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Abstract

Parkinson's disease (PD) is accompanied by functional changes throughout the brain, including
changes in the electromagnetic activity recorded with magnetoencephalography (MEG). An inte-
grated overview of these changes, its relationship with clinical symptoms, and the influence of
treatment is currently missing. Therefore, we systematically reviewed the MEG studies that have
examined oscillatory activity and functional connectivity in the PD-affected brain. The available
articles could be separated into motor network-focused and whole-brain focused studies. Motor
network studies revealed PD-related changes in beta band (13-30 Hz) neurophysiological activity
within and between several of its components, although it remains elusive to what extent these
changes underlie clinical motor symptoms. In whole-brain studies PD-related oscillatory slowing
and decrease in functional connectivity correlated with cognitive decline and less strongly with
other markers of disease progression. Both approaches offer a different perspective on PD-specific
disease mechanisms and could therefore complement each other. Combining the merits of both
approaches will improve the setup and interpretation of future studies, which is essential for a bet-

ter understanding of the disease process itself and the pathophysiological mechanisms underlying
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1 | INTRODUCTION

Parkinson's disease (PD) is the second most common neurodegenera-
tive disease after Alzheimer's disease, with a global disease burden of
more than five million people (Olanow, Stern, & Sethi, 2009). The neu-
ropathological hallmark of PD is the deposition of Lewy bodies, of
which alpha synuclein is the main constituent. Nigrostriatal dopami-
nergic neurons are notoriously affected, and loss of these neurons
leads to prominent motor features that can be treated symptomati-
cally using levodopa suppletion and deep brain stimulation (DBS). In
early disease stages, the alpha synuclein depositions mainly affect the
brainstem and the surviving neurons of the nigrostriatal dopamine
system, and extend to widespread cortical brain regions in later dis-
ease stages (Braak et al., 2003). PD is therefore increasingly recog-

nized as a whole-brain disease with functional disturbances at both

specific PD symptoms, as well as for the potential to use MEG in clinical care.

magnetoencephalography, motor network, network analysis, Parkinson's disease, whole-brain

subcortical and cortical levels, and is characterized clinically by both
motor and nonmotor symptoms.

The past two decades have seen rapid developments in functional
imaging techniques aimed at the detection, characterization and locali-
sation of brain activity. These techniques have yielded important
insights into the neuronal mechanisms that may underlie PD and its
broad range of clinical symptoms. One such technique is magnetoen-
cephalography (MEG), which noninvasively records the weak magnetic
fields that are induced by electrical activity in the cerebral cortex
(Cohen, 1968, 1972) and subcortical structures (Boon, Hillebrand,
Dubbelink, Stam, & Berendse, 2017; Hillebrand et al., 2016; Jha et al,,
2017). MEG's high temporal resolution can be used to study neuronal
activity as well as functional interactions between distinct brain
regions in great detail (Baillet, 2017).

Using MEG, PD-related neurophysiological characteristics have

been studied both within the motor system and for the brain as a whole.
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MEG analyses aimed at motor networks are spatially restricted to the
motor cortex and are usually performed in source-space. They can be
combined with neurophysiological signals of different origin, such as
muscle activity recorded using electromyography (EMG; Timmermann
et al., 2003; Volkmann et al., 1996) or local field potentials (LFPs) from
the subthalamic nucleus (STN) recorded during DBS (Hirschmann et al.,
2011; Litvak et al., 2011)). The study of whole-brain networks using
MEG generally involves resting state recordings. Roughly three different
approaches have been used in the analysis of whole-brain networks: the
analysis of oscillatory brain dynamics using measures of band-limited
power or peak frequency, investigation of functional (or directed/effec-
tive (Friston, 2011)) connectivity (FC) between brain areas, and assess-
ment of the topological organization of brain networks.

MEG studies increasingly use source reconstruction techniques,
such as beamforming, to project the extracranially recorded (sensor-
level) signals to source-space. In sensor-level analysis, several factors
that may lead to erroneous estimates of functional connectivity should
be considered. Multiple sensors pick up the signal from a single source
because of volume conduction (the transmission of electromagnetic
fields from a primary current source through biological tissue) and field
spread (multiple sensors picking up activity of a common source). In addi-
tion, the same sensor picks up signals of multiple sources due to signal
mixing. Moreover, the neuronal generators are generally not located
directly underneath the sensor with the maximum power (particularly for
axial gradiometers). The source-level approach can resolve some of these
ambiguities and enables interpretation of the functional results in an ana-
tomical context (Baillet, Mosher, & Leahy, 2001; Brookes et al., 2007;
Hillebrand, Barnes, Bosboom, Berendse, & Stam, 2012; Hillebrand, Singh,
Holliday, Furlong, & Barnes, 2005; Schoffelen & Gross, 2009).

So far, review articles tend to treat motor network-focused stud-
ies (Burciu & Vaillancourt, 2018; Magrinelli et al., 2016) and whole-
brain studies (Cozac et al., 2016) separately. Although some efforts
have been made to relate findings from motor networks to nonmotor
symptoms (Oswal, Brown, & Litvak, 2013b), it is unknown to what
extent findings from motor networks and whole-brain networks can
be compared and if so, which similarities and discrepancies are
present. A full understanding of the neurophysiological changes asso-
ciated with PD is a stepping-stone toward the development of bio-
markers and novel therapies that are urgently needed. Therefore, we
set out to systematically review the MEG literature on PD not only to
provide an overview of the neurophysiological characteristics of PD,
their relationship with clinical symptoms, the effect of disease pro-
gression, and the influence of treatment on these characteristics, but
also to explore how the results of motor network studies and whole-

brain approaches can be integrated.

2 | METHODS

We performed this systematic review of the MEG literature in PD in
accordance with the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) guidelines (Liberati et al., 2009). We carried
out web-based searches using medical databases: PubMed, Embase, Web
of Science, Emcare, Academic Search Premier, and ScienceDirect. We

used combinations of the key-words MEG and PD. The full search

strategies can be found in Supplement A. References up to October
15, 2018 (date of latest search) were used for further study. Two
researchers (LIB and VJG) independently screened all articles on title and
abstract using the following inclusion criteria: original research article,
published in English or Dutch, including a separate cohort of a minimum
of five PD patients, and quantification of at least one MEG-parameter.

Although the underlying sources of MEG and EEG are the same,
these techniques measure different components of the generated elec-
tromagnetic fields (resulting in different sensitivity profiles (Goldenholz
et al., 2009)). In addition, MEG is more suitable for source-space analysis
than EEG (Baillet, 2017), as it typically uses a higher number of sensors
and is less affected by the details of the volume conductor. Even though
neurophysiological information obtained using both techniques might be
complimentary, a direct comparison would be challenging. We have
therefore chosen to limit this review to MEG studies in PD (see Geraedts
et al. (2018) for a recent review of quantitative electroencephalography
(EEG) studies in PD (Geraedsts et al., 2018)). Studies in which data analysis
was confined to evoked fields were excluded, but studies aimed at indu-
ced/event-related MEG activity were included. Induced/event-related
activity differs from evoked fields by not being phase-locked to a certain
stimulus (David, Kilner, & Friston, 2006). Cohen's kappa for inter-rater
agreement was calculated during this selection process. In case of dis-
agreement, relevant sections were reread until agreement was reached.

Next, both reviewers evaluated the full-text of all included articles
using the Joanna Briggs Institute (JBI) checklist for case series, extended
with an item addressing clear reporting of MEG data acquisition and
analysis (see Supporting Information). Articles had to score a minimum of
five points (indicating a sufficient quality study) to be included in this
review, of which at least one point was scored on the first three items, at
least two points on item 4-8, and one point on item 11. In this descrip-
tive review, we chose to include a much-cited article (Timmermann et al.,
2003) that did not fulfill the latter (item 11) more stringent criteria on
conducting and reporting the MEG research. Nonetheless, the impor-
tance of clear reporting of MEG data acquisition and analysis procedures
is obvious (Gross et al., 2013). We subdivided the included articles into
two main groups according to the brain network the analysis was
focused on: motor network-focused, in which we treated the tremor net-
work as a sub-category, and whole-brain network focused. Since a series
of articles on the neurophysiological basis of neuronal entrainment in
PD (Te Woerd, Oostenveld, Bloem, De Lange, & Praamstra, 2015;
Te Woerd, Oostenveld, De Lange, & Praamstra, 2014; Te Woerd,
Oostenveld, De Lange, & Praamstra, 2017; Te Woerd, Oostenveld, de
Lange, & Praamstra, 2018), as well as four other articles (Anninos,
Adamopoulos, Kotini, & Tsagas, 2016; Boesveldt, Stam, Knol, Verbunt, &
Berendse, 2009; Gomez et al., 2011; Suntrup et al., 2013) tended to
stand alone from the rest of this review, these will not be discussed in
the results section, but the main findings are provided in Table 1.

3 | RESULTS

3.1 | Search results and study characteristics

Figure 1 shows the selection procedure with corresponding numbers

of publications. 312 articles matched the search terms and were
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Embase Web of Science

PubMed 216 Citations 132 Citations

Cochrane

6 Citations

Emcare Academic Search Premier

62 Citations 97 Citations Science Direct

141 Citations

N

‘/‘,/ 85 Citations

312 Non-Duplicate
Citations Screened

/

Inclusion/Exclusion
Criteria Applied

233 Articles Excluded After
Title/Abstract Screen

79 Articles Retrieved

Inclusion/Exclusion
Criteria Applied

26 Articles Excluded Based On
Inclusion/Exclusion Criteria

3 Articles Excluded
Based On JBI

50 Articles Included

FIGURE 1  Flowchart for inclusion of studies

included for title and abstract screening, leading to 79 articles meeting
the pre-specified in- and exclusion-criteria (Kappa = 0.832). These
articles were selected for full-text analysis, risk of bias assessment
was performed, and data extraction took place. Three articles were
excluded based on the JBI checklist (see Supporting Information) and
26 articles were excluded based on the inclusion/exclusion criteria.
Eventually, 50 articles were included for review. Frequency bands
were defined as follows: delta (0.5-4 Hz), theta (4-8 Hz), alphal
(8-10 Hz), alpha2 (10-13 Hz), beta (13-30 Hz) and gamma
(30-48 Hz). In several motor-network focused studies, the beta band
has been divided into low and high-beta. The upper limit of the low-
beta band is 20 Hz (Hirschmann et al., 2011; van Wijk et al., 2016),
21 Hz (Oswal et al., 2016), 22 Hz (Abbasi et al., 2018), or 25 Hz
(Airaksinen et al., 2015). An explanation of the neurophysiological

measures described in the reviewed articles is presented in Table 3.

3.2 | Motor network-focused research

A summary of the data extraction and risk of bias assessment of the
motor network-focused articles can be found in Table 1 and a sche-
matic overview to place the main findings in an anatomical context are
provided in Figure 2. Unless stated otherwise, motor network-focused

studies in this review have been performed in source-space.

321 |

Larger sensori-motor cortical (S1/M1) beta band power has been

Early disease stages

reported both in early-stage PD patients on dopamine replacement
therapy (DRT) and in medication naive patients as compared to con-

trols, recorded during the resting state (Pollok et al., 2012). In this

study, during isometric contraction of the contralateral forearm, beta
band power was suppressed in controls, but not in PD patients. Only
during isometric contraction, contralateral beta band power correlated
with Unified Parkinson's Disease Rating Scale (UPDRS)-IIl scores in
PD patients (Pollok et al., 2012). Hall and coworkers found larger
resting-state beta band power in the motor cortex contralateral to the
most affected hemibody in DRT-naive patients. The benzodiazepine
zolpidem, known for its modulating effects on PD motor symptoms,
normalized the ratio in resting-state beta band power between the
“affected” and “nonaffected” motor cortex and this correlated posi-
tively with improvement in UPDRS-IIl scores (Hall et al., 2014).
Cortico-muscular coherence (CMC) has been studied by correlating
M1 activity with EMG signals recorded in the forearm. CMC was not
different between PD patients and controls during steady-state con-
traction of the forearm (Pollok et al., 2012).

322 |

Studies in later-stage PD patients found that beta band power in corti-

Later disease stages

cal motor regions was lower during the resting state compared to con-
trols (both OFF and ON DRT; Heinrichs-Graham et al., 2014; Vardy
et al., 2011). Vardy and colleagues demonstrated that slowing of event-
related beta band oscillations in the motor cortex correlated positively
with UPDRS-IIl scores when recorded during a motor task and with
cognitive UPDRS components when recorded during the resting state
(Vardy et al., 2011). DRT significantly increased cortical motor beta band
power, thus having a normalizing effect (Heinrichs-Graham, Kurz, et al.,
2014). In contrast, STN-DBS lowered alpha and low-beta band power in
the sensorimotor cortex in two studies (both a sensor-space and a

source-space study) during eyes-open, resting-state (Abbasi et al., 2018;
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Cortical motor beta power
Early PD > controls'?
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FIGURE 2

(in color) Overview of main findings in motor network-focused research. A schematic representation of a coronal view of the brain,

combined with the forearm muscle extensor digitorum communis. All displayed findings involve undirected functional connectivity, depicted using
lines with double arrow heads. A: motor cortex; B: subthalamic nucleus; C: forearm muscle; D: temporal cortex. Red and blue represent higher
respectively lower values found in PD patients compared with controls; Black lines represent no significant difference between PD patients and
controls, or no comparison with a control group. References: (Hall et al., 2014; Heinrichs-Graham, Kurz, et al., 2014; Hirschmann et al., 2011;
Hirschmann, Ozkurt, et al., 2013; Litvak et al., 2011; Litvak et al., 2012; Oswal, Beudel, et al., 2016; Pollok et al., 2012; Pollok et al., 2013;
Salenius et al., 2002; van Wijk et al., 2016; Vardy et al., 2011). (b)Overview of main findings in tremor network-focused research. A schematic
representation of a coronal view of the brain, combined with the forearm muscle extensor digitorum communis. All displayed findings involve
coherence at tremor frequency and its (sub)harmonics. A: sensorimotor and premotor cortex; B: cingulate motor area; C: thalamus; D: subthalamic
Nucleus; E: cerebellum; F: forearm muscle. Not depicted in this figure: Posterior parietal cortex. References: (Hirschmann, Hartmann, et al., 2013;

Pollok et al., 2009; Timmermann et al., 2003; Volkmann et al., 1996)

Luoma et al., 2018). However, no correlation with motor improvement
has been observed. In addition, during a motor task, as well as during
eyes-closed, no differences between ON and OFF stimulation were
found.

Even in the absence of stimulation, MEG data are contaminated
by high-amplitude, low frequency artifacts mainly originating from the
influence of cardiovascular pulsations and breathing on the percutane-
ous extension wire (before implantation of a stimulator; Litvak et al.,
2010), and the stimulator itself (Oswal et al., 2016). Upon stimulation,
electromagnetic artifacts generated by the stimulator, such as jump
artifacts and ringing artifacts, obscure neuronal activity (see (Oswal,
Jha, et al., 2016) for a detailed description of DBS-artifacts). However,
MEG recordings are still technically feasible as DBS artifacts can be
minimized using spatial filters (Airaksinen et al., 2011; Cao et al,
2015; Cao et al, 2017), beamforming techniques (Mohseni et al.,
2010; Oswal, Jha, et al., 2016), or independent component analyses in
combination with mutual information (Abbasi, Hirschmann, Schmitz,
Schnitzler, & Butz, 2016). For a recent review on the effect of DBS
on multiple diseases, studied using MEG, see (Harmsen, Rowland,
Wennberg, & Lozano, 2018).

When studying induced MEG activity, prior to movement onset,

in healthy individuals a desynchronization in cortical motor oscillations

(beta band) occurs, that disappears during the actual execution of the
movement: Event-related desynchronization (ERD). This is followed
by a postmovement beta band rebound: Event-related synchroniza-
tion (ERS; Gaetz, Macdonald, Cheyne, & Snead, 2010; Jurkiewicz,
Gaetz, Bostan, & Cheyne, 2006). In PD patients OFF DRT, ERD, and
ERS response amplitudes are reportedly lower compared to controls
(Heinrichs-Graham et al., 2014), mainly for right-dominant diseased
patients (Heinrichs-Graham, Santamaria, Gendelman, & Wilson, 2017),
but ON DRT these differences could not be substantiated (Meissner,
Krause, Sudmeyer, Hartmann, & Pollok, 2018).

One study demonstrated higher resting-state beta band coher-
ence between bilateral primary cortical motor regions in PD patients
compared to controls, which normalized after DRT administration
(Heinrichs-Graham, Kurz, et al, 2014). In akinesia-dominant PD
patients, coherence between the ipsilateral supplementary motor area
(SMA) and M1 correlated with disease duration, not with UPDRS Il
scores, during rest (only ON DRT). During isometric contraction of the
forearm, coherence between SMA and M1 was inversely correlated
with UPDRS Il scores (only OFF DRT; Pollok et al., 2013).

Forearm CMCs in the beta and gamma band were demonstrated to
be significantly lower in PD patients than in controls when recorded

during steady-state contraction (Salenius, Avikainen, Kaakkola, Hari, &
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Brown, 2002) and this correlated with higher akinesia and rigidity sub-
scores (Hirschmann et al., 2013). This difference normalized after DRT
in one study (Salenius et al., 2002), but not in another (Hirschmann,
Ozkurt, et al., 2013). It was speculated by Hirschmann and colleagues
that this differential response to DRT was caused by the fact that
tremor-dominant PD patients were not excluded from the study from
Salenius and colleagues (Hirschmann, Ozkurt, et al, 2013; Salenius
et al.,, 2002), as CMC increases might be a characteristic of tremor allevi-
ation (Park et al., 2009). Transcranial alternating current stimulation
(tACS) of the motor cortex at beta frequency (20 Hz), but not at 10 Hz,
further attenuated both the beta band CMC during isometric contrac-
tion and reduced performance (amplitude variability) on a finger tapping
task in PD patients, but not in controls (Krause et al, 2013). In a
sensor- space study on the effect of DBS on motor CMC, results varied
and the correlation with improvement in motor function inconsistent
(Airaksinen et al., 2015).

By combining LFP recordings with MEG recordings in STN-DBS
patients, a frequency-dependent coherence has been demonstrated
between signals from the STN and the ipsilateral S1/M1 cortex in the
beta and gamma band during the resting state (Hirschmann et al., 2011;
Hirschmann, Ozkurt, et al., 2013; Litvak et al., 2011; Litvak et al., 2012;
Oswal, Beudel, et al., 2016; van Wijk et al., 2016). Beta coherence was
most dominant in the high beta band (van Wijk et al., 2016), which was
mainly located in the mesial premotor regions (Hirschmann et al., 2011,
Litvak et al., 2011; Oswal, Beudel, et al., 2016). Resting-state M1-STN
beta band coherence was inversely correlated (Hirschmann, Ozkurt,
et al, 2013) or not correlated with bradykinesia/rigidity UPDRS-III
scores (DRT ON and OFF; Litvak et al., 2011. DRT increased beta band
coherence between the STN and a small region in the prefrontal cortex
in one study (Litvak et al., 2011), but in other studies DRT suppressed
(Hirschmann, Ozkurt, et al., 2013) or did not modulate (van Wijk et al.,
2016) beta band coherence between the motor cortex and the STN. In
one study, stimulation of the STN suppressed resting-state high-beta
band coupling of the STN with mesial cortical motor regions, yet the
degree of suppression did not correlate with motor improvement
(Oswal, Beudel, et al., 2016).

Resting-state alpha band coherence has been observed between
the STN and ipsilateral temporal cortex (Hirschmann et al., 2011;
Hirschmann, Ozkurt, et al., 2013; Litvak et al., 2011; Oswal, Beudel,
et al, 2016). The alpha band coherence was not influenced by arm
movements in one study (Hirschmann, Ozkurt, et al., 2013), but
decreased upon movement in another study (in DRT ON more than in
DRT OFF; Oswal et al., 2013a). DRT and DBS did not influence the
resting-state alpha band coupling (Hirschmann et al., 2011; Litvak et al.,
2011; Oswal, Beudel, et al., 2016). The former authors suggested that
the identified alpha band network may reflect nonmotor functioning,
for example auditory processing involving the (8-10 Hz) tau rhythm in
the auditory cortex (Weisz, Hartmann, Milller, Lorenz, & Obleser, 2011),
or attentional processes (Hirschmann et al., 2011; Litvak et al., 2011;
Oswal et al., 2013b).

3.2.3 | Tremor network-focused research

Tremor most likely involves neuronal mechanisms different from

those underlying bradykinesia and rigidity, as the latter symptoms

worsen at the same rate as gait and balance impairments, whereas
tremor does not (Louis et al., 1999). MEG studies aimed at revealing
PD-related tremor networks have identified a number of brain regions
with oscillatory activity that is coherent with forearm EMG signals at
tremor frequency. First, a motor network contralateral to the 3-6 Hz
Parkinson resting tremor has been identified involving the dience-
phalic level (likely corresponding to the thalamus), the lateral premotor
cortex, S1 and M1 (Volkmann et al., 1996). Thereafter, cortico-cortical
coherence analysis with contralateral M1 as a seed region (i.e, in
which signals from the selected brain region are used to calculate
correlations with the rest of the brain) revealed harmonic involvement
(at single and double frequency) of the ipsilateral cerebellum, contra-
lateral cingulate motor area (CMA) and contralateral posterior parietal
cortex (PPC; Pollok et al., 2009; Timmermann et al., 2003). Over the
years, several interesting additional observations have been made:
(a) using MEG in combination with LFP recordings in DBS-patients, a
muscular-STN-M1 coupling was found during tremor (Hirschmann
et al., 2013). (b) when controls were asked to imitate a tremor, an
oscillatory network could be identified that is comparable to the
PD-tremor network observed in the dopamine-OFF state (Pollok
et al., 2009). (c) beta band power in cortical motor regions was lower
during simultaneous measurement of an intermittent tremor
(Hirschmann, Hartmann, et al., 2013; Makela, Hari, Karhu, Salmelin, &
Teravainen, 1993).

3.3 | Whole-brain focused research

A summary of the data extraction and risk of bias assessment of the
whole-brain focused articles can be found in Table 2 and a schematic
overview of the main findings is provided in Figure 3. Unless stated
otherwise, the whole-brain focused studies have been performed in

sensor-space.

3.3.1 | Spectral power

The mean frequency of cortical oscillations in PD patients decreases
over the course of the disease. In a study involving PD patients at the
earliest (drug-naive) disease stage, oscillatory slowing was already
present, most pronounced over the posterior brain regions (Stoffers
et al., 2007). When more advanced PD patients were studied, oscilla-
tory slowing was hardly influenced by DRT (Stoffers, Bosboom,
Wolters, Stam, & Berendse, 2008). Longitudinal analysis of PD
patients revealed increases in band power of the “slower” frequencies
(theta and alphal band), whereas band power of the “faster” frequen-
cies (beta and gamma) decreased. The spectral slowing correlated with
clinical progression of motor symptoms as well as global cognitive
decline (Olde Dubbelink et al., 2013a). In a cross-sectional analysis
involving Parkinson's disease dementia (PDD) patients, spectral power
had progressed toward diffuse slowing, independent of motor and
cognitive scores (Bosboom et al., 2006; Ponsen, Stam, Bosboom,
Berendse, & Hillebrand, 2012). The spectral slowing in PDD patients
could at least partly be reversed by treatment with the cholinesterase
inhibitor rivastigmine (Bosboom, Stoffers, Stam, Berendse, & Wolters,
2009). MEG-derived spectral markers may help in predicting conver-
sion to PDD: lower beta band power at baseline was the strongest

predictor for conversion to PDD over a period of 7 years, followed by
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(Continued)

TABLE 2

Source/sensor

space

Neurophysiological

measures®

Disease

Type of PD
cohort

Main findings

JBI
7

duration/stage®
HY stage I-lll

N=

Center
VUmc,

Year

Authors

Elevated levels of cortico-cortical FC are increased even further

Sensor

37 Spectral analysis
FC: SL

2008b

Stoffers et al.

by an acute DRT challenge, in parallel with motor

improvement.
Increases involved local FC (4-30 Hz) and intra- and

(2.7) years

8.0

Amsterdam, the
Netherlands

interhemispheric FC (13-30 Hz).
A strong decrease in overall task-related cortical activation was

BOON ET AL

Source

7 Event (swallowing)-

2013 University of 20 10 dysfagia and -Dysfagic PD:

Suntrup et al.

found in all PD patients, most prominent in dysfagic patients.
In nondysfagic patients a compensatory activation toward
lateral motor, premotor and parietal cortices seems to take

related power

(6.7)
-nondysfagic

53

10 nondysfagia
PD patients

Miinster,

Germany

PD: 8.2 (4.4)

placed upon swallowing, whereas the supplementary motor

area was markedly reduced in activity.

During a memory task, a significant reduction in alpha FC

Source

Spectral analysis

6

1-9 years

2016 University of 16

Wiesman et al.

between left inferior frontal cortices and left

Coherence: CMC

HY stage 1.5-11I

Nebraska, USA

supramarginal/superior temporal cortices in PD compared to

controls.

2Mean (standard deviation) or range (..-..)

PNeurophysiological measures relevant for this review; explanation of the measures can be found in Table 3

Note. DBS: deep brain stimulation; dPTE: directed phase transfer entropy; DRT: dopamine replacement therapy; ERD: event-related desynchronization; PLI: phase lag index; FC: functional connectivity; PDD: Parkinson's

disease dementia; HY stage: Hoehn & Yahr stage; JBI: Joanna Briggs Institute (score); MST: minimum spanning tree; N: number of PD subjects studied; PD: Parkinson's disease; PLV: phase locking value; SL: synchroniza-

tion likelihood; STN: subthalamic nucleus; TMS: transcranial magnetic stimulation.

cd e,
s

: Articles that have studied the same patient cohort.

)

peak frequency and theta power. Moreover, the combination of
impaired fronto-executive task performance and low beta band power
strongly increased the risk of conversion to PDD in this source-space
study (hazard ratio of 27.3 for both risk factors vs. none; Olde
Dubbelink et al., 2014).

Stimulation of the STN can have widespread effects on oscilla-
tory brain activity in multiple frequency bands. Whole-brain average
cortical frequency has been shown to increase upon stimulation of
the STN (Cao et al., 2015). In sensors overlying the central sulcus,
power in the beta band and of the mu rhythm decreased nonsignifi-
cantly, but the lowering in mu rhythm power (9-13 Hz in this study)
correlated positively with relief of rigidity (Airaksinen et al., 2012). In
another study, suppression of 9-13 Hz power (band width in line with
(Airaksinen et al., 2012)) in posterior cortical brain regions and
8-30 Hz power in right temporal regions correlated positively with
DBS-related global motor improvement (Cao et al., 2015, 2017). In
frontal and parietal regions, an increase in gamma band power has
been reported following DBS, which in frontal regions correlated
negatively with the improvement of total motor function (Cao
et al., 2017).

332 |

In sensor-space studies, local FC can be estimated by averaging FC

Functional connectivity

values for all possible pairs of sensors within a given region of interest
(ROI), whereas between-ROI FC can be estimated by averaging FC for
all possible pairs of sensors between ROIs. In a sensor-space study,
recently diagnosed (drug-naive) PD patients showed an overall higher
local and between-ROI alphal FC compared to controls (measured
using synchronization likelihood (SL; (Stam & Van Dijk, 2002; Stoffers,
Bosboom, Wolters, et al., 2008) an FC measure that captures both lin-
ear and nonlinear interactions). When moderately-advanced PD
patients were compared with controls, higher local functional connec-
tivity (SL in one study and the phase lag index (PLI; less sensitive to
volume conduction) in another) was found in PD patients, involving
the theta, alphal, alpha2, and beta band (Cao et al., 2018; Stoffers,
Bosboom, Wolters, et al., 2008). Motor symptom severity and disease
duration were positively associated with higher local and between-
ROI SL-values (Stoffers et al., 2008). Furthermore, in one study DRT
further increased between-ROI beta band FC, as well as local FC in
the range of 4-30 Hz in association with clinical motor improvement
(especially over centroparietal brain regions; Stoffers, Bosboom,
Wolters, et al., 2008). These findings are in contradiction with the find-
ings of Cao and colleagues, who found the higher alpha PLI in PD
patients to normalize upon DRT administration, in correlation with
UPDRS-IIl improvement (Cao et al., 2018). This discrepancy could per-
haps be explained by a differential response to DRT observed by Stoffers
and coworkers: in the majority of patients, already elevated levels of
resting-state local FC (4-30 Hz) further increased, but in patients with a
strong improvement in motor function local beta band FC decreased
(Stoffers, Bosboom, Wolters, et al., 2008). It was speculated that the dif-
ferential response to DRT points at differences in the susceptibility to
the development of response fluctuations and/or dyskinesias.
Longitudinal follow-up of PD patients using the PLI in source-

space (the average PLI from a ROI with all other ROIs) revealed a
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TABLE 3 Definitions of the neurophysiological measures described in the review

Category Measure
Oscillatory Band power
behaviour Mean frequency
Peak frequency
Complexity Lempel-Ziv complexity
Functional Coherence

connectivity

Directed
functional connectivity

Phase lag index

Phase locking value

Synchronization likelihood

Directed phase transfer entropy

Granger causality

Partial directed coherence

Interpretation
Average spectral power in a particular frequency band.
Average frequency of the spectrum within a given frequency range.

Dominant frequency in the power spectrum, within a given frequency range
(e.g., 6-15 Hz in (Airaksinen et al., 2012); 4-13 Hz in (Olde Dubbelink et al.,
2013a)).

Related to the number of distinct patterns and the rate of their occurrence along a
given sequence. A high value indicates a high variation of the binary signal
(Lempel & Ziv, 1976).

The degree of similarity of frequency components of two time series. Field spread
and volume conduction, as well as power, influence the estimate. High values
indicate strong functional connectivity (White & Boashash, 1990).

Instantaneous phases of two time series are compared at each time point and the
asymmetry of the distribution of the phase differences between these time
series is quantified. A high value indicates that there is a consistent nonzero
(modulus 7) phase relation between the two time series, indicative of functional
coupling (Stam, Nolte, & Daffertshofer, 2007). Relatively insensitive to the
effects of field spread and volume conduction.

Reflects the consistency of the phase covariance between two signals in a
frequency range over time (phase-locking). Field spread/volume conduction
affect the estimate (Lachaux, Rodriguez, Martinerie, & Varela, 1999).

The strength of synchronization between two time series based on state-space
embedding. High values indicate strong functional connectivity, but field
spread/volume conduction affects the estimate (Stam & Van Dijk, 2002).

Based on the Wiener-Granger Causality principle, namely that a source signal has a
causal influence on a target signal if knowing the past of both signals improves
the ability to predict the target's future compared with knowing only the target's
past: dPTE was implemented as a ratio between “incoming” and “outgoing”
information flow (Hillebrand et al., 2016).

Quantifies whether the past of one time series contains information that helps to
predict the future of another signal. Does not capture nonlinear effects and
requires construction of a model of the data (Granger, 1969).

Based on the notion of Granger causality. Frequency-domain approach to describe

the (direction of) relationships between time series. Decomposes the
relationships into “feedforward” and “feedback” aspects (Baccala & Sameshima,

2001).

higher baseline alphal PLI in cortical temporal regions in PD com-
pared to controls. With disease progression, however, the initial
changes in alphal PLI reversed, and an additional global decrease in
alpha2 PLI appeared. These longitudinal changes correlated positively
with worsening motor and global cognitive function. Interestingly,
changes in alphal and alpha2 PLI in lower temporal regions, but not in
the beta band, correlated with motor impairment (Olde Dubbelink
et al., 2013b). Additional connectivity measures that have been used
in source-space analysis to demonstrate cross-sectional differences
between PD patients and controls include the phase locking value
(PLV (Lachaux et al., 1999); comparable to PLI but sensitive to volume
conduction/field spread) and directed Phase Transfer Entropy (dPTE;
(Lobier, Siebenhuhner, Palva, & Palva, 2014)), a measure of directed
connectivity. The PLV study demonstrated that during a working
memory task, PD patients had significantly lower alpha band
(9-16 Hz) PLV within the left-hemispheric fronto-temporal circuitry
compared to controls, which correlated negatively with verbal work-
ing memory performance (Wiesman et al., 2016). The dPTE has been
used to reveal lower beta band directed connectivity from posterior
cortical brain regions toward frontal and subcortical brain regions in
PD versus controls. In this study, lower directed connectivity from
posterior cortical regions with the rest of the brain correlated with

poor global cognitive performance in PD patients (Boon et al., 2017).

Comparison of a cohort of PDD patients with nondemented PD
patients using two different processing pipelines led to conflicting
outcomes that could at least partly be explained by differences in
methodology (Bosboom, Stoffers, Wolters, Stam, & Berendse, 2009;
Ponsen et al., 2012): in the first study, analysis was based on (ten)
clusters of extracranial sensors and SL was used as FC measure. Com-
pared to PD, PDD was characterized by lower fronto-temporal SL in
lower frequency bands (delta, theta and alphal), and higher left-sided
parieto-occipital SL in the higher frequency bands (alpha2 and beta;
Bosboom, Stoffers, Wolters, et al., 2009). In the second (source-level)
analysis, FC was calculated using PLI. In the PDD group, PLI between
pairs of regions was generally lower for the delta, alpha and beta band,
and higher in the theta band. In the gamma band, differences went
both ways (Ponsen et al., 2012).

3.3.3 | Topological organization

Olde Dubbelink et al. (2014) characterized the topological organiza-
tion of PD brain networks in source-space using graph analysis
techniques. In early-stage PD patients, lower local integration with
preserved global efficiency of the whole-brain network has been
observed in the delta band. A longitudinal analysis demonstrated a
tendency toward a more random brain topology, in which both

local integration (multiple frequency bands) and global efficiency
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(alpha2 band) were affected. Worsening global cognition was associ-
ated with more random topology in the theta band, and motor dys-
function was associated with lower alpha2 global efficiency. In
contrast to the more conventional application of graph analysis tech-

niques, minimum spanning tree (MST) analysis is free of threshold

and normalization biases. MST analysis revealed a progressive decen-
tralization of the network configuration, starting in the early-stage,
untreated patients, which correlated with deteriorating motor function
and cognitive performance (Olde Dubbelink, Hillebrand, Stoffers,
et al., 2014).

( a) Delta Theta Alphal Alpha2 Beta Gamma

Early PD vs. controls !

Late PD vs. early PD 2

PDD vs. PD
sensor-space 3

PDD vs. PD
source-space 4

@ DO®

(b)

Early PD vs. controls
sensor-space 5

Gamma

Early PD vs. controls
source-space °©

Moderately advanced
PD vs. controls 7

PDD vs. PD
sensor-space &

PDD vs. PD
source-space ?

e

FIGURE 3 Legend on next page.
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4 | DISCUSSION

In this review of the MEG literature on PD, we provide an overview
of the neurophysiological characteristics of PD, their relationship with
clinical motor and nonmotor symptoms, the effect of disease progres-
sion, and the influence of treatment on these characteristics. The
design of the studies included in this review is very diverse, regarding
both the MEG-recordings itself (e.g., task-based vs. resting-state,
eyes-closed vs. eyes-open, MEG signals alone or in relation to other
measures, such as LFPs from the STN) and data analysis (e.g., source-
space vs. sensor-space, different FC measures). Despite these chal-
lenging differences in data analytical approaches, we were able to
extract several robust findings.

Motor-network focused studies have uncovered a tremor net-
work involving the motor cortex. In addition, these studies support
the notion that, in contrast with the pathophysiology of bradykinesia
and rigidity, not only basal-ganglia-cortical motor circuits, but
also cerebello-thalamo-cortical circuits are important for PD-related
tremor (for further reading see (Helmich, 2018)). Another robust find-
ing is the presence of functional loops between the STN and the tem-
poral lobe (alpha band) and the STN and the sensorimotor cortex
(beta and gamma band), although the clinical relevance and the effect
of DRT on these loops remain to be established. Furthermore, as illus-
trated in Figures 2 and 3, the neurophysiological characteristics of the
PD brain may vary over the course of the disease. For motor network-
focused studies this could be exemplified by increased cortical motor
beta band power early in the disease and decreased cortical motor
beta band power later in the disease. Whole-brain studies showed a
gradual slowing of the power spectrum and an initial increase in func-
tional connectivity, which decreased over time in relation to disease
progression, especially cognitive decline. Posterior cortical dysfunc-
tion seems to play a crucial role here (Boon et al., 2017; Olde Dubbe-
link, Hillebrand, Twisk, et al., 2014; Stoffers et al., 2007). Treatments
such as DRT and rivastigmine generally normalized disrupted neuro-
physiological characteristics in both research fields, although many
discrepancies exist, for example the increase in cortical motor beta

power upon DRT (Heinrichs-Graham, Kurz, et al., 2014), versus the

decrease observed upon DBS (Abbasi et al., 2018; Luoma et al., 2018),
or the differential effect of DRT on whole-brain functional connectiv-
ity (Cao et al., 2018; Stoffers, Bosboom, Wolters, et al., 2008). Poten-
tial explanations for these discrepancies include methodological
differences and differences in the underlying neurophysiological char-
acteristics between PD patients (Figures 2 and 3).

When comparing the MEG findings discussed in this review with
the EEG studies recently reviewed by Geraedts and colleagues
(Geraedts et al., 2018), there is a prominent agreement on the link
between spectral slowing and cognitive decline. Lower peak fre-
quency and higher delta/theta power were the best predictors for
future conversion to PDD in longitudinal EEG studies (Caviness et al.,
2015; Cozac et al., 2016; Klassen et al., 2011; Latreille et al., 2016)
and in an MEG study a lower beta band power was the best predictor
(Olde Dubbelink, Hillebrand, Twisk, et al., 2014). The effect of DRT on
whole-brain power was inconclusive for both EEG (e.g., (Mostile et al.,
2015) and MEG studies (Stoffers, Bosboom, Wolters, et al., 2008)), as
well as the relationship between EEG/MEG-findings and UPDRS-III
scores. Although EEG-based longitudinal functional connectivity stud-
ies are missing, a few cross-sectional studies hint at lower functional
connectivity and network disruptions in cognitively disturbed PD
patients (Hassan et al., 2017; Utianski et al., 2016), in accordance with
the results of MEG studies (Olde Dubbelink et al., 2013b; Olde
Dubbelink, Hillebrand, Stoffers, et al., 2014; Ponsen et al., 2012).

The results section of this review reflects the clear distinction
between motor network-focused MEG research and whole-brain
MEG research. Although this distinction often leaves little room for
direct comparisons, both fields do share common grounds and we will
further explore these in the next two sections.

4.1 | Motor network-focused research from a
whole-brain point of view

Beta band hypersynchrony within the STN and the basal ganglia-tha-
lamo-cortical, cortico-cortical and cerebro-muscular loops is a well-
established electrophysiological phenomenon in PD, not only in the
MEG field (Brown, 2003; Hammond, Bergman, & Brown, 2007; Kiihn,

FIGURE 3 (in color) Overview of main findings in whole brain network-focused research: Band power. Schematic representation of observed
statistical differences in relative band power between groups. Both sensor-space and source-space analyses are included in the figure. In case of
sensor-space analysis, the brain region underlying the relevant sensor was colored. In case of source-space analysis results for each ROl are
displayed as a color-coded map on a parcellated template brain viewed from, in clockwise order, the left, right, and top. An area is colored red
when the mean power early PD > controls, late PD > early PD, and PDD > PD and blue when the difference was in the opposite direction. The
three color codes of magnitudes (from light to dark) illustrate the effect size of the observed difference. Areas that did not show statistically
significant differences are represented in white/gray. In the study by (Ponsen et al., 2012) the alphal and alpha2 band were combined. PD,
Parkinson's disease without dementia; PDD, Parkinson's disease related dementia; L or R, cortical area on the left (L) or right (R) side of the

head; C, central; F, frontal; O, occipital; P, parietal; T, temporal. Figure adapted from (Bosboom et al., 2006; Olde Dubbelink et al., 2013a; Ponsen
et al., 2012; Stoffers et al., 2007). (b) (in color) Overview of main findings in whole brain network-focused research: Functional connectivity.
Schematic representation of observed statistical differences. In case of a sensor-space analysis differences are depicted for local (colored regions)
and interregional (arrows) functional connectivity (FC; synchronization likelihood and phase lag index) between groups. In case of a source-space
analysis differences in FC from one ROI to the rest of the brain (using phase lag index) are displayed as a color-coded map on a parcellated
template brain viewed from, in clockwise order, the left, right, and top. An area is colored red when the FC of early PD > controls, moderately
advanced PD > controls, and PDD > PD and blue when the difference was in the opposite direction. Areas that did not show statistically
significant differences are represented in white/gray. In the study by Ponsen et al. (2012) the alphal and alpha2 band were combined. PD,
Parkinson's disease without dementia; PDD, Parkinson's disease related dementia; L or R, cortical area on the left (L) or right (R) side of the

head; C, central; F, frontal; O, occipital; P, parietal; T, temporal. Figure adapted from (Bosboom, Stoffers, Wolters, et al., 2009; Cao et al., 2018;
Olde Dubbelink et al., 2013b; Ponsen et al., 2012; Stoffers, Bosboom, Deijen, et al., 2008)
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Kupsch, Schneider, & Brown, 2006; Salenius et al., 2002; Stoffers,
Bosboom, Deijen, et al., 2008). It has been suggested that the changes
in beta band power/connectivity in PD might be a causal mechanism
underlying the motor symptoms bradykinesia and rigidity, also consid-
ering the indirect evidence that treatment (either DRT or high-
frequency DBS) alleviates symptoms and at the same time causes a
normalization of local band power and interregional coupling of beta
activity (Hammond et al., 2007; Heinrichs-Graham, Kurz, et al., 2014;
Levy et al., 2002; Silberstein et al., 2005). However, there is no clear
evidence that beta band synchronization directly accounts for the
motor deficits in PD. Neurophysiological changes in motor network
studies did not correlate with UPDRS-III scores when recorded during
the resting state (Abbasi et al., 2018; Litvak et al., 2011; Pollok et al.,
2012; Pollok et al., 2013; Vardy et al., 2011). Furthermore, several
unexpected negative correlations were observed when late-stage PD
patients were recorded during isometric contraction or a motor task
of the forearm in the DRT-OFF state (Hirschmann, Ozkurt, et al.,
2013; Pollok et al., 2013). It has therefore been speculated that exces-
sive beta band power and/or connectivity may not represent a patho-
logical disinhibition with an anti-kinetic effect, but could rather be
interpreted as a compensatory mechanism that becomes redundant
when DRT is administered (Hirschmann, Ozkurt, et al., 2013; Pollok
et al., 2013). Hyperconnectivity has also been demonstrated in whole-
brain (both source-space and sensor-space) studies in the early stages
of PD, most pronounced in the alphal band (Olde Dubbelink et al.,
2013b; Stoffers, Bosboom, Deijen, et al., 2008). The interpretation of
hyperconnectivity in early disease stages is not trivial and the discus-
sion on this matter takes place in a broader context than that of PD
only (de Haan, Mott, van Straaten, Scheltens, & Stam, 2012; Hillary &
Grafman, 2017). Both pathological disinhibition and compensatory
mechanisms may lead to higher FC values, but only a compensatory
mechanism would be a purposeful reaction to a pathological process.
However, it is unlikely that the latter mechanism is the sole explana-
tion, since the majority of the studies in the present review did not
show a positive correlation between higher FC and better clinical per-
formance (Litvak et al., 2011; Pollok et al., 2012; Pollok et al., 2013;
Stoffers, Bosboom, Deijen, et al., 2008; Vardy et al., 2011).

The functional subdivision between low and high-beta frequen-
cies might be of value in unraveling the relationship between interre-
gional coupling of beta activity and clinical functioning. Whereas
dopaminergic treatment mainly affected low-beta spectral power in
the STN, STN-cortical coherence was strongest in the high-beta band
frequencies and was not modulated by levodopa (Litvak et al., 2011;
van Wijk et al., 2016). Perhaps more complex functional interactions,
such as cross-frequency coupling (see also, (Tewarie et al., 2016)),
could play a role in the pathophysiology of PD motor symptoms.
Cross-frequency coupling was previously found within the STN (van
Wijk et al., 2016) and within the motor cortex ((de Hemptinne et al.,
2013), but see also (Cole et al., 2017)) but not between these two
structures.

Alternatively, negative correlations such as between M1-STN
beta band synchrony and UPDRS-IIl scores could merely reflect nor-
mal physiology, in which case one would expect healthy individuals to
show stronger M1-STN coherence than PD patients (Hirschmann,

Ozkurt, et al., 2013). Obviously, it is not possible to perform invasive

recordings of brain activity in controls to confirm this, but a case study
in an obsessive-compulsive disorder patient, treated with STN-DBS,
confirmed the presence of a high STN-motor cortical connectivity in
the beta band (Wojtecki et al., 2017). Furthermore, advances in source
reconstruction techniques, such as beamforming, increasingly allow
the study of subcortical regions by means of MEG (Boon et al., 2017;
Hillebrand, Nissen, et al., 2016; Jha et al., 2017). At this point, how-
ever, additional methodological and experimental studies are neces-
sary to evaluate the ability of beamformer techniques to reliably
distinguish between individual subcortical brain regions.

Another important consideration is that the local neurophysiologi-
cal processes observed in the motor network take place in a brain that
is both structurally (Braak et al., 2003) and functionally (Olde Dubbelink
et al,, 2013a; Olde Dubbelink et al., 2013b) affected by PD on a whole-
brain scale. The interpretation of correlations between neurophysiologi-
cal changes and motor symptoms is further complicated when studying
the effect of DRT, since DRT can have varying effects on cortico-
cortical functional connectivity, dependent on disease stage and/or
degree of UPDRS motor response to DRT (Stoffers, Bosboom, Deijen,
et al., 2008).

Thus, neurophysiological changes on a whole-brain scale may have
directly or indirectly influenced findings in motor network-focused
MEG studies. Whole-brain studies have demonstrated that neurophysi-
ological changes associated with PD motor symptoms are not
restricted to the “classical” motor network, which may have influenced
findings directly: the slowing of beta band oscillations in the motor cor-
tex observed in motor network-focused studies in relatively advanced-
stage patients (Heinrichs-Graham, Kurz, et al., 2014; Salenius et al.,
2002) may in fact be part of the more general process of cortical
oscillatory slowing (Olde Dubbelink et al., 2013a; Stoffers et al., 2007).
Along the same line, the higher beta band functional connectivity
between cortical motor regions (Heinrichs-Graham, Kurz, et al., 2014)
should be considered against the background of global increases in
beta band cortico-cortical FC that have been observed both using EEG
and MEG in moderately advanced PD patients, and which correlated
with both bradykinesia sub scores and disease duration (Silberstein
et al., 2005; Stoffers, Bosboom, Deijen, et al., 2008). In contrast, in early
disease stages larger beta band power has been observed in cortical
motor regions in both PD patients and animal models of PD (Brazhnik
et al,, 2012; Degos, Deniau, Chavez, & Maurice, 2008; Hall et al., 2014;
Javor-Duray et al., 2015; Pollok et al., 2012), yet this has not been
mirrored by the results of whole-brain studies (Olde Dubbelink et al.,
2013a; Stoffers et al., 2007).

Variability in ongoing brain activity contributes to the way the
brain responds to certain sensory stimuli and therefore might indirectly
influence differences in event-related/induced motor responses
between controls and PD patients (Sadaghiani, Hesselmann, Friston, &
Kleinschmidt, 2010). Furthermore, whole-brain band power changes
are known to confound estimates of coherence between two
neurophysiological signals and can thereby influence findings in motor
network MEG studies (Schoffelen & Gross, 2009). In studies that esti-
mated motor CMC, beta band power in cortical motor regions (and
possibly also global beta band power) also differed between PD
patients and controls and could therefore have impacted the CMC
findings (Pollok et al., 2013; Salenius et al., 2002). In addition, the
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occipital dominant alpha band rhythm, mainly present when the eyes
are closed, may dilute differences observed in the motor network
studies (Luoma et al., 2018).

The interpretation of cortico-subcortical interactions in DBS
patients is hampered by the fact that these patients are generally in
an advanced stage of disease and therefore have often received high
doses of DRT for several years. Chronic DRT is known to influence
cortical oscillations via neuronal plasticity (Degos et al., 2008). Fur-
thermore, a longitudinal evaluation of the effect of STN-DBS on beta
band oscillations within the STN, coherence with cortical regions, and
cortical oscillations along the disease course has not been performed
yet. Therefore, when studying cortico-subcortical coherence, the
effects of the underlying disease, chronic use of medication and DBS
itself on whole-brain cortical oscillations should be taken into

account.

4.2 | Whole-brain research: Toward a more focused
approach

In whole-brain MEG studies in PD, global oscillatory slowing, wide-
spread changes in the strength of functional connectivity within and
between brain areas, and a disruption of functional brain network orga-
nization have been observed. The consistent relationship between
these findings and cognitive decline, motor dysfunction and disease
duration support the notion that these whole-brain neurophysiological
changes may represent a general marker of the disease processes
underlying PD (Bosboom et al., 2006; Olde Dubbelink et al., 20133;
Olde Dubbelink, Hillebrand, Stoffers, et al., 2014; Stoffers et al., 2007),
a conclusion that is further supported by the results of EEG studies
(Fonseca, Tedrus, Letro, & Bossoni, 2009; He et al., 2017; Morita,
Kamei, Serizawa, & Mizutani, 2009). However, the mechanisms that
lead to these widespread neurophysiological changes remain unknown,
as well as the way in which these neurophysiological changes induce
the clinical symptoms of PD, particularly the nonmotor symptoms.

There is increasing evidence to suggest that cortical neurophysio-
logical changes in PD find their origin in subcortical brain regions. In
early-stage PD, involvement of brainstem dopaminergic, noradrener-
gic and serotonergic projection systems may be important factors that
contribute to cortical oscillatory slowing (Bosboom et al., 2006;
Bosboom, Stoffers, & Wolters, 2004). In later disease stages—including
PD dementia—local cortical Lewy body and tau pathology, local
pathology in thalamo-cortical circuits (Freunberger, Werkle-Bergner,
Griesmayr, Lindenberger, & Klimesch, 2011; Steriade, Gloor, Llinas, Da
Silva, & Mesulam, 1990), and degeneration of the cholinergic nucleus of
Meynert (Bosboom, Stoffers, Stam, et al., 2009; Hepp et al., 2017) may
contribute to cortical neurophysiological changes in PD.

Observations that highlight the importance of cortico-subcortical
interactions in PD include the influence of STN-DBS on whole-brain
oscillations (Airaksinen et al., 2012; Cao et al., 2015; Cao et al., 2017),
the possible influence of STN-DBS on a multitude of nonmotor symp-
toms (Castrioto, Lhommée, Moro, & Krack, 2014) and the presence of
an STN-temporal network in the alpha band that shows PD-related
functional changes and is influenced by movement (Hirschmann et al.,
2011; Litvak et al., 2011; Olde Dubbelink, Hillebrand, Twisk, et al.,
2014; Oswal et al., 2013a; Oswal, Jha, et al., 2016). Future whole-

brain studies could build on these observations by including estimation
of cortico-subcortical interactions using source reconstruction tech-
nigues, and correlate findings to both motor and nonmotor symptoms.

The neurophysiological changes observed in whole-brain resting-
state studies correlated with both motor and nonmotor symptoms of
PD (Bosboom et al., 2006; Olde Dubbelink et al., 2013a; Olde Dubbe-
link et al., 2013b; Olde Dubbelink, Hillebrand, Stoffers, et al., 2014;
Stoffers, Bosboom, Deijen, et al., 2008), hence the interpretation of
these changes might be more ambiguous than the observations in
task-related conditions. On the other hand, whole-brain resting-state
neurophysiological changes might be a more accurate marker of the
underlying disease process. A reliable (noninvasive) in vivo marker of
the disease process can be used to predict the disease course in indi-
vidual patients and to monitor the effects of modulatory techniques
such as DBS or future disease-modifying drugs.

The approach of focusing on average FC from a ROl with all other
regions in a whole-brain analysis might be too diffuse to pick up
changes restricted to certain sub systems. When trying to bridge the
gap between the underlying disease and specific PD-related
symptoms—referred to as pathophysiology in this context—a more
focused approach would be preferable. A seed-based analysis could
be used to confirm hypotheses that have arisen based on whole-brain
research. In addition, particular symptoms such as cognitive dysfunc-
tion in specific domains may be correlated to changes in (dynamic)
connectivity between specific subnetworks (Kucyi, Hove, Esterman,
Hutchison, & Valera, 2016; Park, Friston, Pae, Park, & Razi, 2017). A
more focused approach can provide important additional information
on the pathophysiology of specific disease-related symptoms, which
may prove useful for the development of symptomatic treatments, for
example, targeting key brain regions or subnetworks using TMS or
DBS. These exciting therapeutic possibilities are already being tested
in PD patients (Freund et al., 2009; Manenti et al., 2016).

4.3 | Clinical utility of MEG in PD

Of the robust findings we have presented in this review, up to now
only MEG-derived spectral markers (markers of spectral slowing) as
predictors for conversion to PDD have potential for routine clinical use
(Olde Dubbelink, Hillebrand, Twisk, et al., 2014). As these in-vivo bio-
markers of disease progression can also be derived from cheaper and
more widely available EEG recordings (Geraedts et al., 2018), the need
to include MEG in standard clinical care is currently low. However, with
MEG, patients would benefit from a more comfortable and faster
recording technique. In addition, when the higher spatial resolution of
MEG over EEG is exploited, application of MEG in routine clinical care
could become more rational (see (Hillebrand, Gaetz, Furlong, Gouw, &
Stam, 2018) for further reading on the clinical application of MEG).
Future studies are required to establish whether measures of functional
connectivity or brain network structure, which could be determined
more reliably using MEG, can surpass spectral slowing as an in-vivo bio-
marker of cognitive decline or disease progression in a broader sense.
The optimization of stimulation settings after DBS-placement
could also benefit from MEG-recordings, both for nonmotor and
motor effects. Potentially, beta band power in the sensorimotor cor-

tex could serve as a biomarker for optimal motor effects, although the
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link between cortical beta oscillations and motor function is not clear
yet (Abbasi et al., 2018; Luoma et al., 2018). Alternatively, a more
dispersed cortical fingerprint could serve as a biomarker for optimal

clinical (both motor and nonmotor) effects.

44 | Conclusion

Macro-scale neurophysiological changes in the PD brain have classi-
cally been studied from two different perspectives. Some research
groups have studied PD-related changes in the brain as a whole, while
others have explored relationships between more localized brain
activity and motor symptoms, thereby focusing on pathophysiological
mechanisms. However, the two research fields are certainly not mutu-
ally exclusive and the knowledge gained from both approaches may
even be complementary: motor network function is influenced by
whole-brain changes in neuronal activity related to the ongoing
disease processes, whereas whole-brain analysis may not fully capture
local pathophysiological mechanisms underlying specific symptoms.
Up to now, results of MEG studies have been very diverse and the
application of MEG in standard clinical care is limited. Future studies
that combine the merits of both approaches could increase reproduc-
ibility and interpretation of results, which will undoubtedly lead to
valuable insights into the neuronal mechanisms underlying PD as well
as into the pathophysiology of the broad range of clinical symptoms

that characterize this disease.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the Sup-
porting Information section at the end of this article.
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