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Abstract: Background: despite the increase in malaria control and elimination efforts, weather patterns
and ecological factors continue to serve as important drivers of malaria transmission dynamics.
This study examined the statistical relationship between weather variables and malaria incidence
in Abuja, Nigeria. Methodology/Principal Findings: monthly data on malaria incidence and weather
variables were collected in Abuja from the year 2000 to 2013. The analysis of count outcomes was
based on generalized linear models, while Pearson correlation analysis was undertaken at the bivariate
level. The results showed more malaria incidence in the months with the highest rainfall recorded
(June–August). Based on the negative binomial model, every unit increase in humidity corresponds
to about 1.010 (95% confidence interval (CI), 1.005–1.015) times increase in malaria cases while the
odds of having malaria decreases by 5.8% for every extra unit increase in temperature: 0.942 (95% CI,
0.928–0.956). At lag 1 month, there was a significant positive effect of rainfall on malaria incidence
while at lag 4, temperature and humidity had significant influences. Conclusions: malaria remains
a widespread infectious disease among the local subjects in the study area. Relative humidity was
identified as one of the factors that influence a malaria epidemic at lag 0 while the biggest significant
influence of temperature was observed at lag 4. Therefore, emphasis should be given to vector
control activities and to create public health awareness on the proper usage of intervention measures
such as indoor residual sprays to reduce the epidemic especially during peak periods with suitable
weather conditions.

Keywords: negative binomial models; weather variables; malaria; Nigeria

1. Introduction

Malaria is a life-threatening infectious disease caused by a single cell parasite and transmitted by
bites of female Anopheles’ mosquitoes from infected individuals to non-infected persons. The dynamism
of transmission of malaria is an open problem. Studies have attributed the stable transmission in
Sub-Saharan Africa (SSA) to changes in weather parameters while others identified non-weather-related
factors [1]. The spatial variability of the weather parameters with time opens it for further consideration.
Hence, the study of the influence of climate variability on the outbreak, resurgence and transmission of
malaria is of paramount importance.

In 2017 there were about 219 million malaria cases worldwide which resulted in 435,000 deaths.
About 90% of the global deaths occurred in SSA, with Nigeria having a considerable percentage of the
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global cases [2,3]. Global interventions, control measures and initiatives in recent times have led to a
significant reduction in disease cases. Children aged less than five years, pregnant women, people
with other ailments, travellers from non-endemic nations, refugees and displaced persons are the most
susceptible to malaria [4].

Malaria is a common infectious disease, especially in the tropics where the prevailing environmental
conditions are favourable for disease transmission. The impact of global warming and constant changes
in weather conditions enhance the breeding, survival and spread of the pathogenic parasites [5].
Also, resistance of the host vectors to insecticides and resistance of the stubborn species of Plasmodium
to anti-malarial drugs foster the current prevalence of the epidemic in the developing world especially
in SSA nations where the disease trend constitutes health problems [6–8]. The disease persists as the
prevalence of malaria infection; disease incidence and mortality from severe malaria cases are still
very high in endemic nations [9]. Despite control interventions instituted to curb transmission of the
pandemic, and its socio-economic impact globally, the region of SSA is facing challenges in reducing
the intensity of the disease especially in remote areas where there is a lack of good understanding of
the disease epidemiology, a weak health system, scarcity of control intervention measures and high
poverty level amongst other factors [10].

There are various control strategies in place in SSA nations to curb the menace of the
disease. Such interventions amongst others include vigorous health awareness, free distribution of
insecticide-treated nets, indoor residual spray (insecticides), case management with artemisinin-based
combination therapy, regular treatment and availability of intermittent preventive therapy in
pregnancy [11]. Despite the control measures in place, high poverty levels, low levels of education
and health awareness, negative attitudes, cultural practices at the community level, religious beliefs
and political instability constitute a significant hindrance to malaria control in SSA [12]. Likewise,
the resistance of vectors to insecticides and parasites to drug and spatial variability of weather
parameters also hinder vector elimination campaigns in SSA [6,13].

The world has witnessed changes in climate factors in recent times with Africa and other tropical
parts of the globe severely hit by its negative consequences on human existence and health [14,15].
The cumulative effects on humans are substantial as it affects the entire ecosystem [16]. For example,
certain disease outbreaks such as the recent Zika virus disease, dengue fever and the resurgence of
epidemics such as pneumonia, malaria and rift valley fever are associated with changes in weather
variables [17]. The potential influence of change in weather parameters includes drought, increase in
temperature, massive extinction of certain biological organisms and reduction in human longevity
through direct exposure to excessive rays from the sun. Others are hunger and starvation as agricultural
activities are adversely affected, increase breeding of the ectothermic definite host vectors like ticks,
flies and mosquitoes as survival and reproduction rates of such arthropod species hang on the habitat
suitability, abundance and biological distributions in space and time [5,18]. Weather variability also
affects pathogens like Plasmodium, dengue fever viruses. Therefore, this aids the transmission of
vector-borne infectious diseases likes malaria, Zika virus disease and dengue fever. The pathogens’
developmental processes, survivals and reproduction within the vector are enhanced at certain climatic
thresholds [19,20]. For example, the average temperature between 18–30 ◦C favours breeding of malaria
parasites [21,22]. Also, relative humidity of 60–90% can enhance the breeding and multiplication of
Plasmodium parasite while a relative humidity below 60% decreases their population [6,23].

Early developmental stages of mosquitoes depend mainly on water availability, while the adults’
survival relies on temperature and relative humidity [11,20]. Rainfall can sometimes inhibit the survival
and distribution of mosquitoes, especially when a saturating point is reached. The rainfall saturating
effect can cause excess rainfall to reduce the number of mosquitoes by flushing away eggs and larvae
in breeding sites and thus interrupt their developmental stages [6,18,24]. Also, ozone depletion and
influences from El Niño cycles affect atmospheric air temperature, which in turn impact the epidemics
of diseases.
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Several studies are available in the literature on the complex interrelationship between malaria
occurrence and various weather variables [15,25]. For example, Gunda et al. [26] appraised malaria
incidence, its trends and association with weather variables in three rural districts in SSA. The study
found a significant association of reported malaria cases with weather parameters. The malaria
incidence was shown to be correlated with precipitation and mean temperature at some specific lag
periods. Likewise, Akinbobola and Omotosho [6] examined and compared the relationship between
weather variables and reported malaria cases at two different stations, each from different geopolitical
zones in Nigeria. The results based on time-series analysis revealed a significant increase in malaria
cases due to the potential influence of changes in weather variables. The study identified rainfall
and humidity having positive association in both stations while maximum temperature had both
inverse and direct relationships in the south and the north stations, respectively. Also, a recent study in
Uganda revealed strong associations between malaria incidence and climate variables [6]. The authors
employed both Poisson and negative binomial regression to investigate the potential relationship
between the response and weather predictors. The study found a strong positive correlation between
malaria cases and weather variables. A unit increase in both rainfall and average temperature leads to
an increase in disease cases.

The presence of malaria is highly influenced by the anomalies of rainfall, temperature and
humidity in SSA where Nigeria is situated [6,27]. These irregularities have aided the adaptation
and prevalence of the malaria vectors and the parasite [28], thereby producing a resultant effect on
disease epidemics. Previous studies in Nigeria reported variations in rainfall patterns to be above
average in both the Central and Southern Nigeria while rainfall below average was reported in the
Northern part of Nigeria [29]. A tropical wet and dry climate in Abuja and its environment provide
a suitable environmental condition for malaria transmission which yields seasonal variation in the
rainfall patterns within the non-arid region which in turn produce inter-annual (temporal) variability
in epidemics [11,28,30]. The structure of the climatic factors gives support to the rate of survival of the
vectors and the parasites. Malaria is endemic in Nigeria with the majority of the confirmed cases (over
90%) caused by P. falciparum, and the primary vectors are Anopheles gambiae, Anopheles arabiensis and
Anopheles funestus [31,32].

Similarly, an increase in rainy days and daily temperature in Central Nigeria was significantly
associated with an increase in P. falciparum malaria in Abuja [33]. Evans and Adenomon [25] reported
an increasing trend of about 6% in malaria incidence in Central Nigeria during the rainy season
while Nanvyat et al. [30] reported cyclic trends in malaria cases and its lagged associations with
weather variables in Jos, Central Nigeria. Nmadu et al. [28] also reported a high prevalence of malaria
parasitaemia among children during the peak of the rainy season (June and July) in Abuja. Furthermore,
Nmadu et al. showed that P. falciparum is predominant among the children who were tested, 62.5%
tested positive to P. falciparum while only 1.5% tested positive to P. malariae, and all other species of
Plasmodium were absent.

The spatial variability of weather variables and steady changes in weather parameters necessitated
the need for regular examination of such variables related to vector-borne diseases to enhance malaria
early-warning systems and provide information on the changing malaria situation [26]. The subject
matter has been studied extensively in the literature [1], nevertheless there exist uncertainties regarding
the disease trend in the near future. This study is useful with a view to appraising known intervention
put in place by health service providers and also helping policymakers design an appropriate
intervention programme on vector control and proper case management. Therefore, the study
examined the relationship between monthly malaria incidence and weather variables.
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2. Materials and Methods

2.1. Study Area

The study location for this study is Abuja. Abuja is the federal capital territory of Nigeria and
falls between the latitudes 9◦20′ N and 7◦25′ N of the equator and longitudes 5◦45′ E and 7◦′ E of
Greenwich Meridian. It has a landmass of approximately 7315 km2 [33]. The official population was
776,298 people at the 2006 population and housing census [33,34]. The vegetation of Abuja is guinea
savannah with limited forest areas [35]. The climate of the study area is tropical: non-arid climate with
only two seasons throughout the year: wet and dry. The mean temperature in the study area ranges
between 30–37 ◦C yearly with the highest temperature in March and the mean total annual rainfall of
approximately 1650mm per annum [36].

2.2. Data Management

The data on monthly malaria incidence in Abuja for the period of January 2000 to December
2013 were collected from the diagnostic unit of the National Institute for Pharmaceutical Research
and Development (NIPRD) Abuja, Nigeria. The malaria data obtained from NIPRD consist mainly
of the confirmed monthly cases of P. falciparum with a few cases of P. malariae, which supports the
discovery of prevalent malaria parasite in Abuja [28,33,37]. The diagnostic procedures were based on
the laboratory analysis of blood samples of patients screened for the malaria parasite by examining
the patient’s blood, spread out as blood smear under the microscope, which is the most common and
accurate diagnostic test for malaria [28]. The weather data were also obtained for the same period
from the relevant government agency in Abuja. Data on monthly rainfall (mm), temperature (◦C) and
relative humidity (%) were collected from federal capital territory Agricultural Development Project
Gwagwalada, Abuja. The response variable used for the trend analysis via generalized linear model is
the monthly incidence of malaria while the explanatory variables are rainfall (mm), temperature (◦C),
and relative humidity (%).

2.3. Statistical Analysis

The Poisson and negative binomial models are generalized linear models appropriate for modelling
trend when rare discrete events for a specified time length are involved, such as malaria incidence
data. For this study, the malaria counts were randomly observed for each of the 168 months; malaria
incidence on a particular month was considered as independent of the next subsequent months. Based
on these distribution assumptions, the Poisson and the negative binomial models were appropriate
statistical tools for the analysis of the incidence data. For the Poisson model (PM), the response variable
assumed a Poisson distribution and used logarithms as a link function for its mean value.

Poisson has a unique property of equal value for both the mean and the variance and assumes
large counts to be a rare event [25]. These strong PM assumptions, however, relate to observations
based on experimental and field studies and are always skewed (variance greater than mean) in the
distribution of their observations with a long-tail. This may be due to unobserved heterogeneity or
count data models [38]. The overdispersion with long-tail issue renders PM an inappropriate tool as it
causes estimation error of the parameters. To remedy these issues, this study explored a more flexible
tool for the modelling of the variance than PM. The negative binomial model (NBM) has an extra
parameter (shape parameter that modifies variance independently from the mean) than PM. Thus,
NBM accounts for overdispersion and long-tail distribution in the data. This makes NBM more robust
than PM in modelling count outcomes with overdispersion problems.

The Poisson generalized regression model is given as:

ϑ = E
(
m
∣∣∣z1, z2, . . . , zp

)
= eZ1β (1)

lnϑ = Z1β (2)
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whereϑ is the conditional mean of Poisson regression model, β is column vectors of regression parameter
given Z, a vector of independent variables and m is the count response with only non-negative integer
values. Maximizing the log of likelihood function gives estimates of the parameters of the model with
the maximum likelihood estimation method [39].

Using the Pearson correlation coefficient, the relationships between the malaria incidence and
weather variables based on each month of the year with no month lag were examined.

The pre-whitening of the data from the weather covariates was carried out to select all the
significant lags of the predictors to be considered as covariates for model construction based on the
values of the cross-correlation function of the filtered series. Autoregressive integrated moving average
(ARIMA) models were fitted to each of the predictors to pre-whiten them and reduce their residuals to
white noise [40], thereby, filtering out the effects of serial autocorrelation structure on the assessment of
statistical significance.

Following pre-whitening, cross-correlation analysis was performed at different time lags for the
malaria incidence and weather variable in SPSS version 22. The significant lags were identified and
included in the model building. The order of the ARIMA model was chosen by minimizing the Akaike
information criterion (AIC).

For the model fit and diagnostic, the residuals and their dependence were examined with time
series plots. The residual analysis was performed with autocorrelation function (ACF) and partial
autocorrelation function (PACF) of the residuals (adjusted). A good model yields non-correlated
residuals with properties that resemble a white noise process. Likewise, the Ljung–Box test for residuals
was also used to check if the model is correctly specified at 5% level of significance. A significant value
indicates the presence of a structure in the residuals (adjusted) that the model failed to account for;
therefore, the model did not adequately fit the data.

2.4. Ethical Clearance

This research relies exclusively on information readily available to the public. The data used
were exclusively information about anonymous human subjects which does not require ethical review
and clearance.

3. Results

3.1. Descriptive Statistics

From January 2000 to December 2013, there were 5130 malaria cases reported in NIPRD, Abuja,
with the monthly average of about 31 cases (Figure 1). The malaria data collected revealed the two
seasons of the year in Nigeria: the wet and the dry seasons (Figure 2). More malaria cases were
recorded in the wet season than the dry season. Also, the highest values of rainfall and humidity were
recorded in the wet season while the reverse was true for temperature (Figure 2). The various data
used for this study were time-series data, as such, fluctuations and seasonal patterns were observed
in the original data. For the monthly incidence, a seasonal malaria incidence was observed with
spikes and lower troughs at the peak of the wet and dry seasons, respectively. A sideways trend
was evident in the malaria incidence between 2000 and 2013 with marginally increasing trend line
(Figure 1). Based on these data, it was imperative to adjust for the seasonal and random variations in
order to reveal the underlying trends and cycles. The irregular variations and seasonal effects in the
observations were adjusted and the seasonal index was computed to remove the seasonal and other
unwanted components.
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Figure 1. Malaria cases reported in the study area (2000–2013). (A) Malaria incidence: original and 
seasonally adjusted data (2000–2013);(B) Autocorrelation and partial autocorrelation functions 
computed from the raw data (cases); (C) Autocorrelation and partial autocorrelation functions 
computed from the seasonally adjusted data. 
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Figure 1. Malaria cases reported in the study area (2000–2013). (A) Malaria incidence: original
and seasonally adjusted data (2000–2013); (B) Autocorrelation and partial autocorrelation functions
computed from the raw data (cases); (C) Autocorrelation and partial autocorrelation functions computed
from the seasonally adjusted data.
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Figure 2. Relationship between the monthly average of malaria incidence and weather variables.

3.2. Model Outcomes and Information

The descriptive statistics for the response variable revealed a violation of the model assumption
for the PM. The estimated values for the mean and the variance differed significantly. The result based
on deviance statistics showed inappropriateness of PM for the trend analysis. A robust generalized
regression method for modelling count data with some set of explanatory variables was used to handle
the over-dispersion problem. The additional parameter in the negative binomial regression handles
such issues and gives NBM an advantage over the usual PM.

The likelihood ratio test revealed the overall fit of the model (-2LL = 308.05, p < 0.001). All the
explanatory variables were statistically significant (p < 0.05) (Table 1).

loge YCases= 4.603 + 0.001XRainfall − 0.060XTemperature + 0.010XHumidity (3)

Table 1. Negative binomial regression results.

Model Predictor Model Coef (β) Std Error Wald Chi-Square Exp. (β) 95% CI p-Value

Intercept 4.603 0.321 206.117 99.821 53.247,187.13 <0.001
Rainfall 0.001 0.000 25.945 1.001 1.000,1.001 <0.001

Temperature −0.060 0.007 63.243 0.942 0.928,0.956 <0.001
Humidity 0.010 0.003 14.078 1.010 1.005,1.015 <0.001

The parameter estimates for the NBM is presented in Table 1. The results revealed an increase in
malaria incidence of about 1.001(95% CI, 1.000–1.001) times for a unit increase in rainfall per month.
Likewise, the disease cases increase significantly for an extra unit increase in relative humidity per
month (1.010 (95%CI, 1.005–1.015), p < 0.001). On the other hand, there was a decrease in odds of
malaria incidence of about 5.8% for a unit rise in temperature.

Based on series pre-whitening, cross-correlations were used to examine the lagged associations
between the weather variables and malaria cases at different lags (pre-whitened series) (Figure 3).
The significant lags (1, 4 and 5) were identified and considered in the model building. Temperature
with 4-month lag has the maximum positive cross-correlation value, while rainfall at lag 1 has the
highest positive correlation with malaria incidence. At lag 5, there was a negative cross-correlation
value between rainfall and malaria incidence, and this relation has the highest significant decrease in
malaria cases with rainfall.

Following the results of the pre-whitening of malaria incidence and weather variables, the influence
of weather variables on malaria incidence was also examined at different month lags. In Figure 3,
only lags 1, 4 and 5 are significant lags. Thereby, only these lags were included as the covariates
(Table 2). At lag one month, only rainfall significantly increased the incidence while both rainfall and
temperature had a significant influence on malaria incidence at lags 4 and 5. The strongest positive
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weather influence was from the temperature at lag 4. Relative humidity significantly increased the
cases at lag 4 while there was a negative influence of rainfall on malaria incidence at lags 4 and 5.
The effect of both rainfall and humidity on malaria incidence decreased marginally with increasing lag
months (Table 2).
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Table 2. The influence of weather variables on malaria incidence with lagged-months in Abuja
(2000–2013).

Lag 1 Lag 4 Lag 5

Variables IRR (0.95CI) p-Value IRR (0.95CI) p-Value IRR (0.95CI) p-Value

Rainfall 1.001
(1.001–1.001) <0.001 * 0.999

(0.999–1.000) <0.001 * 0.999
(0.999–0.999) <0.001 *

Temperature 0.988
(1.974–1.002) 0.105 1.079

(1.064–1.095) <0.001 * 1.065
(1.050–1.080) <0.001 *

Humidity 1.005
(1.000–1.005) 0.068 1.006

(1.001–1.011) 0.016 * 0.998
(0.993–1.004) 0.556

IRR: Incidence rate ratio, CI: Confidence interval, * Statistically significant at p < 0.05.

4. Discussion

The findings of this current study revealed the interrelationships of meteorological variables
with malaria occurrence in Abuja. The results also identified key weather predictors of the malaria
epidemic in Abuja for the two seasons of the year. The findings revealed a higher monthly incidence
in the wet than in the dry season. This result is consistent with previous results in a similar study in
Abuja [33], Ethiopia [41] and North-West India [42]. This current finding could be as a result of the
adequate availability of water in ponds and ditches, canals and gutters, green vegetation around homes,
places of work and construction sites. Therefore, these conditions increase the breeding of mosquitoes
and disease transmission. Likewise, it could be because the wet season coincides with the planting
season for local farmers in Abuja; as such, farmers were more vulnerability to malaria infection as
the level of exposure to mosquito bites increases during these periods. The regression results based
on NBM revealed positive relationships of rainfall and relative humidity with malaria incidence in
Abuja, while every unit increase in monthly temperature reduces the incidence by about 5.8% monthly.
This could be explained based on the biological ground, the breeding of the vectors is inhibited if the
temperature rises above a certain threshold and it lowers the disease transmission at that point in
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time [9,11]. Temperature above 24 ◦C currently experienced in the study region, especially in the dry
season, may be responsible for the observed trend in this study. A higher temperature has been shown
to inhibit strongly the developmental stages of the mosquito parasite and its vectors (predominantly
Anopheles gambiae and Anopheles arabiensis) across Nigeria [43]. For instance, a temperature above 30 ◦C
shortened sporogonic stage of the Plasmodium parasite while the survival of mosquitoes is adversely
affected, and its life cycles are not completed [6]. This finding of the current study is in agreement
with previous related studies in Nigeria [21] and New Zealand [44]. The study reported a decrease in
malaria incidence of about 4% for every unit rise in temperature in Nigeria.

Relative humidity is one of the major determinants of malaria incidence among the weather
factors examined at zero lag. Based on the data from the study area; relative humidity is between
60% and 86% which is the most suitable threshold for the Anopheles mosquitoes to thrive and for
the Plasmodium parasite to transmit the infection. Thus, relative humidity has the highest number of
positive correlations with malaria incidence for all the months of the year, with exceptions in March
and October. This is similar to the result observed in Nigeria [6]. The authors identified relative
humidity amidst other potential malaria predictors of having the most significant influence on the
survival of the host vector. However, this result is inconsistent with an earlier study in Ondo State,
Southwest Nigeria [11]. The authors found wind speed as the most influencing predictor of malaria.

From the results of this study, malaria incidence in April to July is positively correlated with
temperature. This agrees with a recent study in Nigeria [6]. However, the existence of an indirect
relationship of the response with temperature in the remaining months in the rainy season (August to
October) disagrees with a related study in Lagos, Nigeria [45]. The plausible explanation for this may
likely be the confounding effects of the third factor ‘rainfall’ in the wet season. The saturating effect of
rainfall in these months causes a decrease in incidence even in the presence of a suitable temperature
as vectors are adversely affected. This is in agreement with the previous results documented in the
literature [18,24]. Likewise, the correlation results of monthly malaria incidence and rainfall agree with
the results previously documented in Abuja [33]. The high incidence recorded in the wet season and
the low malaria incidence obtained in the dry season could be attributed to seasonality effects. Also,
prolonged drought and excessive rainfall may inhibit the developmental stages of mosquitoes and
eventually reduce the disease cases.

The initial results revealed that the malaria cases were observed throughout the year (during
both the dry and the wet seasons) with varying degrees of incidence in the study area. The prevailing
weather conditions mainly influenced these incidences. However, there was a reversed shift between
the malaria incidence series and rainfall series, especially at the peak of the rainy season (August) and
the months preceding it. This could be explained based on the fact that the excess downpour (rainfall)
in this month may likely wash away the breeding sites of the primary vector. Hence, this may affect
the number of cases recorded in this particular month of the year as an increase in rainfall may fail to
produce additional cases of malaria. This is consistent with a related study in Nigeria [6]. Likewise,
the plausible reason for the average number of cases observed in June (peak malaria month) may be
the resultant effects of rainfall and other weather conditions in the preceding months. This agrees with
a related study in Abuja [33].

The significant association between malaria incidence with 1-month lagged rainfall in this study
is consistent with a related study in Zimbabwe [26]. This 1-month lag effect of rainfall could create
enough time frames required for the developmental stages of the local vector mosquito (mainly
Anopheles gambiae and Anopheles arabiensis) and the completion of the life cycles of P. falciparum within
the vector. At 4-month lag, the temperature was significantly associated with malaria incidence. This is
similar to the longer lagged effect of temperature on malaria transmission reported in Plateau State,
Nigeria [30]. This could be explained based on biological grounds as a period of increased temperature,
humidity and rainfall at defined intervals are usually followed by a period of a malaria epidemic.
These high malaria risk periods are products of the resultant effects of the interactions between the
weather parameters, vector mosquito and malaria parasite in the previous months.
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There are different species of Anopheles mosquitoes discovered and reported in Nigeria [32].
However, Anopheles gambiae and Anopheles arabiensis remain the two main malaria vectors and the most
important Anopheles species in malaria transmission across Nigeria [43,46].

The essence of early warning of malaria is to create a new mitigation mechanism to reduce
the vulnerability of people at the risks posed by a malaria epidemic in the study region. Therefore,
the current study provides valuable early warning information to health service providers and the
general public on the likelihood of an occasional outbreak of malaria. Necessary precautionary measures
become imperative due to the significant association of malaria cases with weather parameters.

The results of this study have to be handled with caution as it has some shortcomings. First,
the analysis used secondary data which may likely be prone to some errors. Systematic and other errors
due to the reliability of the laboratory procedures can sometimes be associated with an experimental
error. Similarly, bias in experimental measurements or readings in the laboratory can occur. Also,
unknown to users, secondary data can be presented in a summarized or modified version of the raw
data. However, secondary data, if well measured and appropriately presented, can be precise, accurate,
unbiased, reliable, valid and timely. Also, the data were only available on a monthly basis which may
not reveal the actual variations embedded in the various observations. Other potential risk factors of
malaria were not included in the regression model with weather variables for a holistic assessment of
critical drivers in Abuja. Factors such as demographic characteristics, socioeconomic variables and
public health control measures, immigration–emigration, changes in housing, land use, topography
and subjects’ knowledge, attitude and practice regarding malaria may have influenced the response in
terms of interest or associated with weather variables. However, this study provides baseline health
information for future malaria intervention planning in Abuja.

5. Conclusions

The study revealed the link between malaria incidence and climatic predictors at different lags in
Abuja. Relative humidity was identified as the primary driver of the malaria epidemic at lag 0 while the
most substantial significant influence of temperature was observed at a 4-month lag. Also, the influence
of rainfall and humidity on malaria epidemics decreased with lag months. Emphasis should be given
to vector control mechanisms and public health awareness on proper usage of intervention measures
to reduce the seasonal malaria incidence stimulated by suitable weather conditions.
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