
Frontiers in Oncology | www.frontiersin.org

Edited by:
Fatima-Zohra Mokrane,
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Purpose: We aimed to explore potential confounders of prognostic radiomics signature
predicting survival outcomes in clear cell renal cell carcinoma (ccRCC) patients and
demonstrate how to control for them.

Materials and Methods: Preoperative contrast enhanced abdominal CT scan of ccRCC
patients along with pathological grade/stage, gene mutation status, and survival
outcomes were retrieved from The Cancer Imaging Archive (TCIA)/The Cancer Genome
Atlas—Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) database, a publicly available
dataset. A semi-automatic segmentation method was applied to segment ccRCC tumors,
and 1,160 radiomics features were extracted from each segmented tumor on the CT
images. Non-parametric principal component decomposition (PCD) and unsupervised
hierarchical clustering were applied to build the radiomics signature models. The factors
confounding the radiomics signature were investigated and controlled sequentially.
Kaplan–Meier curves and Cox regression analyses were performed to test the
association between radiomics signatures and survival outcomes.

Results: 183 patients of TCGA-KIRC cohort with available imaging, pathological, and
clinical outcomes were included in this study. All 1,160 radiomics features were included in
the first radiomics signature. Three additional radiomics signatures were then modelled in
successive steps removing redundant radiomics features first, removing radiomics
features biased by CT slice thickness second, and removing radiomics features
dependent on tumor size third. The final radiomics signature model was the most
parsimonious, unbiased by CT slice thickness, and independent of tumor size. This final
radiomics signature stratified the cohort into radiomics phenotypes that are different by
cancer-specific and recurrence-free survival; HR (95% CI) = 3.0 (1.5–5.7), p <0.05 and HR
(95% CI) = 6.6 (3.1–14.1), p <0.05, respectively.
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Conclusion: Radiomics signature can be confounded by multiple factors, including
feature redundancy, image acquisition parameters like slice thickness, and tumor size.
Attention to and proper control for these potential confounders are necessary for a
reliable and clinically valuable radiomics signature.
Keywords: radiomics, quality control, machine learning, TCGA, The Cancer Imaging Archive (TCIA), clear cell renal
cell cancer
INTRODUCTION

Tumor radiomics is a rapidly evolving field aiming to link tumor
imaging phenotypes to pathological and clinical outcomes in a
quantitative and non-invasive way (1). Radiomics generally
converts medical image data into a large-scale and mineable
set of imaging features, termed radiomics features, that
characterize tumor imaging phenotypes (2). Radiomics
signatures, essentially constellations of radiomics features, have
shown to be helpful in plenty of medical tasks (3), including
predicting malignancy in lung nodules at lung cancer screening
CT scans (4), predicting genomic alteration on lung cancer
imaging (5), predicting tumor recurrence and patients’ survival
(6), and assessing response to treatment (7, 8).

Radiomics signature models have been developed by cancer
researchers but their usefulness is usually difficult to replicate at
other institutions or cohorts. This is mostly due to challenges
encountered in the construction of a radiomics signature models
attributed to radiomics feature redundancy and image quality
differences (resulting from differences in image acquisition/
technical parameters or from scanner vender differences).
Another challenge facing useful radiomics signature is the need
to provide new information independent of already known and
established prognosticators, especially tumor size which is
retrieved from routine clinical imaging without the need to run
radiomics image analysis (9). Feature redundancy is a challenge
to replicate and consolidate radiomics signatures. Two research
teams, Lu et al. (10) and Berenguer et al. (11), independently
pointed out that radiomics feature sets, which usually contain
several hundreds to a thousand radiomics features, could actually
be summarized into dozens of representative features. The
variations in image acquisition parameters, e.g. thin/thick slice
thickness and sharp/smooth reconstruction kernels, etc., could
produce images of different qualities (12), which might impede
generalization of radiomics signatures. For instance, the
performance of radiomics signature developed using CT
images of thin slice thickness decreased when applied on CT
images with thicker in the predicting the risk of malignancy of
lung nodule (13) and cancer-related genomic mutation status
(14). Finally, including tumor size measurement (unidimensional,
bidimensional and three dimensional) within radiomics features
creates confusion about the usefulness of the texture based
radiomics; it raises the question whether the prognostic or
predictive radiomics signature effect is mainly driven by tumor
size which is readily available through routine medical imaging
without the need for radiomic analysis. Association between
radiomics signature and well-established clinical factors (e.g., tumor
2

size or patient’s age), may lead to overvalued radiomics signatures;
this is because the predictive value of radiomics signature may
be exaggerated by radiomics’ association with these important
clinical factors (15).

Several approaches were proposed for establishing
reproduceable and generalizable radiomics studies including
radiomics reporting guidelines, such as Radiomics Quality
Score (RQS) (9), The Image Biomarker Standardization
Initiative (IBSI) (16, 17), and recently harmonization
algorithms (18), such as Combat. Although these studies have
demonstrated that radiomics signature could be impacted by
multiple clinical and technical factors, there is still suboptimal
awareness of this confounding potential and lack of consensus on
how to control for such confounding. For example, within the
RQS, although imaging protocol was suggested to be reported, it
does not provide a reliable statistical method to control the
confounding effect from imaging protocol and does not alarm
that confounding effect of imaging protocol could lead to fake
result. In IBSI, its main focus is on standardizing implementation
parameters for radiomics feature extraction instead of
controlling confounding effect. For those harmonization
algorithms, like Combat, although they showed promising
potential on removing confounding effect, however, there is
limitation on application on new data. For example, when new
data were added, the new data have to be combined with original
data and the harmonization has to be re-established on the entire
combined database (19).

Therefore, in this study, we designed multiple radiomics
signature models to show the effect of uncontrolled
confounders which may lead to false/overvalued radiomics
signature among patients with clear cell renal cell carcinoma
(ccRCC). The reason for using radiomics analysis on ccRCC as
an example is that, ccRCC is the predominant pathological
subtype (85%) in renal adenocarcinomas which account for
90% of kidney cancers because of its variable course (20, 21).
The prediction of survival outcomes for ccRCC patients still
remain challenging (22–25), due to the variation in ccRCC’s
growth pattern, with some tumor showing an indolent growth
pattern while others exhibiting aggressive behaviors including
local recurrence after resection and distant metastases (26, 27).
METHOD

We aimed to conduct this study in The Cancer Genome Atlas—
Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) cohort data
(28) which is a publicly available dataset from multiple medical
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institutions in the US. The TCGA-KIRC project house the
pathological, clinical, and imaging data for patients with clear
cell renal cell carcinoma (ccRCC).

Compared to single-center data, the TCGA-KIRC was a
multicenter data therefore was more heterogenous in terms of
tumor’s pathological stage and grade as well as the image
acquisition parameters. The Cancer Imaging Archive (TCIA)
(29) represent a repository of clinical imaging for patients/
tumors included in the TCGA cohort housing de-identified
clinical imaging and provide a great resource for researchers to
conduct and validate their imaging related studies.

The overview of our study design is presented in Figure 1.
Our study design followed the basic radiomics phases, which
included data collection, feature extraction, modeling, and
outcome analysis (9, 17). The highlights of the study are the
following. First, all the used data are publicly available in the
TCIA, so that other researchers can easily and reliably replicate
our results. Second, multiple factors that might affect radiomics
analysis (9) were investigated, including feature redundancy (e.g.
correlation among features), image acquisition parameters (slice
thickness was the main CT parameter impacting radiomic
signature), and signature’s dependency to tumor size (a
previously validated prognostic factor). Four radiomics
signatures were successively built throughout our study that
included: 1) entire radiomics feature set, 2) radiomics feature
Frontiers in Oncology | www.frontiersin.org 3
set after dimension reduction (i.e. excluding redundant features),
3) radiomics feature set after further exclusion of radiomics
features affected by CT scan slice thickness, and 4) radiomics
feature set after further exclusion of tumor size related features.
Third, to address the over-fitting problem, non-parametric
principal component decomposition (PCD) for dimension
reduction and unsupervised hierarchical clustering for pattern
discovery were used. Fourth, the radiomics signatures
associations with clinical outcomes (OS, PFS, and RFS) were
tested using Kaplan–Meier’s analysis. Finally, supplementary
analyses were conducted to illustrate how impacting factors
can affect the radiomics signatures.

Patient Data Collection
The data we used were downloaded from the TCGA-KIRC
project, which is publicly available in the TCIA dataset
(https://wiki.cancerimagingarchive.net/display/Public/TCGA-
KIRC, accessed in August 2016). It contained 267 ccRCC
patients collected from multiple medical centers nationwide.
The downloaded content contained both presurgical contrast-
enhanced abdominal CT scans and clinical information such as
pathological stage, grade, gene mutation status, and patient’s
survival outcomes. For the survival outcome, patients were
censored at their last follow-up date if: they were alive (overall
survival-OS), alive or dead from non-ccRCC related illness
FIGURE 1 | Overview of the study design. The study mainly consisted of four key parts: 1) patient data collection, 2) feature extraction and controlling, 3) Modeling,
and 4) Outcome analysis. Specially, four experiments were designed to evaluate the effects on radiomics signatures built by radiomics feature sets under four
different controlling levels. In addition, supplementary experiments were performed to explore the association between outcomes and the confounding factors, such
as CT slice thickness and tumor size.
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(cancer-specific survival-CSS), alive without tumor recurrence
(recurrence-free survival-RFS). Somatic gene mutation status of
our patients was retrieved from TCGA official website and
adjudicated at Memorial Sloan Kettering Cancer Center
(MSKCC) based on collaborative clinical TCGA (cTCGA)
consortium data (30). Genetic information included gene
mutation status of VHL, PBRM1, SETD2, BAP1, and KDM5C
genes. All patients’ informed consents and institutional review
boards’ approvals were obtained as part of the TCGA/TCIA
efforts, and all demographic and imaging data were de-identified
to comply with the Health Insurance Portability and
Accountability Act (HIPAA).

In our study, 183 out of 267 patients were included in the final
segmentation and analysis (as shown in Figure 1) based solely on
the availability of pre-surgical contrast-enhanced abdominal CT
scans where ccRCC was depicted and segmented to generate
radiomics features.

Tumor Segmentation and
Feature Extraction
A fellowship trained abdominal radiologist performed ccRCC
segmentations. The radiologist was blinded to the various study
endpoints (pathology at surgery and patient outcomes). For
image analysis we used a MatLab (MathWorks, Natick,
Massachusetts) based dedicated software application to
visualize and segment the tumor from each patient’s CT scan.
This semi-automated algorithm, combining the region-based
active contours and a level set approach, was used in a slice-
by-slice fashion (i.e. the entire ccRCC tumor was segmented)
(31). The initial step for tumor segmentation required the
radiologist to manually select a region-of-interest (ROI) that
roughly enclosed the tumor region on a single CT slice. Rough
boundary localization of the tumor was then automatically
generated by the software algorithm and propagated to
consecutive slices, serving as an initial ROI for subsequent
segmentations on the neighboring images. The final tumor
segmentation boundaries were then verified and fine-tuned by
the radiologist (32). The total volume of the tumor (created by
adding all segmentations from all slices) was then utilized to
generate the radiomics features of each individual tumor.

A total of 1,160 radiomics features, i.e., quantitative imaging
features, were extracted from each segmented tumor via the
Columbia Image Feature Extractor (CIFE) (33) which has been
successfully applied in many radiomics studies (34–36). More
details of the CIFE, as well as its comparison with two other
open-source feature extractors, the IBEX (37) and Pyradiomics
(38), can be founder at (33). Three preprocesses were performed
before the feature extraction, 1) a modified soft tissue CT
window was adopted with level of 50 HU and width of 175
HU, 2) voxel resolution was resampled to 0.5 × 0.5 × 0.5 mm³
and 3) image was discretized into 64 bins.

Principal Component Decomposition (PCD)
In this study, we introduced an unsupervised method, PCD (39),
for feature dimension reduction. On contrary to its supervised
counterpart, an unsupervised method focuses more on the
Frontiers in Oncology | www.frontiersin.org 4
intrinsic characteristics of features and is not easily affected by
the overfitting problem. PCD belongs to a type of non-
parametric transformation that is able to convert a set of
possibly correlated features into a set of linearly uncorrelated
variables. Such uncorrelated variables are called principal
components and are ranked by their corresponding variance,
which is their contribution to feature variability in the data.
Hence, in the set of resulting principal components, the first
principal component has the largest variance, and each
succeeding component in turn has a smaller variance. We
hypothesized that if a principal component had a larger
variance, it would contain more information, so that the
dimension reduction could be fulfilled by selecting a compact
set of principal components that had the large variance while
excluding a large number of principal components with small
variances (i.e. excluding those with the least input to the data). In
this study, Matlab version 9.5 was used. Principal components
that summed up to 99% contribution to the total variance were
selected as the new representative features.

Exclusion of Slice Thickness
Related Features
The main CT scan parameter in this cohort that affected (was
associated with) radiomics features values was the CT scan slice
thickness (among other parameters including CT scan voltage
(kVp), vender and reconstruction algorithm). Because this is a
multi-institutional cohort with different imaging protocols, we
aimed to remove the potentially confounding effect of slice
thickness from the radiomics signature to be built. The
identification of radiomics features dependent on slice
thickness involved three steps: First, the patients were distributed
into two groups: one with thin CT slices (i.e. ≤3 mm) and one with
thick slices (i.e. >3 mm) (The selection of 3 mm as an cutoff is based
on clinical practice (40)). Second, C-index (41) was calculated for
each feature based on the slice thickness group labels. The C-index,
in this model, provided a measure of how good a radiomics feature
could fit a binary outcome (groups of slice thickness ≤3 mm and
>3 mm). In other words, we attempted to measure how much of
the radiomics feature was explained by the CT slice thickness.
Generally, for C-index, values below 0.5 indicate poor fitting, values
over 0.7 indicate good fitting, values over 0.8 indicate strong fitting,
and a value of 1 means perfect fitting. In radiomics signature model
#3, we excluded all radiomics features whose C-index was >0.8 in
order to remove the radiomics features that are heavily influenced/
biased by CT slice thickness.

Exclusion of Tumor Size Related Features
In this project, we aimed to build a radiomics signature that
deliver new prognostic information, independent of tumor size
which has long been known as an important prognosticator. The
correlation between tumor size and the radiomics features were
measured by Pearson’s linear correlation coefficients (also called
Pearson’s R). In our study, tumor size was obtained by measuring
the longest diameter across the tumor’s cross-sectional region, as
shown in Figure 1. The features that have strong positive or
negative correlation with tumor size (Pearson’s R >0.7 or <−0.7,
May 2021 | Volume 11 | Article 638185
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p < 0.05) were excluded from radiomics signature model #4 as
tumor size dependent features.

Unsupervised Clustering
Unsupervised hierarchical clustering was used to identify the
clusters of ccRCC tumors based on input radiomics features. We
identified two major clusters of ccRCC tumors in this study.
During the clustering, the distance between two clusters in the
feature space was measured by ‘cosine’ distance. The
unsupervised clustering method was intrinsically an iteration
process based on the similarity among radiomics features. At
each iteration of the clustering, two of the most similar clusters
were combined into one cluster and then acted as one cluster for
the next iteration. A cluster node in the clustering tree could be
one individual radiomics features or several radiomics features.
A detailed description of unsupervised hierarchical clustering
can be found in our previous publication (10).

Association Between Confounding
Factors and Survival Outcomes
In this study, a direct association between confounding factors and
survival outcomes was also studied. The two confounding factors
were CT slice thickness and tumor size. The information of CT slice
thickness was retrieved from DICOM attributes tagged as
(0018,0050). Patients were assigned to two subgroups with slice
thickness ≤3 mm (74 patients) and >3 mm (109 patients). With
respect to tumor size, patients were assigned to two subgroups with
tumor size less than or equal to the median size value (60 patients)
and greater than the median value (123 patients).

Statistical Analysis
Unsupervised clustering and principle component analyses were
used to stratify the cohort into two groups/phenotypes. The
association of this radiomics clustering/phenotypic binary
classification was tested primarily with survival outcomes (OS,
CSS and RFS) using Kaplan–Meier curves and Cox-regression
models. Secondarily, the radiomics cluster’s association with other
patient’s and tumor’s characteristics (including demographic
characteristics (age, gender and race), pathological characteristics
(tumor grade), American Joint Committee on Cancer tumor, node,
metastasis staging (AJCC TNM staging), and genetic characteristics
(VHL, PBRM1, SETD2, BAP1, and KDM5C) using Chi-Square and
T-test when appropriate. P-values smaller than 0.05 indicated
statistical significance. All statistical analyses were performed
using Matlab 2020a.
RESULTS

Patient Characteristics and CT Examination
A total of 183 patients were included in our study according
to the inclusion and the exclusion criteria. The patient
characteristics are presented in Table 1. Patients’ average age
was 60 years (± standard deviation (std) of 12). Majority of
patients were men (66%) and white (96%). The mean ± std
of tumor size was 6.4 ± 3.2 cm. The minimum and maximum of
tumor size were 1.5 and 15.5 cm, respectively. The cohort was
Frontiers in Oncology | www.frontiersin.org 5
close to be evenly split between early stage (52% had stage I) and
advanced stage (48% has stages II–IV). The CT scan
characteristics are presented in Table 2. Most of the patients
were scanned by the same vender CT scanner (GE Medical
System, 85%) but with different slice thicknesses; 60% had thin
CT slices scans while 40% had thick CT slices scans. A more
detailed CT characteristics were provided in Supplement S2.

Ablation Analysis Based on
Survival Outcome
As shown in Figure 1, radiomics-based analysis consisted of four
experiments. The results of the four corresponding experiments
are presented in Table 3.

In experiment #1, all the features were used to create a radiomics
signature without any exclusion. In this situation, the radiomics
signature was not associated with any of the survival outcomes (OS,
CSS and RFS, p-value >0.05). In experiment #2, the redundant
radiomics features were excluded leaving in only the redundancy-
TABLE 1 | Patient characteristics.

Patient characteristics Total patients (n = 183)

Age, year 59.9 ( ± 11.7)
Gender
Female 62 (34%)
Male 121 (66%)

Race
White 176 (96%)
Others 7 (4%)

Tumor grade
G1 1 (1%)
G2 72 (39%)
G3 79 (43%)
G4 31 (17%)

AJCC TNM staging
Stage I 96 (52%)
Stage II 14 (8%)
Stage III 48 (26%)
Stage IV 25 (14%)

Distant Metastasis
M0 160 (87%)
M1 23 (13%)

VHL mutation
Positive 100 (55%)
Negative 71 (38%)
Not available 12 (7%)

PBRM1 mutation
Positive 52 (28%)
Negative 119 (65%)
Not available 12 (7%)

SETD2 mutation
Positive 14 (8%)
Negative 157 (86%)
Not available 12 (7%)

BAP1 mutation
Positive 16 (9%)
Negative 155 (85%)
Not available 12 (7%)

KDM5C mutation
Positive 8 (4%)
Negative 163 (89%)
Not available 12 (7%)
May 2021 | Vo
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controlled radiomics set yielding a radiomics signature that was
significantly associated with OS (HR (95% CI) = 1.8 (1.0–3.3),
p-value <0.05), CSS (HR (95% CI) = 2.0 (1.0–4.1), p-value <0.05),
and RFS (HR (95% CI) = 2.6 (1.1–6.2), p-value <0.05). The
radiomics signature in experiment #2 included striking fewer
radiomics features (89/1160 = 7.6%). However, a correlation
analysis showed that the second radiomics signature had a high
correlation with CT scan slice thickness (p-value <0.001) which is
an image acquisition parameter that should not be associated with
clinical outcomes. This may be attributed to selection bias inherent
in retrospective multi-institutional cohort studies when technical
parameters are different between institutions, along with inter-
institutional differences in tumor stage, grade, or aggressiveness
tumors. Thus, in experiment #3, we used a radiomics feature set
used in experiment #2 but after further exclusion of CT slice
thickness dependent radiomics features. The third radiomics
signature continued to be significantly associated with OS, CSS,
and RFS (all p-value <0.05) with even higher magnitude of
association; HR (95% CI) increasing to 2.6 (1.5–4.4), 13.7 (7.1–
26.5), and 8.0 (3.8–17.0), respectively. The high HRs on predicting
patients’ outcomes indicated that the third radiomics signature was
a powerful prognostic signature, especially on predicting CSS.
However, experiment #3 radiomics signature continued to be
associated with tumor size which is an information readily
available through routine clinical imaging without the need for
complex radiomics analysis. In order to render this radiomics
signature independent of ccRCC tumor size, in experiment #4 we
further excluded radiomics features (from the set used in
experiment#3 model) that are highly correlating with tumor size
(C-Index = 0.877) to yield a tumor-size independent radiomics
signature. Final results showed that the well-controlled radiomics
signature from experiment #4 was significantly associated with
CSS (HR (95% CI) = 3.0 (1.5–5.7), p-value <0.05) and RFS
(HR (95% CI) = 6.6 (3.1–14.1), p-value <0.05) for ccRCC
patients, but was not significantly associated with OS (p = 0.06).

In addition, the associations between confounding factors
with survival outcomes were also studied. As shown in
Frontiers in Oncology | www.frontiersin.org 6
Supplement S1 Figure 1, there was a significant association
between CT slice thickness and patient’s OS (HR (95% CI) = 2.0
(1.2–3.5), p-value <0.01), CSS (HR (95% CI) = 2.0 (1.0–4.0), p-
value <0.01) and RFS (HR (95% CI) = 3.6 (1.6–8.0),
p-value <0.01), respectively. In Supplement S1 Figure 2, there
was expected significant association between tumor size and
patient’s OS (HR (95% CI) = 2.9 (1.2–5.6), p-value <0.01), CSS
(HR (95% CI) = 6.0 (3.0–12.2), p-value <0.01) and RFS (HR
(95% CI) = 5.0 (2.3–11.4), p-value <0.01). These two association
studies revealed that the patient data in the TCGA-KIRC project
were indeed factor-biased data within which real imaging
phenotypical signals were suppressed.

Radiomics Phenotypes
The radiomics feature set used in experiment #4 was our final set
to be implemented in constructing final most parasomnias,
scanning parameter-independent, and tumor size-independent
radiomics signature model classifying the study cohort into two
major phenotypes; referred hereafter as radiomics phenotype I
(RAD1) and radiomics phenotype II (RAD2). Demographics,
pathological characteristics, clinical parameters, and gene
mutation status are presented in Table 4. There was no
statistically significant difference between RAD1 and RAD2
clusters, except in regard the AJCC staging; almost three
quarters of patients with RAD1 radiomic signature had stage I
tumor while less than half of patients in RAD2 cluster had stage I
disease (72% vs 40%, p-value <0.01). No significant difference
between the two radiomics phenotypes in terms of gene
mutation status as can be seen in Table 4.

RAD1 radiomics phenotype included 71 patients and RAD2
phenotype included 112 patients. RAD1 cluster was reflective of the
less aggressive ccRCC, in comparison to RAD2 cluster, consistently
associated with lower AJCC cancer stage and with better cancer-
specific and recurrence-free survival as reflected in Figure 2. In
terms of overall survival, RAD1 tended to have better survival also
but the association was not statistically significant. Themost striking
divergence of survival is noticed in the recurrence-free survival;
Cox-regression hazard ratio of RAD2 vs. RAD1 was HR (95% CI) =
6.6 (3.1–14.1), p-value <0.05.
DISCUSSION

In this study, we demonstrated a proof of concept to remove
redundant, CT slice thickness-dependent (biased), and tumor-
size dependent radiomics features towards building a concise
radiomics signature in patients with ccRCC. Furthermore, we
demonstrated that the final most parsimonious radiomics
signature model stratified this multi-institutional cohort into
two major radiomics phenotypes that are significantly different
by AJCC staging, CSS, and RFS. However, the radiomics
signature model was not associated with genetic mutation
status nor with any other available patient or tumor
characteristic. In this study we have demonstrated how
radiomics models can be negatively impacted by confounders
TABLE 2 | CT scan characteristics.

CT scan characteristics Total patients (n = 183)

Scanner manufacturer
GE Medical System 156 (85%)
SIEMENS 24 (13%)
Philips 3 (2%)

CT slice thickness
thin section (≤3 mm) 109 (60%)
thick section (>3 mm) 74 (40%)
overall 3.63 ± 1.51, 1.25, 7.5

Current-time product (mAs) 324 ± 124, 101, 686
Pixel spacing (mm) 0.81 ± 0.10, 0.59, 0.97
Voltage (kVp)

120 172 (94%)
130 or 140 11 (6%)
Values are presented as frequency (%) for categorical variables and mean ± std, minimum
and maximum for continuous variables.
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(like CT slice thickness) and tumor size (a previously proven
prognosticator) leading to false/overvalued signatures. As shown
in Figure 1, the addition of the controlling procedure after the
feature extraction is a supplement to the existing standard
radiomics guideline (9), and should be helpful for medical
image analysis whose data were usually relatively small and
with high heterogeneity of imaging protocol.

Our analysis framework followed an ablation study paradigm,
i.e., investigating factors sequentially, from feature redundancy to
imaging parameters (CT slice thickness) to tumor size in order to
evaluate the effect of each factor to the final radiomics signature. For
the feature redundancy, we have shown that there was a large
redundancy existing within the radiomics feature set. A raw feature
set containing 1,160 features could be efficiently represented by only
89 dimensions of principal components, which represent 7.6% of
the original radiomics features. The reason for the existence of
redundancy is because feature extractors, including other widely
used extractors (20) (e.g., PyRadiomics (38) and IBEX (37)), were
based on a number of basic feature extraction algorithms (e.g.,
Wavelet features (42), Gray-Level Co-occurrence Matrix (GLCM)
features (43), etc.), which contained multiple tunable parameters
aiming to extract the features in multi-scales for the sake of not
missing any valuable image patterns (33). Thus, it is highly
recommended that the removal of feature redundancy be the first
step when initializing a radiomics analysis. It’s also notable that
unsupervised machine-learning methods, such as non-parametric
principal component decomposition (39) and unsupervised
hierarchical clustering (10), were recommended for redundancy
removal and radiomics signature building. Compared to the
supervised methods, the unsupervised machine-learning methods
generally have a lower risk on overfitting the problem, because little
or no prior knowledge is needed for the learning parameters.

For image acquisition parameters, our study showed that
ccRCC patients imaged with different slice thicknesses were
associated with significantly different survival outcomes, which
is not biologically plausible and certainly is attributed to inherent
Frontiers in Oncology | www.frontiersin.org 7
bias in retrospective studies. The patients with thicker CT scan
slices thickness were of more aggressive tumors when compared
to patients with thinner CT scan slices (See Supplement S1
Figure 1(A), thick vs. thin slice thickness group was of HR of
recurrence (95% CI) = 3.6 (1.6–8.0), p <0.01). We believe this
apparent association is because institutions that contributed
ccRCC to the TCGA and TCIA with thicker CT slices
happened to be contributing ccRCC tumors with more
aggressive behavior (i.e. larger tumors with higher stage of
disease). If the effect of slice thickness on radiomics features is
not attended to and controlled for, we would have committed an
error by producing a radiomics signature that is dependent on
the slice thickness of the CT scan and therefore completely false.

ccRCC tumor size has long been identified as an important
prognosticator and it is easily measured on routine abdominal
imaging without the need for advanced processing or radiomics.
Our study demonstrated that tumor size-dependent radiomics
features may exaggerate the clinical utility of radiomics and may
mask the real/tumor size-independent radiomics clinical utility.
Size independent radiomics features are reflective of tumor
textural heterogeneity will ultimately provide additional
prognostic information separate from tumor size measurement
which is routinely implemented clinically (e.g., clinical staging
for kidney cancer (44), RECIST 1.1 (45)). In this study, we
introduced a method to remove the effect of tumor size from the
radiomics signature models built to yield a size-independent
radiomics signature with more valuable input into the tumor
internal environment.

In summary, there were two main findings in our work: in
retrospective multi-institutional imaging data with heterogenous
techniques, image acquisition parameters could lead to false
radiomics signatures while size-dependent radiomics may yield
overvalued clinical utility of radiomics signature. Unfortunately,
there is still suboptimal awareness of these two pitfalls in
radiomics literature, although some researchers have tried to
establish quality assurance criteria for radiomics study (46).
TABLE 3 | Results of the four designed experiments.

Experiment Feature Exclusion and Dimension Reduction Survival Outcome Supplementary Experiment

# Purpose CT Slice
Thickness

Tumor
Size

Principal
Component
Analysis

Num of
Feature

Dimensions

OS CSS RFS Correlation to CT
Slice Thickness (Chi-

square)

Correlation
to Tumor

Size
(C-Statistic)

(HR (95%CI)
and log-rank

test)

(HR (95%CI)
and log-rank

test)

(HR (95%CI)
and log-rank

test)

1 Study All
Features

1,160 1.02 (0.59–
1.75)

1.04 (0.53–
2.01)

1.17 (0.55–
2.51)

<0.001 0.628

0.929 0.905 0.674
2 Study

Redundancy
Effect

× 89 1.79 (0.98–
3.29)

1.95 (0.93–
4.08)

2.63 (1.11–
6.21)

<0.001 0.605

0.033 0.043 0.009
3 Study

Scanning
Parameter
Effect

× × 86 2.58 (1.51–
4.42)

13.72 (7.12–
26.5)

7.98 (3.76–
16.9)

0.872 0.877

0.002 <0.001 <0.001

4 Study Tumor
Size Effect

× × × 81 1.74 (1.01–
2.99)

2.95 (1.52–
5.72)

6.59 (3.09–
14.1)

0.188 0.667

0.0582 0.007 1<0.00
M
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The bold values represent p <0.05 indicates significance. C-index >0.8 indicates high correlation.
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For image acquisition parameters, most of previous studies on
the effect of image acquisition parameters focused on studying
feature reproducibility and model generalization. Such studies
could only result in conclusions that the heterogeneity in image
acquisition parameters decreased the reproducibility and
performance of radiomics signatures. Our study, for the first
time, showed that the effect of image acquisition parameters
could be severe enough to lead to false biologically unplausible
association. Attention to and control for imaging acquisition
parameters that are influential of radiomics is of crucial
importance in retrospective studies, especially multi-
institutional ones.

For tumor size, the risk of overvalued radiomics signature
induced by tumor-size-effect was mainly caused by a large
portion of radiomics features that were basically ‘mixture’
features, which characterized tumor size and intratumor
imaging pattern simultaneously, such as Gray-Level Run
Frontiers in Oncology | www.frontiersin.org 8
Length Matrix (GLRLM) (47) and Gray-Level Size Zone
Matrix (GLSZM) (48). The contribution weights between
tumor size and image patterns to the final feature value were
variable depending on the specific tumor phenotypes.
Unfortunately, in most of radiomics feature extraction
packages, such as PyRadiomics, IBEX, etc., the effect of size on
‘mixture’ features was not well studied (33). Thus, the size effect
in ‘mixture’ feature may be easily overlooked and may lead to an
over-valued size-dependent radiomics signature. The prognostic
information from such a signature will overlap with the
prognostic information already retrieved by measuring tumor
size. For example, Mattea et al. (15) tested a radiomics signature
previously shown to have predictive values on survival outcome
among head and neck cancer patients, but eventually, this
radiomic signature was found to be a surrogate for tumor size.

The limitations of our work include the following points.
First, the number of patients in the TCGA-KIRC project was
TABLE 4 | Demographic, clinical, pathological, and genetic characteristics of the final radiomics phenotypes.

Patient characteristics Radiomics Phenotype I (Low-risk, n = 71) Radiomics Phenotype II (High-risk, n = 112) p

Age, year 62 (± 12) 59 (± 11) 0.148
Gender 0.886

Female 24 (34%) 38 (34%)
Male 47 (66%) 74 (66%)

Race 0.330
White 68 (96%) 108 (96%)
Others 3 (4%) 4

Tumor grade 0.227
G1 1 (1%) 0 (0%)
G2 31 (44%) 41 (37%)
G3 31 (44%) 48 (43%)
G4 8 (11%) 23 (21%)

AJCC TNM staging <0.01**
Stage I 51 (72%) 45 (40%)
Stage II 1 (1%) 13 (12%)
Stage III 13 (18%) 35 (31%)
Stage IV 6 (8%) 19 (17%)

Distant Metastasis 0.267
M0 65 (92%) 95 (85%)
M1 6 (8%) 17 (15%)

VHL mutation 0.068*
Positive 43 (68%) 57 (53%)
Negative 20 (32%) 51 (47%)
Not available 8 (−) 4 (−)

PBRM1 mutation 0.207
Positive 15 (24%) 37 (34%)
Negative 48 (76%) 71 (66%)
Not available 8 (−) 4 (−)

SETD2 mutation 0.843
Positive 6 (10%) 8 (7%)
Negative 57 (90%) 100 (93%)
Not available 8 (−) 4 (−)

BAP1 mutation 0.746
Positive 8 (13%) 8
Negative 55 (87%) 100
Not available 8 (−) 4 (−)

KDM5C mutation
Positive 6 (10%) 2 (2%) 0.055*
Negative 57 (90%) 106 (98%)
Not available 8 (−) 4 (−)
May 2021 | Volume 11 | Article
Values are presented as n (%) for categorical variables and mean (± std) for continuous variables. **indicates high significance with p<0.05, and *indicates weak significance with a p-value
between 0.05 and 0.10.
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relatively small and there were no further external data to
validate our final radiomics signature. Second, except for slice
thickness, other image acquisition parameters, such as scanning
mode and reconstruction kernel, were not studied because most
of the CT scanning (85%, see Table 1) were performed on
scanners manufactured by the same vender with similar
smooth reconstruction kernels. Fortunately, since the TCIA is
a rapidly developing open research community supported by
National Cancer Institute, it is promising that more and more
projects such as the TCGA-KIRC will be created/improved and
available in near future. Third, using PCD for dimension
reduction could lead to losing of features’ original physical
quantification and make the modeling a black box which is
difficult for interpret. Finally, in this study, we only used single-
modal imaging and unsupervised machine learning algorithms
for modeling, however, as the data increase in future, we could
investigate multimodal imaging and supervised machine
learning algorithms which have shown promising results in
recent years (49–53).
CONCLUSION

In this paper, we demonstrated that a radiomics signature could
be negatively impacted by multiple factors, including radiomics
redundancy from large-scale feature extraction, biases from
image acquisition parameters, and underlying dependency to
established clinical prognosticator (tumor size). Proper attention
to and control for these pitfalls are needed to guarantee a reliable,
reproducible, and clinically relevant radiomics signature. Our
work used the prediction of survival outcomes in ccRCC patients
as an example. In our study, the final most concise, slice
thickness independent, and tumor size-independent radiomics
signature stratified multi-institutional retrospective cohort of
ccRCC into two distinct phenotypes that are significantly
different in tumor stage, CSS and RFS.
Frontiers in Oncology | www.frontiersin.org 9
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