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In recent years, the incredible boost in stem cell research has kindled the expectations of both patients and physicians.
Mesenchymal progenitors, owing to their availability, ease of manipulation, and therapeutic potential, have become one of the
most attractive options for the treatment of a wide range of diseases, from cartilage defects to cardiac disorders. Moreover, their
immunomodulatory capacity has opened up their allogenic use, consequently broadening the possibilities for their application. In
this review, we will focus on their use in the therapy of myocardial infarction, looking at their characteristics, in vitro and in vivo

mechanisms of action, as well as clinical trials.

1. Introduction

Although traditionally regarded as a health concern related
particularly to the industrialized world, cardiovascular dis-
eases are now the first cause of death worldwide [1], with
myocardial infarction (MI) resulting in 12.8% of deaths.
Aside from changes in ways of life associated with economic
and social development, one of the main reasons is the fact
that MI is an evolving disease. After the ischemic event,
anaerobic conditions rapidly induce massive cell death, not
only involving cardiomyocytes (CMs), but also vascular
cells. Although the organism tries to exert a compensatory
activity (reviewed in [2]) during the first stages of the disease
and may even manage to partially restore functionality, the
resulting scar is never repopulated, relentlessly leading the
patient towards the setting of heart failure. Thus, though
not conventionally regarded as such, cardiac disease is a
degenerative affection in which lack of sufficient contractile
and vascular cells leads to a decompensated neurohormonal
microenvironment [3], which further impairs both organ
function and cell survival.

Although the existence of stem cells has been a well-
known fact for nearly half a century [4], it is in the last 15
years that the field has experienced a major boost. Their
capacity for differentiation has made stem cells outstanding

candidates for the treatment of degenerative diseases, substi-
tuting for cells lost during the course of the disorder.
Consequently, cardiac diseases and M1 have been the object
of intense research [5]. Among the cell types studied, mesen-
chymal stem cells (MSCs) are strong candidates for success
in the MI setting. In the following pages, we will discuss their
capacities as well as pre- and clinical investigations in which
these cells have been employed.

2. Origin, Types, and Characteristics

The studies by Friedenstein and colleagues are regarded
as one of the first reports on MSC [4]. In these, the
clonogenic potential of a population of bone marrow- (BM-)
derived stromal cells, described as colony-forming unit
fibroblasts, was examined. BM is indeed one of the best-
known sources of progenitor cells, MSC being among them
[6]. Although this is not entirely understood, BM-MSC
are thought to act as supporters and nurturers of other
cells within the marrow [7-9], possibly in a location close
to blood vessels [10]. However, there is a relatively small
population (0.01%-0.0001% of nucleated cells in human BM
[11]), so MSC can be easily purified by plastic adherence
and expanded after BM extraction. Similarly, but adding
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simple mechanical and enzymatic processing, a mixed cell
population (called stromal vascular fraction, SVF) can be
isolated from adipose depots, which, after in vitro culture and
homogenization, gives rise to the mesenchymal progenitors
from this tissue, also termed adipose-derived stem cells
(ADSCs) [12]. Adipose tissue is regarded as a much richer
source of progenitors, harboring 100 to 500 times the
numbers seen in BM [13]. However, despite similarities
in phenotype, differentiation, or growth kinetics, there are
certain differences at a functional, genomic, and proteomic
level [9, 14], suggesting a degree of higher commitment
of BM-MSC to chondrogenic and osteogenic lineages than
ADSC [15].

Adipose tissue and BM are the most widely researched
sources of mesenchymal progenitors because they are easy to
harvest, and owing to the relative abundance of progenitors
and the lack of ethical concerns. Nevertheless, MSCs have
been ubiquitously found in a variety of locations, as umbili-
cal cord blood [16], dental pulp [17], menstrual blood [18],
or heart [19], among others (reviewed in [20]). This wide
variety of origins, methodologies, and acronyms prompted
standardization in 2005 by the International Society for
Cellular Therapy, which set the minimum requirements
for MSC definition (Table 1). First, MSC must be plastic-
adherent when maintained in standard culture conditions.
Second, MSC must express CD105, CD73, and CD90, and
lack expression of CD45, CD34, CD14 or CD11b, CD79a,
or CD19 and HLA-DR surface molecules. Third, MSC must
differentiate to osteoblasts, adipocytes, and chondroblasts in
vitro [21]. Still, caution must be taken as some reports fail to
meet these criteria, and MSC is often employed for “marrow
stromal cell,” “mesenchymal stromal cell” or “marrow stem
cell” Accordingly, a clarification was published in which
MSC was defined as “multipotent mesenchymal stromal
Cells” [22], adding the supportive property to the required
characteristics [23].

3. What Do MSCs Have to Offer to
Cardiac Regeneration?

When considering the goal of cardiac tissue regeneration, the
desired objective must encompass three objectives: (i) the
production of a replacement myocardial mass, (ii) the forma-
tion of a functional vascular network to sustain it, and (iii)
the returning of the impaired ventricle to its proper geom-
etry. Cell therapy may theoretically affect those processes
in two ways: either by direct differentiation of transplanted
cells towards the desired lineages or by their production of
molecules with therapeutic potential (Figure 1).

BM-MSC have shown their in vitro capacity to give
rise to endothelial cells (ECs) [24, 25] and smooth muscle
cells (SMCs) [24]. Cardiomyocyte differentiation has proved
more problematic, as either demethylating agents have been
employed [26], or it has been inefficient and incomplete
[27, 28]. In contrast, the cardiac potential of ADSC is better
documented in vitro, showing their capacity to give rise to
CM, either by the use of DMSO [29] or CM extracts [30].
In addition, ADSC seems to harbor a progenitor subset
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TasLE 1: Standardized requirements for MSC definition.

Multipotent mesenchymal stromal cells (MSE) properties

(i) Plastic adherence

(ii) Cell surface antigen expression profile
CD73%, CD90", CD105", HLA-DR~, CD11b~, CD14",
CD19-,CD34-, CD45-, CD79a~

(iii) Multipotency
Chondroblast, Adipocyte, Osteoblast

characterized by the expression of Nkx2.5 and Mcl2v [31]
and whose differentiation relies on the autocrine/paracrine
activity of vascular endothelial growth factor (VEGF) [32].
SMC [33] and EC [34] have been obtained from adipose
cells, yet a cautionary note must be struck, as some of these
studies either rely on subpopulations of freshly isolated cells
or culture them in differentiation-promoting medium before
purifying the mesenchymal population [35, 36]. Finally,
other mesenchymal progenitors have also been differentiated
to CM or CM-like cells, such as menstrual blood-derived
MSC [18] or umbilical cord blood MSC [37].

However, although it is extremely interesting, this dif-
ferentiation potential must cope with two opposing fac-
tors. First, patients receiving stem cell therapy are severely
diseased and usually elderly, two factors that have an
outstanding impact on stem cell function. For instance, a
decrease in the numbers and functionality of circulating
endothelial progenitors is directly related to cardiovascular
risks and smoking [38, 39] and age has also been shown
to impair the angiogenic capacity of both ADSC [40] and
BM-MSC [41]. Second, the small percentage of engrafted
cells (see [42] for a review) coupled to the huge catastrophe
caused by an MI (the loss in some cases of over 1 billion CM
[43]) and the low rate of differentiation achieved even under
in vitro controlled conditions makes the adding of such small
number of cells a therapeutically inefficient approach.

Nevertheless, secretion of beneficial molecules has been
demonstrated to be able to exert a positive effect, even
when a few engrafted cells are left [44]. These molecules
can induce a benefit either by increasing tissue perfusion,
decreasing collagen deposition and fibrosis, enhancing host-
cell survival, or attracting/regulating endogenous progeni-
tors. Thus, Chen and coworkers compared the expression
profile of BM-MSC and dermal fibroblasts [45], showing
that mesenchymal progenitors secreted a higher amount
of several molecules, including the potent proangiogenic
cytokine VEGF or the chemotactic stromal derived factor-
1 (SDF-1). Conditioned medium from BM-MSC induced
the recruitment of EC and macrophages, and improved
wound healing. Moreover, it has recently been shown that
serum-deprived BM-MSC acquire EC features and increase
the release of VEGF or hepatocyte growth factor (HGE),
another potent angiogenic molecule [46], both of which
have been reported to be secreted by ADSC [32, 47, 48].
Moreover, Dr. March’s group demonstrated that ADSCs
have a pericytic nature and are able to form and stabilize
functional vascular networks when mixed with endothelial
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FiGure 1: Main MSC actions on injured myocardium. Mesenchymal progenitors transplanted onto the ischemic myocardium are able to
secrete a plethora of therapeutic molecules (paracrine activity) and even to differentiate towards (cardio-) vascular lineages, encouraging
the healing of the damaged tissue, avoiding its transition to a scarred muscle, and regenerating the heart tissue mainly at the vascular
level. Abbreviations: IGF-1: insulin-like growth factor-1; SDF-1: stromal derived factor-1; VEGF: vascular endothelial growth factor; HGF:
hepatocyte growth factor; MMP: matrix metalloproteinase; LV: left ventricle.

progenitors [49]. Also, BM-MSC show a potent antifibrotic
action, as their conditioned medium decreases cardiac
fibroblast proliferation and expression of collagen types I and
III [50, 51] and increases secretion of antifibrotic molecules
such as matrix metalloproteinases (MMPs) 2, 9, and 14 [52].
These cells express five types of MMP (2, 13 and membrane
type-MMP 1, 2, and 3) and are able to cross through type
I collagen membranes [53], which theoretically would allow
their trafficking across the infarction-derived scar. Likewise,
ADSCs produce transforming growth factor- (TGF-) 1
[54], a potent regulator of fibrosis. Taken as a whole, these
examples demonstrate that mesenchymal progenitors are
potent paracrine mediators with a considerable capacity to
impact infarct evolution.

One last noteworthy competence is the ability of BM-
MSC and ADSC to modulate the immune response. Marrow-
derived mesenchymal progenitors inhibit the proliferation
of activated T cells and the formation of cytotoxic T
cells [55], inducing an anti-inflammatory phenotype, which
would allow their allogenic use and significantly broaden the
scope of their applicability. However, Huang et al. reported
that differentiation reduced their capacity of immunological
escape [56], related to an increase of immunostimulatory
molecules MHC-Ia and II and a decrease in the immuno-
suppressive MHCIb. Along similar lines, McIntosh and
coworkers reported that ADCS beyond passage one (and thus
devoid of contaminating differentiated cells [57]) failed to
elicit a response from allogenic T cells [58], but this attribute
may be diminished under inflammatory stimuli, as shown in
vitro [59].

Finally, since the onset of induced pluripotent stem cells
(iPSCs) [60], mesenchymal cells have been investigated [61,
62] due to their relatively easy harvest and higher potency
than other cell types (e.g., dermal fibroblasts), which show
an increased efficiency, even in the absence of the oncogene c-
Myec. Their supportive capacities have also made them good
candidates to replace mouse cells as feeders [63, 64].

4, MSC in Animal Models of MI

However, in spite of all the positive characteristics of
mesenchymal progenitors already depicted, their in vivo
testing in animal models of the disease is compulsory. In
this regard, three different settings can be found. First, the
acute setting, in which cells are transplanted within hours of
the MI. Here, the inflammatory microenvironment and the
necrotic/apoptotic signals released from resident cells [65,
66] are the main opposing forces to the therapeutic activity
of cells. Nevertheless, homing signals [67] and an antifibrotic
milieu [68] may have a positive influence. Also, from a
practical point of view, dealing with acute models offers the
advantage of subjecting animals to only one surgery, as at the
time of the M1 (or minutes after it), the cells are applied, thus
decreasing mortality and invasiveness. As a consequence, the
majority of published reports use acute models [37, 69—
84]. Most studies (with the exception of the two by van der
Bogt and colleagues [74, 77]) have consistently demonstrated
that the treatment induces a significant benefit for cardiac
function, mainly through paracrine mechanisms that induce
an increase in tissue perfusion and a decrease in the size of
the scar and collagen content.



Similar results have been obtained in a second setting, the
chronic one. Here, the repair processes that take place after
ischemia have been completed, the scar has matured, and
although a new network of blood vessels has been created,
this is disorganized and inadequate [85, 86]. These facts
impose a great burden upon cell survival. However, it must
be taken into account that the generation of homogeneous
populations as BM-MSC or ADSC needs weeks of in vitro
culture, thus, unless used in the allogeneic setting, there
is no possibility of the bedside translation of the use of
mesenchymal progenitors in the acute setting. In spite of
this difficulty, fewer reports deal with this issue [87-90].
Compared to results in the acute setting, mesenchymal cell
therapy of chronically infarcted hearts has a positive effect
upon organ contractility and histology.

As a third and intermediate position, the so-called suba-
cute model represents a situation where angiogenic processes
are still on course, either through endothelial progenitors
[91] or macrophages [92], and the receding of inflammation
plus the increase in fibrotic processes are also on course. As
with chronic models, there are few reports in this setting
[17, 18,93, 94], but again the benefit and mechanisms appear
to be consistent.

Nevertheless, analyzing in more depth the studies men-
tioned above, it is possible to find a fair amount of
information on how mesenchymal progenitors behave when
injected into the diseased heart has been gathered. Chen
et al. showed that transplantation of BM-MSC into chron-
ically infarcted rabbit hearts induced an increase in the
concentration of SDF-1 that elicited the chemotaxis of host-
derived BM progenitors (CD34*, CD117*, STRO1") and was
related to a functional benefit, a decrease in infarct size and
improvement in tissue vascularization [89]. Li and coworkers
demonstrated that the functional enhancement was accom-
panied by the augmented expression of the prosurvival gene
Akt [95] whereas Mias and colleagues showed that the benefit
upon contractility and remodeling in vivo was accompanied
in vitro by a plethora of antifibrotic actions [52]. In a
sheep model of MI, the group of Dr. Spinale monitored
the evolution of MMP and their inhibitors, demonstrating
a relationship with the number of transplanted cells [75].
Resembling their in vitro behavior, several publications have
demonstrated the association between proangiogenic activity
in vitro and secretion (either direct or host-derived) of
angiogenic cytokines as VEGF, HGE, or insulin-like growth
factor-1 (IGF-1), among others [17, 84, 93, 96, 97]. Whether
these capacities are related to the claimed pericytic nature of
these cells [10, 48, 49] remains to be resolved.

Immune modulation (reviewed in [98]) in theory pro-
vides the means for the allogenic use of MSCs and as an
off-the-shelf product (expanded prior to the onset of the
ischemia and applicable on demand). Two reports have
compared the effects of allogenic versus syngenic injection
of BM-MSC in rat model of MI, with conflicting results.
Imanishi et al. [78] demonstrated that both autologous and
allogeneic cells improved cardiac function 4 weeks after
transplantation, remained in the damaged tissues, and did
not stimulate rejection. Huang and coworkers conversely
[56] followed animals for up to 6 months. Syngenic cells
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stimulated cardiac recovery, but the effect of the allogenic
treatment was transitory (significant 3 months after injection
but not at 6) and BM-MSC disappeared earlier than
their syngenic counterpart. However, this difference can be
attributed to methodological discrepancies regarding time
of transplantation (acute versus chronic resp.) or followup
(1 versus 6 months). Equivalent and importantly, results
from clinically relevant large animal models of MI in which
allogenic cells have been employed have revealed either
positive [99, 100] or no functional outcome [79]. In contrast,
when autologous ADSC or BM-MSC are used [72, 83,
101, 102], reports have shown a robust and consistent
functional recovery after cell transplantation. Thus, strict
considerations about building up animal models must be
taken into account.

5. Problems, Solutions

Despite all the optimism, stem cell therapy shows certain
caveats that are amenable to improvement, namely, lack
of substantial engraftment and cell persistence, high levels
of death, and low in vivo differentiation capacity. Some
approaches to try to remedy these problems have included
the use of genetic manipulation and in vitro pretreatment
of cells or biomaterials. In this sense, the CXCR4/SDF-1
axis has been greatly exploited. Ma et al. investigated the
peak of cardiac SDF-1 expression [103] in rat MI, finding
that injected cells at that time point (1 day postinfarction)
increased cell engraftment and tissue angiogenesis. Cheng
and coworkers transplanted BM-MSC engineered to over-
express the receptor CXCR4, strengthening cell homing to
the injured tissue after tail vein injection [104]. The same
group combined BM-MSC peripheral injection with admin-
istration of granulocyte colony-stimulating factor, which
in vitro increased CXCR4 expression. However, although
engraftment was increased, no effect of cardiac function was
found [105]. Huang and associates demonstrated that over-
expression of the chemokine receptor CCR1 but not CXCR2
was associated with improved survival and grafting in a
mouse model of MI, which also restored functionality [106].

Cell survival in the infarcted myocardium is jeopar-
dized by hypoxia, inflammation, or oxidative stress. Liu et
al. engineered BM-MSC to overexpress angiogenin [107],
which improved hypoxic resistance in culture and was
translated into an increase in cell engraftment and functional
and histological recovery induction. Cell overexpression of
hemeoxygenase-1 through adenoviral transfection showed
superior therapeutic capacity, mainly through protection
from inflammation and apoptosis [108], whereas targeted
Akt overproduction in MSC restored cardiac function 2
weeks after MI through paracrine actions, including protec-
tion from hypoxia-induced apoptosis, release of cytokines,
and preservation of tissue metabolism [109-111]. Others
have explored antioxidants, like Song et al. who published
that reactive oxygen species (ROS) diminished BM-MSC
adherence to the substrate, but when treated with an ROS
scavenger (N-acetyl-L-cysteine), engraftment was improved
and the increase in fibrosis and infarct size prevented [112].
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Hsp20 overexpression also protected MSC from oxidative
stress and improved their beneficial activities [97].

However, viral or genetic modification of cells implies
certain risks that currently make it difficult for a devised
therapy to reach the bedside. Bioengineering uses biocom-
patible materials to improve or direct cell therapy and either
synthetic or naturally derived systems have been employed.
Jin and coworkers seeded BM-MSC on poly(lactide-co-1-
caprolactone) patches which when applied on a rat cry-
oinjury model were able to improve cardiac function and
decrease infarct size [113]. Porcine small intestine sub-
mucosa, a decellularized substrate, has been employed to
treat a rabbit model of chronic MI, showing a significant
benefit upon contractility and histology, as well as cell
migration towards the injured tissue [114]. The cell sheet
technology allows increasing thickness through stacking
of constructs, as shown by Chen et al. [115], where its
transplantation in a rat syngenic model of cardiac ischemia
improved cardiac function as well as paracrine secretion
of therapeutic molecules by grafted cells. Dr. Mori’s group
compared the transplantation of a cell sheet seeded with
ADSC versus fibroblasts, showing the superior effect of
the mesenchymal progenitors [116]. Recently, autologous
ADSC were transplanted along with allogenic ESC-derived
CD15" cardiac progenitors in a monkey model of infarction,
demonstrating the safety of the procedure, although the
functional outcome was not analyzed [117].

Finally, a word of caution must be added. Animal models
of the disease are a powerful tool to explore the feasibility of a
certain therapy, as MSC treatment of MI, but despite positive
and reproducible results, rodent and even large animal
models are just oversimplifications of the more complex
setting of the human disease. As above stated, animals where
cell therapy is applied are not elderly, nor severely diseased,
thus making any result, even if tremendously positive, just
a clue or hint before proceeding to the final application
to patients, where the real safety and effectiveness can be
assessed.

6. Mesenchymal Progenitors and
Clinical Application

Several clinical trials have been performed with autologous
BM-MSC, proving their safety when transplanted in patients
with either acute or chronic myocardial infarction [118—
120]. Moreover, the first clinical trial designed as a ran-
domized study showed an improvement in the cardiac func
tion 3 months after BM-MSC intracoronary infusion in
patients with acute MI [120]. In view of the encouraging
results of the previous clinical trials, new phase-I/1I studies
have been initiated, including the transendocardial au-
tologous cells (hMSC or hBMC) in Ischemic Heart
Failure Trial (TAC-HFT; http://www.clinicaltrials.org/
NCT00768066/), the Prospective Randomised study Of
MSC THErapy in patients Undergoing cardiac Surgery
(PROMETHEUS) trial (http://www.clinicaltrials.org/
NCT00587990/), and the Percutaneous Stem Cell Injection
Delivery Effects on Neomyogenesis (POSEIDON) pilot study

(http://www.clinicaltrials.org/NCT01087996/) [121], among
others.

BM-MSCs from allogeneic origin have been tested as
an off-the-shelf cell product. The first phase-I, randomized,
double-blind, placebo-controlled, dose-escalation study was
performed in 53 patients with acute MI, who intravenously
received one of three doses of BM-MSCs (0.5, 1.6 or 5.0 X
10° BM-MSC/Kg body weight) derived from a single cell
donor (Prochymal; Osiris therapeutics, Inc.) or placebo
[122]. Safety of the procedure was proven, showing fewer
episodes of ventricular tachycardia and even a better lung
function in the cell-treated group. Also, renal, hepatic, and
hematologic laboratory indexes were similar in the two
groups and no patient developed tumors. Importantly, a
significant increase was detected in the ejection fraction
(EF) of the treated patients. In a magnetic resonance
imaging substudy, cell treatment, but not placebo, increased
left ventricular ejection fraction and led to a reversal of
adverse remodeling after 6 months of treatment. Now, a
phase-II multicentre trial of ProchymalTM has been started
(http://www.clinicaltrials.org/NCT00877903/).

Furthermore, BM-MSC safety has been tested in patients
with moderate-to-severe chronic heart failure in a phase-II,
randomized, single-blind, placebo-controlled, dose-escala-
tion, multicenter study. In this clinical trial, the patients
received an endoventricular injection of an allogeneic
BM-MSC product (Revascor, Mesoblast Ltd.) along the
infarct border zone and no procedure-related complications
were reported. Analysis of the data obtained after 6 months
of followup (http://www.mesoblast.com/newsroom/asx-
announcements/archives/) showed a significant decrease
in the number of patients who developed any severe or
major adverse cardiac event, such as composite of cardiac
death, heart attack, or need for coronary revascularization
procedures. Moreover, the first cohort in the study (n = 20
patients), which received the low dose of the cell treatment,
showed a significantly greater increase in the EF when
compared with the control group [123].

On the other hand, regarding other sources of MSC
such as adipose tissue, no clinical trials have been ini-
tiated yet, despite the fact that the beneficial potential
of ADSC has been preclinically demonstrated [83]. Until
now, only the noncultured adipose stromal vascular frac-
tion is being tested at the clinical level. The first study,
a double-blind, placebo-controlled trial named APOLLO
(http://www.clinicaltrials.org/NCT00442806/; [124]) where
AMI patients received autologous adipose derived stem cells
by intracoronary infusion, was proven safe. Now, a phase
II/III ADVANCE trial has been initiated to evaluate their
efficacy (http://www.clinicaltrials.org/NCT01216995/).

In general, the results obtained from the many clinical
trials performed, either with MSC or other stem cell popula-
tions (mainly BM-derived cells and skeletal myoblasts), have
taught us several important lessons that will help to design
and interpret the following clinical trials. (i) Cell treatment
is not equally efficacious in all the patients. In general, it
seems that the worse the heart damage (meaning severely
decreased postrevascularization LVEF or high degree of
infarct transmurality), the better the benefit induced by the
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transplanted cells seems to be [125-127]. (ii) Cell dose and
timing for treatment are critical. Thus, a meta-analysis of the
results obtained in the most relevant clinical trials performed
in acute MI patients treated with BM cells has shown a
significantly greater effect in those patients that received
high cell doses (103 cells). Also, the same study showed a
greater beneficial effect when cells are infused during the
first week after the infarct [128]. (iii) Autologous treatment
is not necessarily the best. Until now, most of the clinical
studies have been designed for autologous cell application
in order to avoid the immunorejection of the transplanted
cells. However, it has to be borne in mind that stem cells
derived from aged patients with risk of atherosclerosis or
other diseases might be defective, and thereby, treatment
with them might not be as efficacious as with cells derived
from young healthy donors [129-131]. In that sense, the
use of MSC, which present immunomodulatory properties
[132], could be of great relevance. Thus, advantages of
allogeneic MSC treatment would be that, together with the
putative greater paracrine effect that allogeneic cells derived
from a healthy donor could exert, a fully tested clinical grade
ready to use allogeneic cell product could be available for
any patient. Importantly, patients with acute MI could also
be eligible for such treatment. Furthermore, the logistical
complexity and manufacturing costs that autologous cell
preparation implies would be significantly reduced by the
allogeneic application. However, caution should be taken
when taking into consideration the issues related to their
immune privilege explained above.

Thus, although it is mandatory to better understand the
mechanisms involved in the MSC phenotype switch and to
elucidate how this could affect the cells’ potential benefit, it
has to be considered that, in any case, because MSC would
not differentiate towards cardiovascular cells and would act
as a paracrine factor source [111], their permanent presence
in the heart might not be necessary for therapeutic purposes.
In that case, a temporarily action should be sufficient for
exerting their benefit. Phase-II clinical trials are currently
assessing the efficacy of the allogeneic MSC treatment,
together with the long-term safety. If allogeneicity of the
cells diminishes their effectiveness, several options could
be considered, like temporal patient immunosuppression
and/or donor-recipient HLA-IT mismatch minimizing. As
a consequence, the increase in the rate of engraftment of
transplanted cells is so far one of the main challenges. As
already indicated, the use of scaffolds could improve this
factor. Interestingly, a clinical trial has been performed in 15
patients with chronic MI who were treated with a collagen
scaffold previously seeded with bone marrow mononuclear
cells [133]. The cellularized patch was implanted onto the
pericardium and no adverse events were reported, showing
the feasibility and safety of the treatment. Furthermore,
a limiting effect in ventricular wall remodeling and an
improved diastolic function were detected. These posi-
tive results will probably promote new larger randomized
controlled trials, where mesenchymal and other stem cell
populations might be tested in combination with scaffolds,
thus leading to a further step in the therapeutic use of stem
cells.
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7. Conclusion

Mesenchymal cells have raised substantial interest in recent
years due to their potential and versatility. Although we are
only now starting to understand the mechanisms by which
they repair or induce the repair of damaged organs, their
pleiotropic activity and the technical ease of manipulation
makes them good candidates for the treatment of the ML
Though waiting for randomized, double-blinded, placebo-
controlled clinical trials in which large cohorts of patients
could participate, the available data demonstrates the safety
of the therapy and points towards a positive effect, further
encouraging new investigations. The addition of the latest
improvements in the field, including in vitro conditioning
and bioengineering, will surely suppose a further step
towards finding an optimized treatment. However, certain
issues, mainly immunomodulatory capacity and allogenic
use, need to be better understood.
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