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Abstract

dependent conditions.

Novel targets to arrest neurodegeneration in several dementing conditions involving misfolded protein
accumulations may be found in the diverse signaling pathways of the Mammalian/mechanistic target of rapamycin
(mTOR). As a nutrient sensor, mTOR has important homeostatic functions to regulate energy metabolism and
support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important
pathogenic roles by inhibiting both insulin signaling and autophagic removal of 3-amyloid (Af3) and phospho-tau
(ptau) aggregates. It also plays a role in the cerebrovascular dysfunction of AD. mTOR is a serine/threonine kinase
residing at the core in either of two multiprotein complexes termed mTORCT and mTORC2. Recent data suggest
that their balanced actions also have implications for Parkinson's disease (PD) and Huntington's disease (HD),
Frontotemporal dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS). Beyond rapamycin; an mTOR inhibitor,
there are rapalogs having greater tolerability and micro delivery modes, that hold promise in arresting these age
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Introduction

Aging represents the major biologic process common to
most all neurodegenerations, driving the accumulation of
damaging changes to organ systems and their cells over
time. The core metabolic pathologies involved in chronic
disease states of the central nervous system (CNS) are oxi-
dative stress, inflammation, mitochondrial/energy failure
and insulin resistance [1-3]. Neurodegenerative disorders
are further distinguished from other chronic disease condi-
tions such as cancer and cardiovascular disease by the de-
position of characteristic misfolded proteins. Nevertheless,
certain essential, universally shared cell signaling pathways
become deranged in all of them. Mechanistic target of rapa-
mycin (mTOR) refers to two protein complexes, mTORC1
and mTORC?2, that function as master switches in the cell's
nutrient sensing pathways. The mTOR signaling pathway
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integrates extracellular growth factors and cellular nutrient
status to regulate growth and metabolism during aging [4,
5]. It is of major relevance to neurodegeneration that intact
mTOR signaling is critical to long lasting forms of synaptic
plasticity (NMDA-R-dependent late phase LTP and mGlu-
R-dependent LTD) [6, 7], as well as to spatial learning [8].
The evidence points in support of de novo synaptic protein
synthesis by mTOR [9, 10]. Further, mTOR is necessary for
dendritic spine morphological changes in association with
LTP induction [11].

On the other hand, there is overwhelming evidence that
decreasing mTORCI activity, for instance via caloric re-
striction [12] or through dietary administration of rapamy-
cin , increases lifespan in model organisms, including yeast,
C. elegans, D. melanogaster, and mice [13, 14]. Even mice
fed rapamycin beginning in later life lived longer [13—15]. It
is noteworthy that primates also had extended lifespans
with fewer age-related pathologies when calorically
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restricted beginning in adulthood. This includes preserva-
tion of brain grey matter volume [16]. In addition to the
above physiologic roles, the central role of mMTORC]1 signal-
ing in the development of neurodegenerative diseases is a
topic of great research and therapeutic interest. This is, in
part, because mMTORC1 not only supports protein synthesis
via translation regulation, but controls both protein and or-
ganelle degradation through autophagy. The autophagy /
lysosomal system is a cellular recycling process required to
prevent the buildup of misfolded protein aggregates that
contribute to the development of neurodegenerative dis-
eases. These include B-amyloid (AP) and phospho-tau (p-
tau) oligomers in Alzheimer's disease (AD) and a-synuclein
in Parkinson’s disease (PD), discussed below.

Herein, we first review the mTOR pathways and their
regulation, prior to discussing complex changes in
mTOR activity as are reported in various AD models.
This is followed by summarizing its contribution to the
pathogenesis of lesser studied neurodegenerative dis-
eases including Parkinson’s disease (PD), Huntington's
disease (HD), Amyotrophic Lateral Sclerosis (ALS), and
Frontotemporal dementia (FTD). Throughout we
emphasize alterations in autophagy and insulin signaling.
The rationale and prospects for the treatment of neuro-
degeneration across disease contexts is laid out, based
on both beneficial and deleterious effects of mTORC1
inhibition. We conclude with an argument favoring a
balance involving mTORC?2 stimulation.

Mechanistic Target of Rapamycin: Pathways and
Regulation

mTORC1

The mTOR complex 1 (mTORC1) is comprised of the 289
kDa mTOR serine-threonine kinase, its rapamycin-sensitive
regulatory protein Raptor, as well as three other proteins:
GBL/mLSTS, a 40 kDa proline-rich Akt substrate (PRAS40)
and Deptor. It acts as a crucial cellular energy and nutrient
sensor as well as growth factor (Insulin, IGF-1, BDNF)
transducer. mTORCI1 controls protein synthesis by phos-
phorylating downstream targets essential to mRNA transla-
tion, 4E-BP1 (elF-4E binding protein) and ribosome
biogenesis, p70S6K1 (p70 ribosomal protein S6 kinase 1)
[17]. As synaptic plasticity and dendritic spine maintenance
require de novo protein synthesis, mTORCI supports the
biological processes that underlie learning and long-term
memory [17-19]. Accordingly, neuronal growth factors
known to support learning and memory, such as BDNF
and EGF, do so through mTOR activation [20, 21]. By con-
trast, the pharmacologic mTORCI inhibitor, rapamycin, or
genetic reductions in mTORCI, block several types of
memory consolidation such as fear conditioning and late
phase-LTP (long-term potentiation) [6, 7, 22]. Analogous
to brain, knockout of either Raptor or mTOR or application
of specific inhibitors in skeletal muscle results in a muscular
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dystrophy [23, 24]. Inhibition of autophagy (see below) and
stimulation of mitochondrial respiration are other key
mTOR roles [25, 26] affecting cell growth, division, prolifer-
ation, survival and aging.

The Tuberous Sclerosis protein complex, TSC1/2,
proximally inhibits mTORCI1 by preventing the conver-
sion of the mTORC1 activator, Rheb (Ras homolog
enriched in brain protein), into its active GTP-bound
form (Fig. 1). Insulin/Akt signaling leads to the inactivat-
ing phosphorylation of TSC1/2, thus, activated Akt can
release mTOR from TSC1/2-mediated inhibition [27,
28]. Neurotrophin-induced activation of mTOR takes
place at lysosomal and plasma membranes [29, 30].

AMP-activated protein kinase (AMPK), another import-
ant nutrient sensor and cell energy broker that is activated
by low substrate (glucose) levels and low ATP conditions
(high ADP-AMP/ATP ratio), ie. energy stress, is an im-
portant negative regulator of mTOR [31, 32]. Whereas in-
sulin/Akt signaling leads to the inhibitory phosphorylation
of TSC2 (on Ser-939, Ser-1088, and Thr-1422), AMPK
phosphorylates TSC2 on a stimulatory residue (Ser-1387)
[33-35]. AMPK itself is also negatively regulated by Akt
[36]. By inhibiting mTORC]1 via TSC2, one consequence of
activated AMPK is to facilitate autophagy [37, 38]. Another
is to inhibit protein translation [31]. A second mechanism
by which AMPK inhibits protein synthesis is by phospho-
activating the elongation factor kinase, eEF2K (pS398). The
target of eEF2K action is eEF2, which becomes inhibited
(pT56). The consequence is to turn off the elongation step
in mRNA translation [39, 40]. This action of AMPK there-
fore opposes the effect of mMTORC1/p70S6K, which is to in-
hibit eEF2K (pS366). On the other hand when AMPK is
inhibited, for instance in the palmitate model of insulin re-
sistance, mTOR is stimulated [41]. Under the latter condi-
tion, as well under others such as endoplasmic reticulum
stress and apoptosis, mTOR induction becomes detrimen-
tal to cell health. Rapamycin reverses this process by bind-
ing to FK506-binding protein- 12 (FKBP12) in a complex
that allosterically blocks the catalytic activity of the mTOR
subunit [41-46]. Akt and AMPK can also bypass TSC, to
oppositely influence mTOR directly, via PRAS40 and Rap-
tor phosphorylations, respectively.

One target of mTORCI1, p70S6K, has an additional
negative feedback role to down-regulate insulin/Akt sig-
naling through an inactivating phosphorylation of the in-
sulin receptor substrate 1 (IRS-1) [47] (Fig. 1). This
function of stimulated mTORC1 to negatively regulate
sustained Akt activation by insulin [48, 49] has central
importance to the widely held notion that the AD brain
is an insulin resistant organ [50, 51].

In synergy with insulin, the branched chain amino acids
(BCAAs), especially leucine, potently stimulate mTOR to
induce protein synthesis (reviewed in [52, 53]). It has long
been known that mTOR is a nutrient sensor for amino
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acids in an Akt-independent manner [54, 55]. Insight in this
field came from studies on rodent and human skeletal
muscle where infusion or ingestion of leucine (often in
combination with resistance exercise) was tested to combat
age-related muscle mass (sarcopenia) [56—58]. Mechanistic-
ally, leucine administration causes the mTORCI-mediated
phosphorylation of both 4E-BP1 and p70S6K1, two pro-
teins that each play critical roles in mRNA translation (4E-
BP1 facilitates the interaction between the 5-cap and the
40S ribosome, whereas p70S6K enables translation of poly-
pyrimidine mRNAs) [59, 60]. As a result, BCAAs in normal
concentrations induce protein synthesis in an mTORC1-
dependent manner.

More recently, the mechanism of BCAA-induced mTOR
stimulation has been expanded to involve a multiprotein
complex on the lysosomal surface composed of: Rags (Ras-
related GTPases), Ragulator (an anchoring protein) and the
vacuolar (H+)-ATPase (responsible for endosomal and
lysosomal acidification) [61-63]. Another complex with
similar function consists of hVps34 (human vacuolar sort-
ing protein 34) and phospholipase D1. These complexes re-
cruit mTOR to the lysosomal surface, where it is activated
by Rheb. Since mTOR is activated at the lysosome

membrane and amino acids enable its translocation to the
lysosome, normal mTOR activity is dependent on these
anabolic amino acids [64].

The contribution of amino acid availability to mTORC1
activity in neurodegenerative disease is unknown. However,
it's worth noting that BCAA levels are positively associated
with obesity and to the development of type II diabetes mel-
litus (T2DM) [65, 66]. Further evidence suggests that excess
BCAA may be a marker of insulin resistance or even be
causative [67, 68]. Considering that insulin resistance is an
underlying pathology of several neurodegenerative diseases,
it is plausible that excess BCAAs persistently overstimulate
mTORCI, resulting in the p70S6K1-mediated negative feed-
back on IRS-1. The consequential uncoupling of insulin ac-
tion, in turn, could promote protein catabolism and an
increase in harmful aminoacidemia. Furthermore, the me-
tabolites of BCAAs are mitochondrial toxins, thus inducing
oxidative stress and further exacerbating the CNS insulin re-
sistant phenotype. On the one hand, amino acid depletion is
catabolic and stimulates autophagy. Also, as noted, supple-
mental BCAA might be beneficial in some instances. The
negative role of excess BCAAs in neurodegenerative disease
is speculative, but deserves further exploration.
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Lastly, SIRT1, an NAD+-dependent and resveratrol-
responsive deacetylase that enables caloric restriction-
mediated longevity, negatively regulates mTORC1 [69]
by interacting with TSC1/2 [70].

mTORC2

mTORC2 is a relatively (though not completely)
rapamycin-resistant complex comprising mTOR and Rictor
(rapamycin-insensitive companion of mTOR; thereby con-
trasting Raptor in mTORCI1), in addition to GBL/mLSTS,
mSIN1, PRR5/Protor and Deptor proteins. Therefore, both
mTOR complexes share mTOR, mLST8 and Deptor, and
are distinguished by Raptor and PRAS40 (mTORC1) and
Rictor, mSIN1, and Protor (mTORC?2).

mTORC2 also differs from mTORC1 in terms of its
regulation. mMTORC1 and 2 are inhibited and activated, re-
spectively, by TSC1/2 [34, 71]. Moreover, while not directly
regulated by nutrients, mTORC2 is activated by trophic fac-
tors insulin/IGF-1 in a yet to be defined manner that re-
quires PI3K and involves ribosome binding [72] (Fig. 2).

In terms of downstream targets, mMTORC2 amplifies the
activation of Akt by acting as an Akt-kinase (PDK2) (see
excellent reviews: [73, 74]). mTORC2 phosphorylates Akt
on Ser-473, secondarily to the phosphorylation of Thr-308
by PDK1 [75-81]. Ser-473 phosphorylation is required for
full Akt activation. When mTORC?2 function is impaired in
skeletal muscle for instance, Akt function is diminished and
glucose intolerance ensues [82]. Thus, mTORC2 opposes
the indirect negative regulation of Akt by the mTORC1/
IRS-1 pathway. Other targets of mTORC?2 include the actin
cytoskeleton and serum/glucocorticoid-regulated kinase 1
(SGK-1), which activates certain ion channels and regulates
cell volume and growth [83, 84]. Thus, mTORC?2 is import-
ant in cytoskeleton remodeling and electrolyte homeostasis.
In the mouse CNS, conditional ablation adversely affects
neuron morphology and post-synaptic excitatory currents
[85], attesting to its functional importance in the brain.
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Consistent with both mTOR complexes as have op-
posing effects on Akt, it makes sense that mTORCI can
also inhibit mTORC2 via Rictor (Thr-1135) and mSinl
phosphorylations through p70S6kl action, in order to
further dampen insulin/Akt signaling as part of a nega-
tive feedback system [86, 87]. Consequently, selective in-
hibition of mTORC1 with short-term rapamycin
treatment (or with mTORCI1-specific compounds [88])
may activate Akt by both relieving p70S6K-mediated
IRS-1/Akt suppression [47] and permitting mTORC2-
mediated activation. Long-term rapamycin on the other
hand disassembles mTORC?2, ultimately leading to insu-
lin resistance [78, 89-91]. It is interesting that mTORC2
can mediate the degradation of IRS-1 that has been inac-
tivated (pS307) by persistent mTORC1 [92].

mTOR control of protein synthesis and autophagy
mTOR’s control of protein synthesis and autophagy are
thought to account for its contribution to neurodegenera-
tive diseases. In general, mTOR supports protein synthesis
by regulating cap-dependent translation through the phos-
phorylations of p70S6K and 4E-BP1 [72]. Rapamycin and
related mTOR antagonists inhibit protein manufacturing in
response to the cell's energy needs and dietary state [93]. By
supporting protein synthesis in dendrites and their synapses
[17], mTOR promotes synaptic plasticity [7, 94] and hippo-
campal memory consolidation and maintenance [95, 96].
Parkinson’s disease protein 7 (PARK?, a.k.a. DJ1) is an ex-
ample of a protein relevant to neurodegeneration, whose
translation depends on mTORCI. PARK7/D]1 has beneficial
chaperone and anti-oxidant properties. Loss of function mu-
tations in PARK?Y cause early onset, recessive PD. Inhibition
of mTORC1 with rapamycin reduced neuroprotective
PARK7/DJ1 levels in rodent cortical synapses. Conversely,
genetic over-activation of mTOR (using a TSC1 knock-out
Tuberous Sclerosis disease model) doubles normal PARK7
levels. This observation highlights the nuance of therapeutic-
ally targeting mTOR, suggesting that blindly inhibiting
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mTORC1 could have negative consequences in certain
conditions.

Autophagy (here referring to macroautophagy, as op-
posed to the lesser-studied microautophagy and
chaperone-mediated autophagy), is a conserved cellular
pathway for removing unnecessary or toxic protein ag-
gregates and recycling damaged organelles (particularly
mitochondria). Autophagy involves the formation of a
double-membrane autophagosome around the protein
or organelle targets, that later fuse with lysosomes,
resulting in their degradation. It is activated by low nu-
trient availability, as well as by protein aggregation and
organelle damage [97]. mTORC1 is a master negative
regulator of autophagy, as mTORCI1-mediated phos-
phorylations block complex formation between Atgl3
(autophagy-related gene product) and the autophagy ini-
tiation protein, ULK1/2 (Unc-51 like kinase), thereby
preventing autophagosome formation [98, 99]. mTORC1
further suppresses the induction of autophagy by inter-
fering with AMPK's direct phosphorylation of ULK1/2
[100]. Other mechanisms include negatively regulating
TFEB, the transcription factor responsible for lysosomal
biogenesis and inhibiting the activation of LC3BI/II
[101] (Fig. 1). It should be mentioned that autophagy be-
gins to fail in neurodegenerative disorders because itself
becomes the target of toxic protein oligomers [97, 102].

The essential role of autophagy in neurodegeneration is
demonstrated by the deletion of autophagy genes (Atgs),
which results in age-dependent neurodegeneration and
proteostasis in model systems [103, 104]. Pharmacological
downregulation of mTORC1 enhances autophagy and is
generally neuroprotective [105]. Lifestyle interventions that
inhibit mTORC1 are also being investigated to arrest neu-
rodegeneration [106]. As mentioned, amino acid
deprivation inhibits mTORC1, reducing protein synthesis
and stimulates autophagy. Nutrient rich conditions or basal
neurotrophin availability reverse starvation-induced cata-
bolic states, normalize homeostatic autophagy and promote
neuronal survival [107]. Under neurodegenerative condi-
tions however, inhibition of mTORCI (e.g. by rapalogs or
activation of AMPK), will stimulate autophagy and the re-
moval of misfolded proteins [108, 109], including AP [110].
Mechanistically, these measures promote Atg transcription
and recruitment to the phagophore by disinhibiting ULK-
1/2 complex formation [111, 112].

Alzheimer’s disease

AD is the most common form of neurodegeneration (60%),
impacting 10% of the world's population over 65. The AD
brain often features cerebrovascular pathology and is clinic-
ally overlapping or co-morbid with vascular cognitive im-
pairment and dementia (VCID) in another 20% of cases
[113]. AD is characterized by the accumulation of protein
aggregates, namely amyloid B-peptide (A) in the form of
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extracellular plaques and intracellular phospho-tau (p-tau)
in the form of neurofibrillary tangles. The plaques become
foci of an inflammatory reaction and neuritic dystrophy.
These are associated with synaptic damage and neuronal
loss, particularly in the hippocampal and the medial tem-
poral/inferior parietal lobules regions of the brain, resulting
in early memory dysfunction [114, 115]. Age is by far the
greatest risk factor for sporadic Alzheimer's disease such
that prevalence of AD per age group is 3% in 65-74; 17% in
75-84; and 32% in > 85 age range (www.Alz.org Facts and
Figures 2020).

Lifespan Extension

As AD and PD are age-related diseases, the relationship be-
tween mTOR inhibition and the extension of lifespan is
relevant to discuss. Increased longevity, often associated
with an increase in cognitive health span, has been achieved
in several in vitro and in vivo, transgenic and wild type ro-
dent, model systems via means that inhibit mTOR, includ-
ing: 1) down regulation of insulin/IGF-1 signaling pathway
[116, 117], 2) caloric restriction/SIRT1 stimulation [70,
118] and 3) mTOR inhibition with rapamycin treatment
[119]. A particularly impressive study demonstrated that, in
mice, carbohydrate restriction decreased mTORCI activity,
increased the resilience of memory function to ageing, and
increased median lifespan by 13% [120].

The evidence for lifespan extension in mice fed rapamy-
cin or primates placed on caloric restriction, even when im-
plemented in adulthood was raised earlier. This sits
favorably with the neuroprotective role of rapamycin in AD
models, as will be discussed below. In contradistinction to
the longevity research, there is a large body of evidence fa-
voring the upregulation, or at least restoration, of insulin/
IGF1 signaling for neuroprotection in symptomatic AD
[121, 122]. Since insulin also activates mTOR, this may
seem counterintuitive. However, as we consider AD and in-
sulin resistance, as well as disease stage, inhibiting just
mTORCI may sufficiently reset insulin sensitivity.

Insulin Resistance

After ageing, systemic insulin resistance and diabetes also
present as risk factors for AD [123], resulting in an odds ra-
tio (~2.0), almost on par with inheriting a single APOE4
gene allele [124-126]. In support of a causal relation, ex-
perimental diabetes is shown to drive AD pathology [127,
128]. It is also well accepted that the AD brain is itself char-
acterized by a unique form of diabetes mellitus, so called
‘type lll DM’. The evidence points to a combination of insu-
lin deficiency [129], attenuated insulin receptor expression
[130] and insulin resistance [131, 132]. The mechanisms
behind the insensitivity of the PI3K/Akt/mTOR pathway to
the anabolic and neuroprotective action of insulin/IGF-1,
are also multiple and include reduced ligand binding to
cognate receptor (eg. IR), IRS-1 deactivation or
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desensitization, as well as other more downstream signal
transduction impairments [133—136]. Exposure to synthetic
or expressed AP peptide is experimentally shown to result
in each of these, for example demonstrating that AP can
compete with insulin for insulin receptor binding [137,
138]. Disruption of insulin/Akt signaling may also be in-
duced in the live brain by exposure to neurotoxic A oligo-
mers, as shown in monkeys [139]. This cerebral insulin
resistance can result in decreased synaptic activity and
density [1, 140]. Correspondingly, stimulation of the insu-
lin/mTOR pathway downstream of insulin, using Akt or
PI3K activators, has been shown to rescue synaptic density
and plasticity in rodent models of AD [141, 142].

mTORC1 in Alzheimer’s Disease and Down Syndrome:
Hyperactivation

Numerous reports have linked alterations in mTOR sig-
naling to age-dependent cognitive decline and to the
pathogenesis of AD [143]. However, there are differing ac-
counts of mTOR status in AD brain, transgenic mice and
cell models. Several groups report dramatic up-regulation
of basal (unstimulated) mTOR signaling markers in AD,
mild cognitive impairment (MCI) and preclinical AD pa-
tients. These include increased p-Akt (Serd73), p-PI3K
(Tyr508), p-mTOR (Ser2448), p-p70S6K (Thr389) and p-
4E-BP1 (Thr37/46) over their respective total protein
levels. One group took these as evidence for the general
overactivation of the PI3BK/Akt/mTOR signaling axis and
made further correlations with decreased autophagy
marker expression and increased inhibitory phosphoryl-
ation of IRS-1 [50, 51]. Similar abnormal activation
markers have been found by several other groups [137,
144-151] (see Table 1). It is likely that these changes in
mTOR activity are disease stage dependent. To illustrate,
hyperactivation of mTOR is found in early to mid-stage
AD brain by some [145, 178], but only in severely affected
AD cases by others [152].

The same hyperactivation of mTOR and Akt, as well as
changes in autophagy markers and substrate p-p70S6K, are
found in the Down Syndrome (DS) brain. These correlate
with tau hyperphosphorylation [153]. The neuropathology
of AD and DS similarly involves impaired mitochondrial
function, increased oxidative stress, and proteostasis from
derangements in the pathways that maintain the structural,
quantitative, and functional stability of intracellular proteins
[179]. The interconnected systems that govern protein
homeostasis include the ubiquitin-proteasome system, au-
tophagy network, endoplasmic reticulum, and mTOR path-
way [180].

The molecular causes behind the autonomous basal acti-
vation of PI3K/Akt (and mTOR downstream) have not
been completely worked out. PTEN is a protein tyrosine
and lipid phosphatase that negatively regulates PI3K/Akt/
mTOR by removing a phosphate from the essential lipid
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signaling molecule, PI3P (phosphoinositol 3,4,5 triphos-
phate) to generate PI2P. First, it is suggested that Ap dir-
ectly inactivates PTEN (phosphatase and tensin homolog)
and thereby disinhibits PI3K [51, 154]. mTOR was found
overactivated in PTEN knockout mice and levels of neuro-
degeneration protein markers accumulate in hippocampal
synaptosomes [181]. Paradoxically, PTEN was also found to
positively regulate neuronal insulin signaling in N2a cells.
This was ascribed to its protein phosphatase action in pre-
venting detrimental ERK activation. PTEN suppression in-
creased hyperphosphorylation of Tau [182]. These reports
contrast with data collected on both transgenic (PS1/APP
2X) and in vitro viral-mediated AD models, where PTEN
inhibition actually rescued synaptic and cognitive (object lo-
cation and fear conditioning) impairments [183]. The bene-
ficial effect of the PTEN inhibitor was mediated by the
stimulation of PI3K/Akt. Conversely, PTEN over-
expression led to synaptic depression (decreased LTP, aug-
mented LTD). AP peptides applied to primary hippocampal
neurons induced the same synaptic defects and dephos-
phorylations of Akt and GSK3 by recruiting PTEN to den-
dritic spines where it becomes overactivated [183]. A
similar contrast in PTEN involvement is reported in AD
post mortem brain, finding decreased inactivated (phospho)
PTEN in one report [184] and PTEN downregulation (and
Akt hyperactivation) in another [145]. Interestingly, muta-
tions in the PTEN-induced kinase-1 (PINK-1), a ubiquitin
kinase participating in mitochondrial quality control, cause
recessive early onset Parkinson's disease [185].

In addition to PTEN, the other major negative
regulator of mTOR activation is AMPK (AMP-acti-
vated protein kinase), a master cell energy sensor that
is stimulated (phospho-Thr 172) during low substrate
stress. Activators of AMPK affect AR metabolism: res-
veratrol increases AP clearance by stimulating mTOR-
sensitive autophagy [186] and quercetin reduces A
generation by AMPK-mediated downregulation of
BACE-1 expression [187]. AP oligomers reciprocate
by inhibiting AMPK activity and causing insulin re-
sistance [188].

Next, the resistance to insulin/IGF action that char-
acterizes AD brain has been mechanistically linked to
the inhibitory feedback phosphorylations of IRS-1
(S616 and S636) by pS6K [136, 178]. AP has also
been implicated in this phenomenon too by directly
activating mTOR (and indirectly, mTOR target
p70S6K) in studies using transgenic models [155, 156,
189]. AP enables the phosphorylation of PRAS40, an
inhibitory subunit of the mTOR complex, thereby re-
leasing mTOR activity [156]. The consequence is a
decrease in IRS-1 levels [178, 190]. Here too there
are conflicting reports, for instance a study in trans-
genic 2576 mice where AP is also co-localized to
mTOR, but instead having an inhibitory role [157].
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Table 1 mTOR dysregulation in Alzheimer's Disease
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Summary of the literature directly reporting on mTOR. The model systems employed by the various authors/laboratories referenced on the far right, are noted in
the far left. 'Alzheimer or Down syndrome brain' may include other human cell types and either be post-mortem fixed, frozen or ex vivo. 'Transgenic mice' are
rodent models that harbor human disease-causing mutations but include B-amyloid- or viral transgene-injections into wild type animals. 'Cell culture' refers to the
use of primary neurons, immortalized lines, or mouse brain tissue slices that are transfected or exposed to $-amyloid, APP, tau or Presenilin as models of AD
injury. Also included therein are other in vitro assays. mTOR signaling changes include phospho-mTOR, downstream targets phospho-p70S6K or p-4EBP-1, and
enzymatic activity measurements as evidence for activation. The direction of change is noted, e.g. (1) indicates hyperstimulation. Whether macroautophagy is
initiated is also indicated. If data on Akt activation (p-Akt, insulin-stimulated p-Akt, downstream target phospho-GSK3p, or enzymatic activity is provided, a
hyperactivation (1) or inhibition () is noted. A change qualified by context is noted by an 'or'. NC= no change. Most, but by no means all, studies favor

hyperactivation of Akt and mTOR in various amyloid injury models, (top half of table) vs. inhibition (bottom half). Significant differences in model employed, stage
of disease severity, time course, and other technical issues, account for the dichotomous findings (see text). Note that very few report on actual enzymatic activity
assay. mTORC2 is relatively understudied in AD. See abbreviations. The compilation is illustrative only and not meant to be exhaustive. The authors apologize for

any inaccuracies and unintended omissions
Table references are cited as : First Author, Journal, Year and reference number

Actual insulin resistance was convincingly first demon-
strated in post-mortem AD brain by Talbot et al [136].
Interestingly, it was the inhibited PI3K/Akt signaling re-
sponse to insulin stimulation that was most impressively
reduced (90%) in these viable human samples, even over-
shadowing the basal hyperactivated status of Akt and
mTOR under unstimulated ex vivo conditions. As pointed
out, the targeting of IRS-1 for phosphorylation may actu-
ally involve kinases other than mTOR/p70S6K [136]. Add-
itional mechanisms of proximal insulin resistance include
reduced numbers and activity of Insulin and IGF-1 recep-
tors [178, 191].

B-Amyloid

In cell models, using either transgenic primary cortical neu-
rons (PCNs) or control PCNs exposed to AP oligomers, the
abnormal hyperactivations of Akt (p-S473) and mTOR (p-

$2448)/4E-BP1(p-S65) were associated with aberrant cell
cycle reentry [154]. In addition to the cell culture studies,
mTOR signaling was found to be abnormally upregulated
after direct injection of AP oligomers into mouse hippo-
campus [156]. Basal (unstimulated) mTOR signaling in-
creases are also described in triple (3x) AD and PDAPP
transgenic mice. In these models, inhibition of mTOR with
rapamycin rescued early learning and memory deficits and
activated autophagy [156, 192]. In further experiments by
the same group, intra hippocampal anti-Ap antibody injec-
tions normalized the abnormal activation of mTOR. In
their model, Akt hyperactivation was deduced to drive
PRAS40 phosphorylation, thereby de-repressing mTORC1
[156]. Recently, either genetic suppression or anti-Af
immunization corrected abnormally hyperactivated mTOR
and Akt in transgenic APP mice [162]. Consistent with
these findings, Metformin was reported to attenuate spatial
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memory deficits in double (2x)APP/PS1 mice by enhancing
AMPK activation, leading to the reversal of abnormal
hyperactivated mTOR [163].

Abnormal mTOR activation enhances both Af} deposition
(by inhibiting clearance) and possibly generation (indirectly,
via insulin resistance, insulinemia and hyperglycemia) [137,
173, 192, 193] . Accordingly, either rapamycin treatment or
AMPK-activation, by inhibiting mTORCI and stimulating
the autophagy machinery (Atg-1/Ulk), are shown to en-
hance AP clearance, reduce deposition, and abate pathology
in transgenic AD mice [110, 192, 194—196]. Direct effects of
mTOR pathway components on the a-secretase processing
of APP (preventing AP generation) or - and y-secretase
amyloidogenic activities has not been extensively investi-
gated. The antidiabetic drug metformin activates AMPK, a
negative mTOR regulator and stimulator of autophagy, pro-
moted beta and gamma secretase cleavage activities and re-
sulted in AP generation in SH-SY5Y cells and in an AD
mouse model [197]. To the same end result, rapamycin
treatment of APP-transfected N2a cells or transgenic AD
mice resulted in enhanced A production, but by inhibiting
ADAM-10, an important o-secretase candidate [198].
Nevertheless, this area also requires more clarification as
there is data pointing to an under-regulation of Rheb
GTPase, a strong mTOR activator, that is correlated to ele-
vated levels of BACE-1 in AD brain and where over-
expression of Rheb reduced AP generation [199].

Finally, insulin impairments in transgenic AD mice
were also found to be mTOR dependent. For instance,
an improvement in central insulin dysregulation and re-
versal of impaired cognition was demonstrated when
brain mTOR activity was genetically lowered by one
copy in Tg2576 mice [161]. In another amyloid-based
model with AD-like brain pathology, rats with T2DM
and injected in the hippocampus with AP, revealed
over-activation of the mTOR signaling pathway and
suppression of activated AMPK. Rapamycin treatment
produced a reduction of p-mTOR and partially restored
p-AMPK levels, causing a reversal AP and tau depos-
ition in the hippocampus and improvement in learning
and memory [200].

Tau

Regarding the tau pathology in AD, mTOR hyperactiva-
tion may also be responsible for hyperphosphorylation
and cytoplasmic vacuolar collections of tau [201]. By act-
ing on multiple Tau kinases (e.g. p70S6K) [158], as well
as by inhibiting PP2A (the major Tau phosphatase), an
overstimulated Akt/mTOR axis can drive tau hyperpho-
sphorylation [144, 146, 158, 201-204]. The role of
GSK3p (Tau kinase-1) in this context is however uncer-
tain, since Akt, if stimulated by AP as hypothesized,
would be expected to and does drive GSK inhibition
(phospho-S9) [51]. In any case, activated mTOR marker
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levels positively correlate with neurofibrillary tangle
(NFT) load and total- and paired helical filament (PHF)-
Tau burden [144, 146, 205, 206]. Abnormal mTOR ac-
tivity can also drive excessive Tau mRNA translation, via
p70S6K [144]. Consistent with this, rapamycin (by indu-
cing autophagy) retards cognitive decline and clears tau
pathology [155, 207].

Notably, AMPK is also a tau kinase (Thr231 and Ser
396/404). Activated phospho-AMPK (p-Thr172) accu-
mulates in tau tangle-bearing AD neurons and in other
tauopathies [208]. Increased p-AMPK, as well as the in-
direct mTOR target, p-eEF2K (via p70S6K), were also
demonstrated by Western technique in postmortem AD
and 2x APP/PS1 transgenic mice brain extracts. This
pathological hyperactivation of AMPK correlated with
impaired LTP and was rescued by an AMPK inhibitor,
but mTOR status itself was not tested [172]. The con-
current activations of mTOR and AMPK were both
found in post mortem AD brain and co-localized with
Tau pathology [147]. This is an interesting pairing given
the likelihood of overactive AMPK to both inhibit
mTOR and to directly phosphorylate eEF2K, a repressor
of protein elongation by phospho-inactivating eEF2.
These two actions would reduce de novo synaptic
mRNA translation and inhibit LTP neural plasticity
[209]. AMPK activation may also reflect a compensatory
response. Recently it was discovered that expression of
the AMPKal isoform is increased in post mortem AD
hippocampus and in AD mice models. Brain specific re-
pression of this isoform in model mice alleviated: cogni-
tive deficits (novel object recognition and spatial
learning and memory in the MWM), restored hippocam-
pal LTP, improved spine morphology and blunted the
abnormal inhibitory hyperphosphorylation of eEF2 due
to overactive AMPK, thereby increasing de novo synap-
tic protein synthesis [210]. These studies may paint a
consistent picture of abnormal AMPK activation in AD,
but it remains unproven if either AMPK or PTEN acti-
vation attenuate or aggravate AD pathology [211].

In a Drosophila Tauopathy model, mTOR activation
was found to mediate cell cycle reentry and neurodegen-
eration [212] and blocking mTOR signaling rescued
Tau-mediated toxicity in such flies [213]. The same neu-
roprotection was afforded by rapamycin in tau trans-
genic mice [202, 214] and in mice stereotactically
injected with AAV-hTauP301L into the hippocampus
[176]. Suppression of mTOR with rapamycin thus miti-
gates both A and tau pathologies.

Autophagy

In addition to the insulin signaling derangement, the au-
tophagy system of protein disposal and recycling is al-
tered in AD [51, 215]. Autophagy is a major clearance
mechanism for AP in neurons, working alongside
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microglia, the Ubiquitin Proteasome System (UPS) and
amyloid degrading enzymes [216-218]. In the early
stages of AD or in animal model brains, autophagic vac-
uoles accumulate in dystrophic neurites. However, rather
than primarily caused by changes in mTOR, it appears
to come about primarily because lysosomal acidification,
autophagosome fusion and/or clearance are reduced,
resulting in net impairment of autophagic flux [194, 215,
219]. Nonetheless, inductions of autophagy-related pro-
tein Atg5, Beclin-1 and ULK-1 probably play a role in
AP degradation, as demonstrated using a small molecule
rapamycin enhancer or starvation in APP expressing
N2a cells [108]. Autophagy marker levels (Beclin-1, LC3)
were found decreased in mild cognitive impairment
(MCI) and AD brain. This loss of autophagy correlated
negatively with amyloid load and was associated with a
hyperactivated PI3K/Akt/mTOR axis [51]. Consistent
with these observations, the suppression of mMTORC1 by
rapamycin, induces autophagy flux and ameliorates cog-
nitive deficits in transgenic mice [220]. Genetic reduc-
tion of mTORCI1 in Tg2576 AD mice also reduced AP
pathology, stimulated autophagy and rescued memory
deficits [160]. Abnormal p-tau levels and pathology can
also be cleared by mTOR-dependent autophagy [112,
221], an outcome similarly observed in 3x transgenic AD
mice treated with rapamycin [155, 192]. Not surprising,
p-Tau in turn may also impair autophagy [222].

Synaptic Protein Synthesis

Complementing mTOR's role in suppressing protein re-
moval, is its positive regulation of mRNA translation
and protein synthesis at synapses. Ribosomes and mRNA
are transported from soma to dendritic spines where
mTORC1/2 are active [7, 10] and have an important role
in plasticity and learning [9, 223]. One example of a
TOP (5' terminal oligopyrimidine)-mRNA that is trans-
lated in dendrites following LTP induction and mTOR
activation is the elongation factor protein eEF1A [224].
Other mTOR-dependent, rapamycin- sensitive, specific
synaptic target proteins driven by activity or BDNF/Insu-
lin stimulation include NMDA-R, CamKlla, PSD-95 and
Arc [96, 225, 226]. How then is protein synthesis af-
fected in the various neurodegeneration syndromes? The
purported hyperactivity of mTOR in AD would be ex-
pected to result in excessive and detrimental synaptic
protein synthesis. Genetic examples of this phenomenon
include tumor growth in Neurofibromatosis 1 and Tu-
berous Sclerosis, wherein PI3K/Akt and mTOR are up-
regulated, respectively. Moreover, cognitive deficits and
autism define both illnesses [227, 228]. The identity of
the excessively translated mRNAs is however not yet
clarified. Another example of mTOR-dependent synaptic
protein synthesis and phosphorylation is the loss of
function of the translational repressor, FMR protein, in
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the Fragile X syndrome - also defined by mental retard-
ation and autism [229, 230]. The derepressed translation
of mRNA results in excessive proteins synthesis [231].
Returning to AD, despite reports citing overstimulation
of mTOR, activity-dependent synaptic translation was
impaired, not increased, in both an AD mouse model
and in post-mortem AD brain. ROS-mediated damage
to Akt and mTOR in the signaling pathway was the cited
reason [168]. It remains for future research to determine
if the mTOR-dependent production of other plasticity
relevant proteins in dendritic spines such as NMDA-R1,
aCaMKIl, CPEB, and Arc [232] are affected in any of the
neurodegenerative conditions.

Vasculopathy

Briefly, vascular dysfunction in AD is characterized
by chronic hypoperfusion, blood brain barrier dis-
ruption, reduced vascular density and reactivity and
impaired neurovascular coupling. Here too, un-
checked mTOR activity has a deleterious role, in
part by inhibition of NOS and decrease in NO (ni-
tric oxide) bioavailability [233]. Transvascular Ap
clearance is also reduced. mTOR attenuation by
rapamycin in hAPPJ20 AD mice can accordingly
lessen these changes [234].

mTORC1 in Alzheimer’s Disease and Down Syndrome:
Hypoactivation

In contrast to the aforementioned reports concluding hy-
peractivation of mTOR in various AD models, a substantial
number of groups point to no change or even down-
regulation of mTOR signaling, as well as neuroprotection
from actually stimulating mTOR. These also deserve men-
tion for balance (Table 1). For instance, in a recent study of
autopsy brain, levels of p-mTORC1 (52448 or S2481) and
of total mTOR, revealed no statistical differences across the
clinical groups (AD vs. control) [235]. In PDAPP mice,
there is no reported difference in mTOR target p-p70S6K
levels between untreated transgenic and wildtype mice
[192]. On the other hand, p-mTOR (pS2448) and p-
p70S6K were reduced in N2A cells affected by aggregated
AP42 treatment, in 2x transgenic APP (sl)/PS1(M146L)
mouse cortex and in AD lymphocytes, compared to con-
trols [166, 236] . Moreover, APP (swe)/PS1(deltaE9) 2x
transgenic mice display increased autophagic activity ac-
companied by decreased mTOR activity [237]. In yet an-
other 2x model, APP (sl)/PS1(KI), mTOR itself was
unchanged but downstream activation of p70S6K (pT389)
was reduced rather than stimulated [171]. Consistent with
these studies, but using a growth factor stimulation para-
digm in rat PCNs, AP treatment inhibited BDNF-induced
Akt/mTOR signal activation [173]. Similar inhibition of
neurotrophin-stimulated Akt/GSK33-S9 phosphorylations
were found in N2a cells exposed to oligomeric Ap-



Querfurth and Lee Molecular Neurodegeneration (2021) 16:44

containing fractions obtained from 2x AD transgenic
mouse brain [238]. In the presymptomatic Tg2576 model,
an early impairment of long-term potentiation (LTP) was
correlated with inhibited mTOR signaling (lowered p-
p70S6K and p-4E-BP1), similar to results in wild type brain
slices exposed to either AP peptide or rapamycin [157,
239]. In the same model, up-regulation of mTOR rescued
LTP [170]. The role of systemic insulin resistance in modi-
fying mTOR signaling in AD was recently probed using
two rat models; ('T2DM" intraperitoneal streptozotocin
(STZ) on high fat diet and 'AD": hippocampal A injection).
In comparing the Control, T2DM, AD and T2DM+AD ani-
mal groups, total mTOR protein and mRNA levels in the
hippocampus as well as the phosphorylation of tau protein
were significantly increased only in the combined T2DM+
AD group, not in the AD alone group compared to control
[240]. How the sustained mTOR hyperactivation phenotype
required concurrent AP toxicity and systemic insulin resist-
ance is not clear. An intracerebral STZ-induced AD rat
model evidenced reductions in all of Akt, IRS, p70S6K and
mTOR, but p-mTOR was not tested [241]. Inhibited
mTOR activity (p-p70S6K1), reduced fear conditioning
memory and plaque pathology each characterize the 5X-
transgenic AD mouse model. These defects were all res-
cued with an inhibitor of GSK3p, providing a novel mech-
anism to restore mTOR activity, reduce autophagy and
improve lysosomal acidification. Tau pathology was not re-
ported [177]. Finally, the reduction in mTOR signaling and
basal phospho-Akt marker levels, as well as enzymatic ac-
tivities, in synaptosomes from 2xAPP/PS1 mice and post-
mortem AD brain, was correlated with inhibited BDNF-
stimulated protein translation. Oxidatively damaged synap-
tic Akt was held responsible and Akt enhancement rescued
protein translation [168]. The role of oxidative stress in
AD-associated insulin resistance is elsewhere reviewed
[242]. The observation that AP may stimulate AMPK,
perhaps a compensatory effect, may partially explain
the reduction in mTOR activity observed in some of
these studies [135, 195, 243].

mTORC2 in Alzheimer's Disease

Some studies have started to look separately at mTORC1
(Raptor) and mTORC2 (Rictor). One group found neither
total- nor phospho-mTOR levels (nor specific total and p-
Raptor of mTORC1) were significantly changed in early to
moderate AD hippocampus compared to control. p-
mTORCI and p-Raptor was however significantly increased
in severe AD. The same work reported that Rictor (of
mTORC2) levels were unaltered in AD [152]. In our work,
both total mMTORCI and 2 (rictor) levels and respective en-
zymatic activities were reduced in advanced AD brain and
transgenic models. Autophagy markers were increased and
protein synthesis was inhibited [135]. Nevertheless,
phospho-mTOR / total-mTOR was increased and we also
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found that application of rapamycin, by further reducing
mTORC]I, was cytoprotective. Interestingly, overexpression
of Rictor was similarly beneficial. A proteomics study of
neural cells expressing wild type mTOR also concluded up-
regulation of C2, but not Cl1, increased cell viability by fa-
cilitating pro-survival and suppressing caspase-mediated
apoptotic genes and by stimulating p-Akt (Ser473/Thr308)
[244]. These results in AD models are consistent with
mTORC?2 survival promoting functions [245, 246].

In conclusion, we noted AD models in which baseline
mTORCI1 is abnormally over-activated and other models in
which markers of activation (e.g. p-p70S6K) are either un-
changed or reduced. One obvious reason for contradictory
findings reported by various laboratories in the activation
state of mTOR and signal kinases in general is that the vari-
ous disease models and/or assays may not comparable. The
upstream factors that negatively control mTORCI activa-
tion such as PTEN, AMPK and TSC1/2 (also a positive
regulator of mTORC2 [71] are not always assessed but may
themselves be the proximate cause of variation between cell
lines and models [87]. Another is that attention to both
basal conditions and activation testing under neurotrophin
stimulation is not always undertaken. A third is that
phosphoprotein levels alone may not always be a proxy for
actual enzyme activity in certain situations. An example of
dissociation is that mTORC2 and PI3K can maintain Akt
phosphorylation (perhaps compensatory) in the presence of
a pharmacologic inhibitor of Akt activity (resulting in dis-
ruption of downstream GSK3p phosphorylation) [247].
There is also the disease stage and/or time course of experi-
mental perturbation that needs to be controlled. For in-
stance, the regulator of mTORCI and target of C2, Akt (as
well as its substrate GSK3[B) undergo a biphasic, age
dependent change in phosphorylation in PSIXAPP trans-
genic mice hippocampus (6 mo.-Akt activation vs. 18 mo.-
Akt inhibition). This depends on the ratio of soluble APPx
and oligomeric AP along the disease time line [238]. Dur-
ation of AP exposure showed similar biphasic results in
primary neurons. With aging, changes in NMDA- and «-
nicotinic ACh-receptors were implicated in biphasic oppos-
ing directions of Akt status [248]. Paradoxes such as
rapamycin inhibiting mTOR-dependent synaptic plasticity-
yet is neuroprotective in the various AD models (see
below)- may find explanation in signal feedback and cross-
talk complexity. For instance, rapamycin, while inhibiting
mTORC]I, can also induce Akt phosphorylation with over-
riding beneficial actions (in addition to the stimulation of
autophagy). It does so by inhibiting p70S6K-T389 phos-
phorylation, thereby stabilizing IRS-1 [249, 250].

Regardless of the contradictory reports, most agree that
the response of the Akt/mTOR axis to neurotrophin/insu-
lin stimulation is suppressed in AD, consistent with a state
of insulin resistance, and that mTORCI inhibition with
rapamycin is neuroprotective, reduces proteinopathy and
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actually restores memory formation and maintenance [155,
192]. Conversely, stimulation of mTORC2 might be benefi-
cial. This underscores the duality of mTOR roles in health
and disease with respect to synaptic plasticity [251].

Parkinson’s Disease

Sporadic PD is the second commonest neurodegeneration
after AD. Aging is again the primary risk factor, as it affects
1-2% over age 65. Here mTOR also emerges as a novel
therapeutic target [81, 252]. There is a large body of evi-
dence that mTOR is perturbed in PD models [253, 254].
Perhaps more so than AD, oxidative stress (ROS) is a major
contributor to the selective degeneration of dopaminergic
neurons in PD [255]. A major source of ROS are the mito-
chondria in PD that are deficient in electron transport
Complex 1 activity. In the MPTP-treated mouse model of
PD for instance, mitochondrial ROS are shown to stimulate
apoptosis [256]. Various other neurotoxins (e.g. ceramide,
rotenone, H202, 60H-DA, paraquat) are also used to
model PD pathophysiology. In general, these manipulations
suppress mTOR/Akt activity and restoring mTOR func-
tions by overexpressions of either the wild type form or
p70S6K rescues neuronal death in these models [254, 257].
In alignment with this view, rapamycin predictably potenti-
ates the oxidative stress [258, 259]. One mechanism of
ROS-mediated inhibition, at least as uncovered from using
AD-affected synaptosomes, is oxidative damage to Akt/
mTOR signaling enzymes, resulting in the functional loss
of activity-dependent protein translation [168].

A significant body of data implicates pathologic induc-
tion of the gene for REDD1/RTP801 protein in Parkin-
son's disease, the only function of which as a regulator is
to suppress mTOR [253]. Up-regulation of RTP801 is
shown in various PD neurotoxin cell models (60OHDA,
rotenone and MPP+) as well as in post mortem PD sub-
stantia nigra neurons. RTP801 experimentally promotes
cell death (protected by knock-out) via an interaction
with TSC (relieved by TSC shRNA) to inhibit mTOR
function (reducing p-mTOR and p-p70S6K levels). The
TSC-2 requirement was confirmed [260]. Although
mTOR activation status in PD brain was not reported
on, it is clear that activation of the cell survival kinase
Akt (phospho T308 and S473) was inhibited in PD brain
and experimentally reproduced in cells. Constitutive Akt
expression also protected PC12 cells from either
RTP801 or 60OHDA) [261]. The additional mechanism
advanced to explain this phenomenon is that REDD1
also blocks mTOR-dependent phosphorylation of Akt.
Accordingly, mTOR overexpression protected cells from
60HDA toxicity. Other examples of mTOR over-
expression as beneficial to correct the deficiency were in
an AD model cited earlier [157] and in a HD model dis-
cussed below.
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On the flip side, there is a PD mouse model, where
mTOR/AKkt is upregulated 1 week out from a single in-
jection of MPTP and autophagy markers proportionately
reduced [262]. The nuanced role of mTOR was further
elaborated using this model and confirmed in vitro by
showing that the mTOR pathologically upregulated pro-
tein translation to toxic levels. Correspondingly, rapamy-
cin proved neuroprotective by correcting this and
restoration of Akt signaling [263]. Apparently, rapamy-
cin also specifically blocks REDD1 protein synthesis, and
so maintains Akt phosphorylation [263]. Interestingly,
REDD1 is reported to be the target of metformin to in-
hibit mTOR, rather than AMPK [264]. Treatment with
temsirolimus in vivo induced autophagy and maintained
high Beclin-1, p62, and MAP (microtubule-associated
protein) 1A/1B-light chain 3 (LC3) expressions, while
inhibiting p70S6K expression in another MPTP model
of PD [265]. Still others have found that inhibition of
mTORCI1 signaling also revert cognitive and affective
deficits in a 60OHDA mouse model of PD [266].

Recently, the complex regulation of mTORC1/raptor and
C2/rictor activations were examined in neuroblastoma cells
and wild type mice either exposed to or injected with the
mitochondrial toxin rotenone, respectively [267]. Under full
serum and dietary nutrient conditions, rotenone activated
mTORC1 and inhibited mTORC2/rictor, compared to
baseline. These results indicate these two complexes, pref-
erentially controlling cell growth and survival, respectively,
are reciprocally regulated, both in the neurodegenerative
context and depending on nutrient levels.

It is important to note that accumulation of a-Synuclein
and Lewy body-like formations, the proteinopathy hallmark
of PD, is generally lacking in 60HDA- and MPTP-, but
present in rotenone -ROS-generating models of PD such as
the one just cited above. Genetic models of PD also gener-
ally do not form Lewy bodies, but the clear exception is
transgene wild type or mutant a-Synuclein. a-Synuclein
modulates synaptic activity and point mutations in the
SNCA gene cause rare, early onset autosomal dominant PD
[268]. Deficient autophagy may contribute to «-Synuclein
accumulation in PD or Lewy Body Dementia and stimula-
tion of autophagy by the mTOR inhibitors rapamycin or
everolimus may promote its clearance [269-271].

In PD brain, as in AD, mTOR also appears upregu-
lated and autophagosomes accumulate [272, 273]
(Fig. 3). In neuronal cultures and mice expressing
mutant A53T «-Synuclein, mTORC1 signaling is
overactivated, also resulting in insulin resistance (via
IRS-1, S636 phosphorylation). The changes were re-
versed by rapamycin [274, 275]. Metformin was also
found to clear cytoplasmic «a-Synuclein in hippocam-
pal neurons, as did rapamycin, by inhibiting mTOR,
but interestingly not via AMPK or autophagy induc-
tion [276]. The ubiquitin hydrolase UCHL1 and
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Legend of refs.
AD/DS [ p-mTORC1 Talbot 2012 (basal) [136]
(p-activated) Griffin 2005 [145] Paccalin 2006 (WBCs) [236]
O'Neill 2013 [137] Ahmad 2017 [168]

Perluigi 2014, 2015 [50, 164] | Lee 2017 (activity) [135]
Tramutola 2015 [51] Lafay-Chebassier 2005 (WBCs)
Iyer 2014 [153] [166]

Sun 2014 [152]

Tang 2014 [244]

Li 2005 [146]

Majd 2018 [147]

Lee 2017 (basal) [135]

Talbot 2012 (activation) [136]

p-mTORC2 (p- Lee 2017 (basal and activity)
activated) [135]
p-IRS-1 Yarchoan 2014 [279]

(p-inactivated) Talbot 2012 (basal) [136]
Mahoney 2018 [280]
Tramutola 2015 [51]
p-Akt Talbot 2012 (basal) [136]
(p-activated) Giiffin 2005 [145] Ahmad 2017 [168]
O'Neill 2013 [137] Lee 2017 [135]
Perluigi 2014 [50] Liu 2011 [281]
Tramutola 2015 [51] Steen 2005 [130]
Pei 2003 [150]

Rickle 2004 (activity) [282]
Yarchoan 2014 [279]

Talbot 2012 (activation) [136]

Talbot 2012 (activation) [136]

p-p70S6K An 2003, Pei 2006 [144, 158] | Ahmad 2017 [168]

(p-activated) Caccamo 2015 (activity) [159] | Ma 2010,2014 [157, 172]
Perluigi 2014, 2015 [50, 164] | Chano 2007 [175]
Tramutola 2015 [51] Paccalin 2006 (WBCs) [236]

Tyer 2014 [153] Lafay-Chebassier 2005 (WBCs)
Sonoda 2016 [151] [166]
p-4EBP1 Perluigi 2014, 2015 [50, 164] | Ahmad 2017 [168]
(p-inactivated) | Tramutola 2015 [51] Ma 2010,2014 [157, 172]
Iyer 2014 [153]
Li 2005 [146]
p-EIF4E, Tyer 2014 [153]
p-ElF2a Chang 2002 [283]

Li 2004 [205]
Paccalin 2006 (WBCs) [236]

p-cEF2K (p-

inactivated) Li 2005 [146]
p-AMPK Majd 2018 [147]
(p-activated) | Zimmerman 2020 [210]

Ma 2014 [172]
Vingtdeux 2011 [208]
p-PTEN Rickle 2006 [184]
(p-activated) Tramutola 2015 [51]
Griffin 2005 [145]

PD mTOR (total) | Crews 2010 [269]
Dijkstra 2015 [273]
Wills 2012 [284]
p-Akt or total Malagelada 2008 [261]
Dijkstra 2015 [273]

REDDI Malagelada 2006 [253]
HD | p-mTOR, p-Akt | Martin-Flores 2020 [285]
(p-activated) Creus-Muncunill 2018 [286]
REDDI Martin-Flores 2020 [285]
4EBP! (total) Creus-Muncunill 2019 [287]

Fig. 3 mTORC1 pathway and regulatory protein changes in human
brain. Relative levels of phosphorylated forms and activity status of
several major mTOR pathway components and regulators (PTEN,
mTORC2, REDD1, AMPK) in neurodegenerative disorders. Only those
studies that examined human AD/DS (Alzheimer's, Down's
Syndrome), PD (Parkinson's), HD (Huntington's) or ALS (Amyotrophic
Lateral Sclerosis) brain or peripheral cells (WBCs) are listed. In
addition to those studies cited in Table 1, that examined mTOR
pathway proper, we include those here that did not but still focus
on one or more of the other components. In so far as the number
of studies supporting a given direction of change (references
reporting decreased levels in blue, increased in red, in affected vs.
control brain) can be taken as some measure of consensus, each
publication listed is represented visually by a single red (increased)
or blue (decreased) dot next to the respective pathway protein. The
dot also indicates the corresponding disease. Most studies only
examined basal phospho-levels, whereas a few specified insulin-
induced activations or assayed the enzymatic activity. For example,
the majority of studies in AD brain favor basal mTORC1 over-
activation (vs. inhibition; n=11 vs. 5); increased IRS-1 phospho-
inhibition (5); AMPK over-activation (4) and increased 4EBP1
phospho-inhibition (5 vs. 2), whereas a more modest majority, favors
Akt over-activation (8 vs. 5) and p-p70SéK hyperactivation (7 vs. 5).
Nevertheless, the Akt and mTOR activation responses to insulin are
depressed in cell model [135] and AD brain [136]

PINK-1 proteins both activate mTORC2, predicting
improved cell survival [277, 278]. The role of
mTORC2 in PD clearly bears further investigation.

Figure 3 Legend of refs. [50, 51, 130, 135-137, 144-
147, 150-153, 157-159, 164, 166, 168, 172, 175, 184,
205, 208, 210, 236, 244, 253, 261, 269, 273, 279-287].

Interestingly, several familial PD-linked proteins,
affected by disease-causing recessive mutations in
PINK-1/ PRKN (Parkin) and DJ-1 (PARK7) genes
and in the dominantly inherited LRRK2 gene, influ-
ence the autophagy-lysosomal pathway in response
to mitochondrial damage in an mTOR-independent
manner [288, 289]. Adding to the complicated story
of mTOR in PD noted above, these studies have
generated interest in stimulating autophagy by means
other than rapamycin and analogs in order to im-
prove o-synuclein removal, i.e. targeting mTOR-
independent autophagy. These strategies employ
agents such as curcumin and Trehalose [290-292].
Whereas mTOR negatively regulates TFEB (tran-
scription factor EB) to suppress autophagy, Trehalose
acts on the Foxo-1 transcription factor to enhance
autophagy protein expressions [293]. In light of this,
the in vivo activation of autophagy through a com-
bination of rapamycin and Trehalose treatment was
shown to reverse both neuronal dopaminergic dam-
age and behavioral deficits. Therefore, a dual therapy
approach aimed at autophagy seems to hold promise
for PD-like pathology [294].
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Huntington’s Disease

Huntington's disease is another dominantly inherited
proteinopathy, resulting in a degenerative movement,
psychiatric and cognitive disorder. Several reports
clearly implicate abnormal synaptic plasticity, spatial
memory cognition and dendritic spine loss early on
in experimental mutant Huntington (mHtt) bearing
mice [295-297]. In transfected cells bearing aggregat-
ing proteins with polyglutamine (polyQ) expansions,
such as caused by the Huntington's disease mutation
in which the CAG tract in the Htt gene is expanded
or by mutant Ataxin 1 in the case of spinocerebellar
ataxia 1, blockade of mTORC1 with rapamycin or
pan-mTOR catalytic inhibitors results in stimulated
autophagy followed by removal of mutant protein ag-
gregates and cytoprotection [298, 299]. Drosophila
and mouse HD models also benefited from mTOR in-
hibition [300]. In a polyQ htt mouse model, deletion
of TSC1 led to activation of mTORCI, accelerated
motor incoordination and premature death. In striatal
cells overexpressing the same mutation, mTORC1 ac-
tivation was induced which then could be abrogated
by knocking down Rheb [301]. The authors conclude
that enhanced mTOR is pathogenic in HD. In neuro-
blastoma cells induced to express mutant Htt
polyQ72 fragments, catalytic inhibitors of total mTOR
or mTOR specific siRNA, induced autophagy and re-
duced protein aggregates [298, 299]. Each of p70S6K,
p4E-BP and p-Akt, downstream substrates of
mTORC1 and C2, respectively, showed appropriate
inhibitions. Still puzzling, everolimus, an allosteric
mTOR inhibitor, had no effect [298, 299].

In an interesting application using a Drosophila model
HD model, Lithium was used to activate mTOR-
independent autophagy. This along with co-treatment
with rapamycin to limit the undesirable side effect of
GSK3B-mediated mTOR activation, resulted in enhanced
mutant Htt clearance [302, 303]. But here too, there is evi-
dence to the contrary in another rodent model of mutant-
Htt, wherein mTOR activity was impaired. Reconstituted
mTOR activation by constitutive Rheb proved cytoprotec-
tive [304]. In post mortem HD putamen, mHttQ111
transgenic mice, and in mHtt-bearing rat primary neu-
rons, REDD1 (RTP801) is also upregulated and mediates
cell death, as the case in PD [285]. Accordingly, downreg-
ulation of RTP801 prevented motor learning deficits in
the mice. However, contrary to PD, Akt was hyperacti-
vated, from increased Rictor action, invoking a compensa-
tory effect. The activated Akt pattern was also confirmed
by others in genetic mouse models of HD [305, 306]. One
study points to a scenario where further increasing Rictor
in striatal cells actually prevented neurodegeneration from
mHtt expression [286]. In this mouse model and in HD
putamen, rictor, Akt and mTOR activations were already
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increased, again pointing to a partially effective compensa-
tory reaction. The same authors found evidence for exces-
sive de novo protein translation in genetic HD mice,
attributed to an increase in phosho-inactivation of 4EBP1.
This hypofunction of 4EBP1 was confirmed in human HD
putamen specimens, however it was left unclear if exces-
sive mTOR was culprit [287]. In a forementioned study,
RTP801 silencing proved to normalize the Akt hyper-
phosphorylation by reducing Rictor and enhancing
synaptic protein synthesis [285]. Although rapamycin
was not tested in these last 3 citations, the HD-PD
movement disorders axis demonstrates the duality of
PI3K/Akt/mTOR pathway involvement in various
neurodegenerations and the need to tailor treatment
if this is to be targeted.

ALS and FTD

In another expansion mutation, a hexanucleotide repeat
in the C9ORF72 gene causes the most common form of
inherited ALS and FTD. The loss of protein function
encoded by this gene promotes TDP43 accumulation in
ubiquitin-containing inclusions. In a C9ORF72 knockout
model, autophagic flux is increased and correlated with
reduced mTOR activity (less p-p70S6K1). Hence,
C90RF72 protein is postulated to act as a negative au-
tophagy regulator, perhaps in synergy with the binding
of mTOR at the lysosome membrane [307, 308].

In a model incorporating another ALS-causing gene
mutation (G93A in SOD-1), autophagy markers were
also increased in spinal motor neurons [309]. Using this
model, a small molecule that enhanced mTOR and sup-
pressed autophagy suppression was found to be neuro-
protective  [310]. Moreover, Rapamycin actually
accelerated disease progression [311, 312]. Interestingly,
when mTOR-independent autophagy was activated with
Trehalose, motor neuron lifespan was prolonged and
protein aggregations were reduced. Therefore, in the
context of these models, as contrasted with AD, motor
neuron viability appears dependent on mTOR activity
and autophagy needs boosting by other mechanisms
[311, 312]. Progranulin (GRN) mutations resulting in
haploinsufficiency also cause familial FTD, and in GRN
genetic models Trehalose, is also found to be neuropro-
tective [312].

Another FTD transgenic mouse in which TARDP43
overexpression yields TDP43/ubiquitin containing inclu-
sions, produced a different result. In this case, rapamycin
treatment and mTOR inhibition-autophagy activation
(LC3-1/LC3-1I) proved neuroprotective against memory
loss and inclusion formation [314]. Finally, in a mouse
FTD model bearing a tau mutation in which the observed
mTOR overactivation is associated with Tau accumulation
and hyperphosphorylation, rapamycin also corrected be-
havioral deficits and afforded neuroprotection [202]. Based
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on these latter reports, a phase 2 clinical trial of rapamycin
in ALS is ongoing [315].

mTOR-based treatment

Rapamycin (sirolimus), the prototypical mTORCI in-
hibitor, is an immunosuppressant and anti-proliferative
FDA-approved agent for kidney transplantation, coron-
ary stents, cardiac hypertrophy and renal cell carcinoma
[316]. It binds FK506 and allosterically stabilizes raptor-
mTOR in a kinase-inactive complex. The discovery of
the apparently paradoxical protective action of rapamy-
cin in many models of neurodegeneration (see below
and Fig. 4) arose from the early recognition that mTOR
transduces the action of insulin and IGF-1 via Akt in
both the periphery and brain. Other trophic factors
(EGF, BDNF) also require some mTOR activity to pro-
mote enable their neuroprotective and cell survival func-
tions [20, 317]. Moreover, the AD brain is intrinsically
insulin resistant and does not metabolize glucose prop-
erly where needed. There is also a complex relationship
to insulin resistance in the periphery since systemic
T2DM doubles the risk for AD [126]. Therefore, much
effort is devoted toward the development of anti-diabetic
drugs to treat AD that include metformin, glimepiride (a
sulfonylurea), GLP-1 and Liraglutide (a glucagon-like
peptide analog) and intranasal insulin [318, 319]. These
strategies appear to enhance the Akt/mTOR signaling
axis. The resistance to insulin signaling that character-
izes AD brain would further predict that restorative
mTOR activation would be neuroprotective. Therefore,
a balanced treatment of the matter relating to the pros
of rapamycin therapy should include the other instances
where mTOR activation is favored.

Indeed, there are disease states, AD aside, where direct
mTOR activation is neuroprotective. These involve CNS
models of ischemia, trauma and oxidative stress and is
attributed to the inhibition of apoptosis or repression of
autophagy [259, 320, 321]. In one example, the cytokine
and hormone erythropoietin that signals through mTOR
activation, is regarded to prevent neuronal apoptosis
during oxidative stress or hypoxia [322] and AP expos-
ure [323]. Relating to Parkinson’s disease, an mTOR ac-
tivating protein protected dopaminergic cells from
H202 mediated oxidative stress [259]. REDDI1
(RTP8011) is an endogenous mTOR inhibitor that is in-
creased in dopaminergic neurons and contributes to
neuronal death, mTOR activation is protective in this
model too [253]. A number of physiological studies also
support the notion that mTOR activation may counter
neurodegeneration. mTORC1 control over activity-
related 5' TOP mRNA translation initiation (via 4EBP1
and p70S6K phosphorylations) and dendritic protein
synthesis is critical to synaptic plasticity (LTP and LTD)
and memory formation [324, 325]. Rapamycin is
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accordingly found detrimental to normal synaptic plasti-
city by many laboratories [6, 7, 10, 95, 96, 326]. In agree-
ment with this, is the loss of mTORCI1 signaling found
in two AD animal models (transgenic and wild type ex-
posed to exogenous AP42) or in wild-type mice treated
with rapamycin, causing impairment of late phase hippo-
campal LTP (and LTD) [157]. In behavioral correlates of
activity-dependent synaptic strengthening, early studies
show activations of mTORC1 and p70S6K during the
consolidation phases of both spatial (Morris water maze)
and fear conditioning paradigms. These long-term mem-
ory processes were understandably inhibited by either
rapamycin or AMPK stimulation [8, 20, 95]. mTORC?2 is
also necessary for synaptic plasticity, perhaps via associ-
ation with polysomes or cytoskeletal protein
polymerization [223, 327]. These considerations auger
for mTOR stimulation and by the same logic, against
rapamycin treatment for AD.

However, it is the inhibition of mTORC1, downstream
in the insulin pathway, with Rapamycin that consistently
increases lifespan in mammals [13], rescues several forms
of neurodegeneration [328], mitigates synaptic/neuronal
losses and restores synaptic plasticity and/or cognition in
several animal and cell disease models (summarized in
Fig. 4). As we have seen for instance, rapamycin prevents
loss of learning and memory in the Morris Water Maze in
several AD mice models when given at young (2 mos.) or
mid ages (4-7 mos.) [155, 192, 234, 329]. Perhaps surpris-
ing given its aforementioned negative effects on long term
synaptic plasticity and memory, lifelong treatment with
rapamycin even improved spatial memory in 2-4 mo. con-
trol and wild type mice [5, 189, 192]. However, neither
LTP or spine morphological changes were assessed. A
clear example of this principle is the TSC2 haplodeficient
mouse, in which cognitive deficits are directly linked to
hyperactivation of mTOR; rapamycin restores synaptic
plasticity and cognitive function [330]. The excessive acti-
vation of mTOR associated with AD progression, as found
in many studies and human brain samples (but by no
means all, see Table 1, Fig. 3), also favors rapamycin-based
therapy for the disease context [331]. In this regard, a
major effect of rapamycin is to decrease proteotoxic aggre-
gates, such as AB42 [332] via autophagy/lysosome induc-
tion [119]. Rapamycin/Temsirolimus appear beneficial in
alleviating proteotoxicity in several transgenic AD [155,
192, 234, 329] and tauopathy mice strains [176, 202]. Cel-
lular models under toxic stress from B-amyloid [333] and
other aggregate-prone proteins are also alleviated by rapa-
mycin [298]. In Parkinson disease cell-based and trans-
genic models where a-synuclein accumulation is
proteotoxic, mTOR inhibition with rapamycin and/or au-
tophagy induction with Beclin or Atg7 were cytoprotective
[269, 334]. In the latter reference, total and phopsho-
mTOR levels were increased in DLB and a-synuclein
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transgenic brains. However, the concept of rapamycin res-
cue may hold regardless of the basal activation status of
mTORCI. In certain HD drosophila and mice models for
instance, although basal mTOR activity is already down-
regulated, further inhibition with rapamycin stimulated
autophagy, cleared polyQ Htt protein fragments and was
cytoprotective [300]. This scenario applied to some AD
models as well [135]. Mixed pathologies are also amenable
to therapy. Examples include rats with experimental hip-
pocampal AD pathology on a T2DM background [200]
and vasculopathy with blood-brain barrier breakdown in
transgenic hAPPJ20 mice [335]. In one instance, rapamy-
cin was even found helpful in protecting hypoxic primary
cortical neurons from apoptosis by stimulating autophagy
[336]. Another caveat is that once the neurodegeneration
is too advanced, rapamycin may become ineffective [220].

One conclusion is that where toxic proteins accumu-
late in neurodegenerative disorders, the advantage of au-
tophagy induction by inhibiting mTOR may outweigh
the antiapoptotic and pro-synaptic effects of its activa-
tion. As well, the effects of mTOR inhibition in normal
tissue studies doesn't have to coincide with its effects in
the various disease states. This situation could possibly
arise from crosstalk between C1 and C2 circuitry [87]. It
seems likely therefore that these two mTOR activities
are differentially altered in neurodegenerative conditions,
arising from changes to the gain of their positive regula-
tors and negative feedback loops (e.g TSC1/2, PI3K,
p70S6K). Underscoring the fine balance in their cir-
cuitry, both chronic activation of mTORC1/p70S6K [71,
337] and conversely, prolonged rapamycin treatment
[90], can each result in mTORC?2 inhibition and lead to
insulin resistance.

Other mTOR strategies

Unfortunately, rapamycin has a systemic toxic profile
that includes pneumonitis, stomatitis, poor wound heal-
ing, nephrotoxicity and immunosuppression [338, 339].
These limit its application to abate neurodegeneration.
Moreover, rapamycin can be toxic to mitochondrial res-
piration and biogenesis via the disruption of peroxisome
proliferator-activated receptor gamma coactivator 1
(PGC-1) [25, 26, 91]. Finally, long-term use can produce
insulin resistance, including inhibition of mTORC2
function and Akt phosphorylation as well as reductions
in IRS-2 levels and glucose uptake [340]. These predict
an exacerbation of T2DM [78, 341].

Formulating rapamycin or rapalogs for preferential
brain delivery may overcome these systemic objections,
as exampled by experimental intracerebral infusions
[269, 342]. More practical strategies are being developed.
So far, systemically administered nanoparticles, micelle,
exosome and nanoemulsion-based rapamycin delivery
systems, seeking to advantage the increased BBB
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permeability in AD and other neurodegenerations, is
proving a challenge [343, 344]. Trials of intranasal (IN)
delivery of insulin for AD has inspired a study on IN
rapamycin in a mouse model of Down syndrome, finding
that radial arm maze and object recognition cognitive
dysfunctions are rescued along with positive effects on
measures of autophagy and tau phosphorylation [345].
Small molecule catalytic mTOR inhibitors that compete
with ATP have also been successfully used in Hunting-
ton models as an alternative to the allosteric rapalogs
[299, 346]. Selective mTORCI catalytic inhibitors, spar-
ing C2, might be favored in neurodegeneration and
some have been identified [347]. Alternatively, if the goal
is to abate the concurrent overactivation of both Akt
and mTORC1/2, dual PI3K/mTOR ATP analogues (as
are in current cancer trials) could be tested. Additional
approaches to selective C1 inhibition include a small
molecule inhibitor of Rheb, NR1 [280].

Rapalogs such as temsirolimus and everolimus and
second generation mTOR inhibitors represent major im-
provements in tolerance [347, 348] and hold promise as
therapies against aging and AD [5]. Temsirolimus re-
stores spatial learning and memory in 5-month-old
double mutant AD transgenic mice, associated with au-
tophagic clearance of AP and anti-apoptosis [349, 350].
Similar results in p-tau clearance and memory are re-
ported in a mutant tauP301S model [214]. Intrathecal
everolimus inhibited central mTOR and restored cogni-
tive function in 3X AD mice [351].

Other drugs, affecting mTOR, are being investigated
for therapy in AD. For instance, metformin, which acti-
vates AMPK (indirectly suppressing mTOR) and may
also directly suppress Raptor/mTOR, can stimulate au-
tophagy like rapamycin. Although there is some con-
cerning epidemiological evidence pointing to an increase
in AD risk in those treated with metformin [352], one
clinical trial concluded that it mitigated cognitive dys-
function in MCI/AD [353]. Several in vitro and in vivo
AD models also report conflicting results with metfor-
min, either promoting amyloid aggregation and memory
dysfunction or rescuing synaptic plasticity and prevent-
ing neuropathological changes. The agent cilostazol in-
creases AMPK expression (in a Sirt-1-dependent
manner), suppresses mTOR activation, increases autoph-
agy markers beclin-1, Atg and LC3-II and promotes au-
tophagic clearance of AP in N2A neurons [354]. Direct
Sirt-1 overexpression, by inhibiting mTOR, promotes
neurite outgrowth and cell survival during AP exposure
[118]. Caloric restriction also stimulates AMPK, activat-
ing autophagy and preventing AD pathology in triple
transgenic mice [355]. Dietary curcumin and resveratrol
either reduce mTOR levels to disrupt the C1 complex or
inhibit mTORC]1 by activating AMPK, thereby inducing
autophagy and rescuing cognitive impairment in 2X AD
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Fig. 4 mTOR inhibition in neurodegenerative disorders. As a nutrient sensor, mTOR has important homeostatic functions to regulate energy
metabolism and support neuronal growth and plasticity. However, in Alzheimer's disease (AD), mTOR alternately plays important pathogenic roles
by inhibiting both insulin signaling and autophagic removal of beta amyloid and Tau aggregates. Overactive mTOR also abets the
cerebrovascular dysfunction of AD. Some of the other neurodegeneration conditions, discussed herein, have similar proteotoxic mechanisms
(indicated in parentheses). The beneficial actions of mTOR inhibition with rapamycin are shown as arrows to the corresponding bulleted effects.

transgenic mice [356]. mTOR independent stimulation
of autophagy, with Trehalose, is another alternative to
the above approaches [357]. Several additional novel
compounds that modulate mTOR and autophagy for
treatment of neurodegeneration are presented in a re-
cent review [88].

Conclusion

Autonomous overactivation of the Akt/mTOR axis and
upregulation of mTOR activity targets has been noted in
several transgenic models and in AD brain (Table 1 and
Fig. 3). p-amyloid is partially responsible through mech-
anisms including inactivation of PTEN (disinhibiting
PI3K), degrading functional IRS-1 levels, and activation
of mTOR. These amyloid-driven mechanisms result in a
state of relative insulin/IGF resistance (inhibited homeo-
static Akt activation) [358] and oxidative stress [359].
Tau phosphorylation is also driven by Akt/mTOR hyper-
activation. Several interventions may break this chain of
pathogenesis. For example, either genetic suppression of
AP production or passive anti-Ap immunization in an
AD mouse model will reverse the hyperactivation of
mTOR and improve cognition [162]. Similarly, genetic
reduction of mTOR by one copy in transgenic 2576 AD
mice is sufficient to improve central insulin signaling
and cognition [160, 161].

Although some manifestation of mTOR dysregulation
is unquestionably present in AD brain, and for that mat-
ter in numerous tissues of individuals with T2DM [360,
361], a definitive accounting of the exact nature and se-
quence of mTOR axis dysregulation is elusive. Part of

this uncertainty comes from studies that have found no
change or even reduced mTOR activation and/or activity
parameters in AD brain and various transgenic models.
Aside from the use of widely differing models, contradic-
tions can arise from variances in disease duration and
severity as well as confounding changes to mTOR-
regulating and signal crosstalk proteins. Nevertheless,
most all in vivo and in vitro models of AD recommend a
rapamycin-like strategy. Furthermore, manipulation of
mTOR is a strong treatment strategy to pursue in PD/
HD and ALS.

The overall goal of mTOR-based treatment then is to
either restore activity where deficient or inhibit it when
excessive, in order to re-establish basal levels, reactivity
to neurotrophin stimulation and nutrient status and
downstream effector homeostasis. This will probably de-
pend on the particular neurodegenerative process and
type of protein aggregation, as well as disease stage. At-
tempts to block mTOR activity must be kept partial, in
consideration of important roles in facilitating memory
formation [21, 362, 363] and tissue repair involving pro-
genitor cells [364]. The latter relates particularly to neu-
rodegeneration and ischemic injury [365]. The balancing
act includes maintenance of insulin/Akt axis homeosta-
sis and mTORC1-dependent protein translation. Thus,
over-inhibition of mTORC1 could lead to feedback hy-
peractivation of Akt and unchecked tumor proliferation.
The inadvertent over-activation of mTOR also has the
potential of tumorigenesis (for example resulting from
the loss of tumor suppressor TSC1/2 function, as in Tu-
berous Sclerosis), but also loss of autophagy function
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[366], glucose intolerance via IRS-1 feedback inhibition
[47] and learning impairment [330].

If the focus however is on alleviating proteotoxicity,
the goal is to stimulate autophagy and protein removal.
As mentioned, most studies would recommend mTOR
inhibition and autophagy induction for neuroprotection,
for instance in AD [119]. Still, there are other conditions
for which mTOR activation would appear therapeutically
beneficial. These may include where ischemia/apoptosis
or stroke is the overriding pathology [363, 367, 368] not-
ing that mTOR has anti-apoptosis properties, or where
oxidative stress is of higher concern such as in certain
PD and ALS models [259, 309]. Finally, the timing of
mTOR inhibitor treatments can affect mMTORC1 and C2
complexes differentially [369, 370]. Thus, it is plausible
that an individualized balance between mTORCI1 and
C2 manipulations would need to be reached for each of
the proteinopathies [135, 299].

The use of rapamycin or analogs to treat AD holds
promise due to its many actions to increase longevity
and remove toxic proteins, but toxicity concerns persist.
This leaves open the possibility to target other mTOR-
dependent effectors such as p70S6K1/2 [159, 371] as
well as direct therapy to more selective brain regions [5].
The balance between IRS-1 inhibition (mTORCI1 di-
rected negative feedback) and Akt responsiveness to in-
sulin (mTORC2/Rictor directed positive feedback)
should be swung to favor homeostatic insulin signaling.
The compelling preclinical record reviewed above calls
for clinical trials to test rapamycin or other mTOR in-
hibitors and/or possibly mTORC2 agonists, beginning in
patients with Alzheimer's disease [372].
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