleep discontinuity (238,
241–244). Similarly, in patients with Cushing’s disease (who
produce excessive amounts of cortisol), findings show that SWS
is decreased, REM latency shortened, REM density is elevated,
and aberrances in sleep continuity occur (244, 245). One study
found that elevated cortisol concentrations in 11 patients with
Cushing’s disease were associated with lower REM activity, and
more awakenings during sleep (245). Similar patterns of
decreased REM latency and/or increased time spent in REM
sleep have been found in patients with AD who took
hydrocortisone before bedtime and in healthy controls with
artificially increased cortisol concentrations (41, 238). There
are comparatively few data on sub-physiological cortisol levels
and sleep, and similarly, few studies on sleep of patients with AD
when replacement medication is administered as part of routine
replacement. Therefore, effects on sleep quality and architecture
of the illness itself, and of replacement therapy, remains largely
unexplored in patients with AD.

Because of the central role the HPA axis plays in sleep
regulation (28, 35), either low or high night-time cortisol,
alongside high night-time ACTH and CRH, may lead to sleep
disturbances in patients with AD (228). However, the
implications of exposure to altered circadian cortisol patterns
FIGURE 4 | Concentration-time profiles for modified-release hydrocortisone
(MR-HC) 5mg, 10mg, 15mg and 30mg compared with immediate-release
hydrocortisone (IRHC). Graph showing delayed and sustained release
characteristic of MR-HC (to convert values from mcg/dl to nmol/l x 27.59).
From Debono et al. (230). Modified-release hydrocortisone to provide
circadian cortisol profiles. The Journal of Clinical Endocrinology & Metabolism,
94(5), 1548-1554.
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and consequent sleep disruptions have not been adequately
addressed in the available literature. For instance, disrupted
sleep may impede sleep-dependent memory consolidation.
Because changes in sleep and memory are associated with the
use of corticosteroids, further research is necessary to help
understand the impact that replacement medication used by
patients with AD has on the processes that influence sleep-
dependent memory consolidation.

Cognitive Functioning in AD
Despite replacement therapy, patients with AD frequently
present with both subjective cognitive complaints and objective
cognitive impairments, including poor memory and impaired
concentration (206, 207, 221). Due to the affinity between
variations in cortisol concentrations and impaired performance
on tests of memory, attention and executive functioning (115,
146, 246), understanding how these domains are affected is
relevant in patients with AD. However, very few studies have
characterized cognitive function in AD.

Klement et al. (247) reported that patients with AD on
replacement therapy performed significantly more poorly than
healthy controls on a declarative memory test. Similarly,
Schultebraucks and colleagues (185) found that patients
performed significantly more poorly than controls on a test of
verbal learning, and Henry et al. (6) found that patients
performed significantly more poorly than controls on tests of
both verbal learning and memory (and that patients made
significantly more false alarms [incorrectly saying a word on
the list when it was not present] when recalling information).
Henry et al. (5) found that healthy controls learned and retained
more information than patients with AD on two different tasks
of declarative memory, but that there were no significant
between-group differences for procedural memory tasks.
Tiemensma and colleagues (248) found that patients
performed significantly more poorly on tests of both verbal
and visual memory than healthy controls. The latter study also
found mild executive impairment and significantly slower
processing speed in their patient group. Interestingly, in this
study, delaying HC intake in another group of patients with AD,
which resulted in significantly lower cortisol concentrations at
the time of cognitive testing, had no impact on cognitive
performance. In terms of disease characteristics and cognition,
Henry et al. (6) also found that patients who had AD for a longer
interval had a slower speed of processing and that patients who
were diagnosed later in life had poorer declarative and working
memory, a slower speed of processing, and an overall greater
cognitive impairment. Blacha et al. (249) found patients with AD
(20 PAI and 20 SAI) showed significantly worse performance on
a test of attention compared to controls (but found no difference
in memory and other cognitive domains). They also found that
higher HC doses impaired attention, visuo-motor skills and
executive function, but that duration of therapy had no impact
on cognitive performance. Similarly, Harbeck et al. (223) found
that higher cortisol levels were associated with impaired short-
term memory in patients who underwent short-term
hydrocortisone infusion during the night. Overall, it appears
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that cognitive deficits in patients with AD are primarily in the
domain of declarative memory (both verbal and visual memory),
but also extend to executive functioning (including attention and
processing speed).

Impaired declarative memory performance likely emerges
from two main sources. First, indirectly, disrupted cortisol
secretion patterns impact circadian rhythms and lead to sleep
disturbances. Second, directly, due to supra-physiological cortisol
levels experienced by patients taking short-acting hydrocortisone
(250). Supra-physiological glucocorticoid increases impact on
brain regions such as the hippocampus and the PFC which
have a high concentration of glucocorticoid receptors (105,
251). These effects include, but are not limited to, degeneration
of hippocampal neurons (252), altered organization of dendrites
in the PFC (253), and, as such, impaired performance on tasks
involving declarative memory (121, 254). In support of this,
elevated cortisol concentrations associated with normal aging
have been linked to ventricular enlargement, neuronal loss, and
decreased volume in the hippocampus alongside a decline in
cognitive performance (154, 252, 255–257). Exogenous
administration of hydrocortisone (occurring as a once off to a
few days) to healthy subjects raising serum cortisol
concentrations, impairs verbal memory, working memory,
visuo-spatial memory, and executive functioning (96, 146, 150,
191, 258, 259). Similarly, exogenous administration of
dexamethasone or prednisone to healthy subjects impairs
memory performance (117, 191, 259, 260). Prolonged levels of
increased hydrocortisone may cause permanent death of
hippocampal neurons, reduce hippocampal glucose uptake
(255) and neuronal excitability (261), impair synaptic plasticity
(262, 263), decrease the amount of newly-generated neurons, alter
synaptic density in the CA1 and CA3 regions (264), and cause
death of dendrites in hippocampus (252).

Another neurobiological mechanism that may explain the
memory deficits observed in patients with AD is the differential
activation of the two types of receptors discussed earlier, MRs
and GRs. Cortisol’s effects on the hippocampus and PFC are
mediated by the interaction of glucocorticoids with MRs and
GRs (134). Activation of MRs is essential for successful encoding,
whereas activation of GRs is essential for successful
consolidation and retrieval of memory (94, 135). Activation of
both receptors is required for optimal memory performance
(135). In one study providing empirical support for this
proposed neurobiological mechanism, Tytherleigh et al. (207)
found that adequately treated AD patients, performed
significantly better a declarative memory recall task, when both
receptor types were activated, compared to when only one or the
other was activated. While some cortisol is needed to enhance
cognition (a shift towards predominant MR activation and
minimal GR activation), prolonged exposure and/or high
concentrations of cortisol (predominant GR activation) have
deleterious effects (135, 265–267). In support of the beneficial
effects of MRs on cognition, Schultebraucks et al. (185) used a
repeated-measures crossover design and either administered
patients with AD fludrocortisone (resulting in high MR
occupation) or withheld the same drug from them (resulting in
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low MR occupation). Verbal memory performance was
significantly better when MR occupation was high, and there
also were trends towards better executive functioning in
the condition.

Previous studies have shown that, in healthy adults across the
lifespan, elevated cortisol levels impair cognitive functioning in
ways that are predictable and that can be explained
neurobiologically (105, 142, 166, 252). In AD, cortisol
concentrations fluctuate –elevated far above basal levels (e.g.,
after hydrocortisone administration) or low [e.g., several hours
after hydrocortisone medication has been taken and due to the
fact that this medication has a relatively short half-life of roughly
1.5 hours; (223)]. Since the relationship between cognition and
GCs usually follows an inverted-U shaped pattern, cortisol
concentration variability in patients with AD may play an
important role in their cognitive functioning. Furthermore, due
to the known association between altered cortisol and impaired
performance on standardized memory tests, between altered
cortisol and disrupted sleep, and between sleep and memory
consolidation, assessment of other contributors (e.g., disrupted
sleep) that may contribute to deficient memory performance in
patients with AD needs to be understood.

The Relationship Between Sleep and
Cognition in AD
The orderly night-time sequence and transition between SWS
and REM sleep provides optimal conditions for memory
consolidation (1). Consolidation begins during SWS, when
specific physiological conditions (e.g., slow oscillations in
neocortical networks, HPA axis suppression) allow the
reactivation of memories encoded during wakefulness (268).
During REM sleep, physiological conditions (e.g., suppression
of norepinephrine, increased levels of acetylcholine and
serotonin, ponto-geniculo-occipital and theta waves) allow
reactivated memories to be integrated with pre-existing
knowledge, thereby facilitating long-term potentiation (269).
Cortisol’s influence on successful memory consolidation during
healthy sleep is accounted for because it plays a pivotal role in
sleep stage initiation and maintenance (68). Although a well-
known relationship between healthy sleep and optimal memory
performance is noted (270), limited studies have explored this
association in patients with AD.

Henry and colleagues (7) obtained data from self-reported
questionnaires and suggest that memory impairment may be
mediated by sleep disruptions in AD. Henry et al. (5) investigated
the relationship between adrenal function, and objectively
measured sleep and cognitive performance. Results showed
that periods of sleep rather than wake benefited declarative
memory retention in healthy controls’ but not in patients with
AD. These findings concur with a large body of literature
indicating that a full night of uninterrupted sleep has positive
effects on memory. Because patients with AD do not have
normal circadian rhythmicity, the sequence and transitions of
sleep stages may not have occurred in such a way that is required
for successful memory consolidation. Another possible
explanation is that patients with AD are generally fatigued, and
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that therefore poor performance occurs whether one sleeps or
not. The design of this study did not allow consideration that
patients with AD may suffer from global fatigue and therefore
poor performance. Another finding in this study was that, on a
story recall test, patients had greater recall when a period of wake
rather than wake separated learning from recall (counterintuitive
to the body of literature that sleep is an offline process beneficial
for the consolidation of learned information). This result
corroborates in patients with AD that sleep may not be
providing an optimal period for consolidation of previously
learned material. In contrast to the patterns of data on
declarative memory tests, no significant between-group (AD
versus controls) or between-condition (Sleep versus Wake)
were found on a test of procedural memory. These results may
have emerged because declarative memory tasks are
hippocampal-dependent, whereas procedural tasks are not.
Since hydrocortisone affects hippocampal integrity but not
areas typically associated with response-based sequence
learning (e.g., motor cortex, caudate nucleus), it is possible that
procedural memory performance of patients with AD is
unimpaired. No prior study had investigated procedural
memory in patients with AD, and hence this suggestion that
procedural memory is not impaired in patients with AD is a
novel finding.

The Relationship Between Sleep, Emotion
Regulation, and Cognition
While it is well established that sleep plays a crucial role in
various aspects of health, and cognition, sleep also plays an
important role in the processing and regulation of emotion (1,
69, 79, 271). The experience of sleep deprivation or poor sleep
quality makes people more sensitive to emotional and stressful
events on the following day, elevates negative emotions
(including feeling more irritable, angry, and anxious), and
reduces positive emotions (272–275). Short sleep duration and
poor-quality sleep is also associated with elevated depressive
symptoms (276). REM sleep plays a particularly important role
in emotion regulation (79, 277), with research showing that
patients with mood disorders have altered REM sleep (278).
Because of cortisols key role in sleep stage initiation and
maintenance, it has an important influence on the affect
regulation that takes place during healthy sleep (73). HPA
hyperactivity (and consequent elevated cortisol levels, for
example) plays a crucial role in the pathogenesis of medical
and psychiatric disorders (e.g., major depressive disorder
(MDD)) that are marked by sleep disturbances alongside mood
problems (34, 279). The co-occurring presence of HPA-axis
hyperactivity, sleep disturbance and mood problems in these
disorders is not coincidental. Clinical studies have implied that
patients with nearly all neurological and psychiatric mood
disorders have co-occurring sleep abnormalities, and
specifically, problems with REM sleep (79, 271). Empirical
studies show that when people are deprived of REM sleep they
have intensified experience of negative emotions, show increased
anxiety during stressful events, and exhibit less positive reactions
to positive events (275, 280).
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Previously published studies in patients with AD have
consistently shown that, despite being on replacement therapy,
these individuals still report and experience depression and
anxiety, as well as reduced stress tolerance and reduced ability
to cope with daily demands (5, 236, 281). Regarding affective
disorders, a Danish study of 989 patients with AD found they
were 2.68 times more likely to suffer from depression than a
control group with osteoarthritis (281).

Generally depressed patients self-report difficulty falling
and staying asleep, and early morning awakenings; (282), and
experience both SWS and REM disruptions (278). Interestingly,
individuals who take hydrocortisone late at night also have
decreased REM latency and increased REM sleep time, a
pattern similar to that found in depressed patients. As such,
altered circadian rhythms in patients with AD may explain the
high presence of affective disorders in this population.

In addition to the wealth of knowledge linking sleep and affect
regulation, numerous studies illustrate that affect and cognition
are interrelated (283, 284), and specifically that low mood is
related to impaired cognitive functioning (285, 286). The high
presence of affective symptoms in patients with AD may be
related to patients sleep disturbances. The high presence of
affective symptoms in patients with AD may also negatively
impact cognitive functioning. That is to say, the co-occurring
presence of sleep disturbances, depressive symptoms, and
impaired cognitive functioning in patients with AD may not be
coincidental. However, no published study has explored the
relationship between affect dysregulation, sleep disturbances
and cognitive impairment in AD.
CONCLUSION

In this article, we have summarised the current knowledge on
sleep, cognition, and the association between the two in patients
with AD. Numerous studies indicate that (i) healthy sleep
benefits memory consolidation, (ii) alterations in cortisol
activity has negative effects on sleep architecture, and (iii) sleep
disruptions (e.g., as might be present in individuals with
abnormal night-time cortisol concentrations) might impede the
beneficial effects of sleep on memory consolidation. Sub- and
supra-physiological cortisol concentrations resulting from
immediate release hydrocortisone replacement therapy can
have negative effects on sleep architecture and sleep-dependent
memory consolidation processes. Therefore, disrupted circadian
rhythms are suspected to be a major cause of sleep disturbances
and cognitive impairment in patients with AD. It is well
established that cortisol plays a key role in maintaining the
integrity of sleep architecture and that sleep plays an important
role in cognitive functioning, emphasizing the interrelationship
between sleep, cognition and intact cortisol secretion.

The literature suggests that patients with AD experience
disruptions to cognition, primarily in the domain of declarative
memory (both verbal and visual memory), but also extending to
executive functioning (specifically, attention and processing
speed). Procedural memory does not appear to be impaired in
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these patients (although very few studies have investigated this).
They also experience a reduced quality of sleep and altered sleep
architecture. Hydrocortisone immediate release may lead to
disrupted sleep patterns which impair optimal consolidation of
learned information. Moreover, general fatigue may contribute
to the presence of cognitive deficits in patients with AD.
Furthermore, prolonged replacement therapy may have
deleterious effects on brain regions required for optimal
cognitive functioning (e.g., the hippocampus and PFC).
However, studies using brain scans are needed to confirm
this hypothesis.

Although prior research suggests that both cognitive and sleep
complaints are frequently reported by patients with AD, only a few
have used objective measures to assess either sleep patterns or
memory impairments experienced by patients. Patients with AD
encounter sub- and supra-physiological cortisol concentrations
due to imperfect replacement therapy, ultimately altering sleep
architecture and impairing cognition. It is conceivable that
through modifying the pharmacokinetics of replacement therapy
that these modalities in patients with AD may be improved. From
a broader neuroscientific perspective, patients with AD provide a
unique opportunity to simultaneously study the effects of hyper-
and hypo-cortisolism on sleep quality, memory performance, and
sleep-dependent memory consolidation. Careful study of these
patients can help unravel the distinct roles that sub- and supra-
physiological GC concentrations play in sleep regulation/structure
and in sleep-dependent memory consolidation.

Although current replacement therapy aims to mimic the
natural circadian rhythm of cortisol, periods of sub- and supra-
physiological cortisol concentration are experienced. Both low
and high cortisol concentrations can negatively impact cognition
and sleep. More research is needed on the effects of dosage,
duration and type of GC therapy used in patients with AD and
how these impact cortisol concentrations, sleep and cognition.

Food and caffeine intake, smoking, intense exercise, and
encountering stressful situations may all influence cortisol
concentrations, sleep, and cognitive performance (287). Studies
investigating sleep and cognition in AD should be careful to control
for these potentially confounding factors. Another important
contributor to cognition and sleep in patients with AD could be
life-threatening events such as nocturnal hypoglycemia and adrenal
crises (288). However, hardly any studies take this into account
when investigating cognition and sleep. It is important to
differentiate between impairments caused by the illness itself, the
complications going with it or the therapy received by patients.

More studies are needed to characterize the relationship
between sleep and memory, using objective measures to examine
the hypothesis that poor sleep is a biological mechanism
underlying memory impairment in patients with AD. More
polysomnographic studies are needed to comprehensively
investigate sleep architecture in patients with AD. Such studies
may help explain for instance, memory consolidation in not
enhanced by sleep in patients as in healthy controls. Intervention
studies and clinical trials might seek to confirm this association
and investigate whether the same pattern of sleep and memory
deficits are present in patients, using modified-release or dual-
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release hydrocortisone. If it is confirmed that disrupted sleep is a
vital mechanism underlying the impaired consolidation of
previously learnt information, clinicians should prioritize
treatment of disrupted sleep in patients with AD.
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