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With the exponential growth in the determination of protein sequences and structures via genome sequencing
and structural genomics efforts, there is a growing need for reliable computational methods to determine the
biochemical function of these proteins. This paper reviews the efforts to address the challenge of annotating
the function at the molecular level of uncharacterized proteins. While sequence- and three-dimensional-
structure-based methods for protein function prediction have been reviewed previously, the recent trends in
local structure-basedmethods have received less attention. These local structure-basedmethods are the primary
focus of this review. Computationalmethods have been developed to predict the residues important for catalysis
and the local spatial arrangements of these residues can be used to identify protein function. In addition, the com-
bination of different types of methods can help obtain more information and better predictions of function for
proteins of unknown function. Global initiatives, including the Enzyme Function Initiative (EFI), COMputational
BRidges to EXperiments (COMBREX), and the Critical Assessment of Function Annotation (CAFA), are evaluating
and testing the different approaches to predicting the function of proteins of unknown function. These initiatives
and global collaborations will increase the capability and reliability of methods to predict biochemical function
computationally and will add substantial value to the current volume of structural genomics data by reducing
the number of absent or inaccurate functional annotations.
© 2015 Mills et al. Published by Elsevier B.V. on behalf of the Research Network of Computational and Structural

Biotechnology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The number of protein sequences and structures in databases such
as UniProt [1] and the Protein Data Bank (PDB) [2] has grown signifi-
cantly since the inception of genome sequencing and high-throughput
structure determination. As of January 2015, the UniProt/TrEMBL data-
base contains over 89 million protein sequence entries, an increase of
more than six-fold since January of 2011; only a very small fraction of
these proteins is assigned a reliable function [3]. Additionally, the PDB
now includesmore than 13,000 structural genomics (SG) protein struc-
tures as a result of structural genomics projects, notably the Protein
Structure Initiative (PSI). At the turn of the millennium, the National
Institute of General Medical Sciences (NIGMS) of the National Institutes
of Health (NIH) in the United States launched the PSI with the goal to
determine three-dimensional structures of proteins representing
every family [4,5]. At that time, the human genome project and the
sequencing of the genomes of many other organisms were completed
[6,7]. The high throughput techniques developed by the PSI and other
SG programs have increased the number of known protein structures.
Since the PSI has been primarily concerned with high volume structure
determination and prompt public availability of protein structures,
most of these protein structures lack reliable accompanying information
regarding their biochemical function; in some cases, no functional
annotation is given. Thus, most of these proteins are assigned a putative
or possible function based on the closest sequence or structure match;
however, these assignments are often incorrect [8–10], and these incor-
rect functional labels can propagate within databases [11,12].

In 2010, the NIGMS launched a new phase of the PSI named
PSI:Biology. This phase was implemented to determine the biological
roles of the SG proteins under structural study. However, large numbers
of functional annotations remain missing or incorrect. Better computa-
tional methods and verification through biochemical experimentation
are clearly needed. Reliable and accurate computational methods for
predicting the function of proteins can add significant value to genomics
data and also improve efficiency of experimental verification of func-
tion. While there have been a number of review articles on sequence-
based and three-dimensional-structure-based methods for function
prediction [13–19], this article focuses on newer, local-structure-based
computational methods to predict protein function at the molecular
level; these methods are in turn based on prediction of the local spatial
regions that are biochemically active in the structure. Finally, efforts
within the broader scientific community to contribute to the testing
and verification of functional predictions are explored.

When the function of a protein is not known, a putative function is
sometimes assigned. These assignments are often the result of simple
bioinformatics analyses including sequence and three-dimensional
structure comparisons using programs such as BLAST [20,21] and Dali
[22,23]. SG proteins can be assigned a putative function based on simple
transfer of function from the closest sequence or structurematch. How-
ever, sequence or structural similarities can be misleading. For instance,
less than 30% of pairs of proteins with greater than 50% sequence iden-
tity have identical E.C. numbers [9]. Even a BLAST E value of 10-50 or less
does not guarantee that two proteins have the same function [9]. Se-
quence identities of 60% or greater will transfer function incorrectly in
10% of cases [10]. Furthermore, structural superfamilies, such as the
enolase, amidohydrolase, and Clp/crotonase [24] superfamilies, can
consist of several, or even dozens, of different biochemical functions
[25–28]. The TIM barrel and the Rossmann fold each represent over 50
different types of biochemical function; the TIM barrel has been
observed in five out of the six major E.C. categories and the Rossmann
fold occurs in all six [29–32]. Thus, the practice of assigning function
using simple transfer of function based on sequence or structure simi-
larity has caused misannotations. In one study, the GenBank NR [33],
UniProtKB/TrEMBL [1], and Kyoto Encyclopedia of Genes and Genomes
(KEGG) [34] databases were shown to have up to 63% misannotation
across six superfamilies [8].
For many SG proteins, possible functional assignments obtained
from informatics-based approaches can provide too many options
with insufficient discrimination of the most likely functions to be able
to assign function with confidence or test function experimentally
with reasonable efficiency. The development and implementation of
new, reliable computational methods is an important aspect of a solu-
tion to the challenge of assignment of function to proteins.

2. Functional site prediction methods

Many computational programs have been developed to help predict
the active sites and biochemical functions of proteins [16,18,19,35–39],
although there remains much yet to be done to improve and to verify
predictive capability for biochemical function.

2.1. Sequence-based methods

Sequence-based approaches are the more commonly used method
of computational analysis [18]; these methods primarily utilize se-
quence alignments but sometimes also incorporate 3D structures [40,
41]. Evolutionary Trace [42] and INformation-theoretic TREe traversal
for Protein functional site IDentification (INTREPID) [43,44], examine a
protein in its phylogenetic context and the evolutionary history of
each amino acid in a protein sequence to assign a score to each amino
acid. Evolutionary Trace analyzes the conservation of residues between
proteins of similar function and evaluates amino acid variations that are
known to be associated with changes in function. This information then
suggests which residues are important for specific functions and which
residues can be altered in order to change the function of a protein. This
method exploits the similarities and differences between groups of ho-
mologous proteins and includes functional resolution, which involves
analyzing the different functional clusters that are generated within a
given family. Similar to Evolutionary Trace, INTREPID computes scores
depending on the degree of conservation within a set of proteins with
known functions. This score examines information over an entire family
tree instead of just analyzing certain branches, or subfamilies. INTREPID
is also able to identify residues important for catalysis that are not
necessarily conserved across an entire family [44]. Both methods com-
pute a score for each residue that is a measure of its importance to the
function.

2.2. Structure-based methods

Structure-based methods of predicting protein function involve
analyzing the structure and shape of a protein. This analysis helps deter-
mine where a ligand may bind by transferring the function of another
similar protein of known function. Identification of the local site of
biochemical activity in a protein can serve as a first step toward the pre-
diction of the function. Geometric-based computational programs like
Surfnet [45], CASTp [46], Ligsite [47], PocketFinder [48], and geometric
potential [49] are structure-based approaches that examine the differ-
ent properties of a protein surface or active site pocket to gain insight
into the identity and location of binding pockets. Surfnet generates
many protein surfaces, such as pockets within a protein, gaps between
molecules, and van der Waals interactions, based on PDB coordinate
data. The different surface output data are shown as a grid depicting
the densities. These grids are created by applying a Gaussian function
to the atoms within the protein. The residues that are specified as im-
portant are determined from the intensity of the densities. CASTp lo-
cates voids within a protein structure using the PDB, Swiss-Prot, and
Online Mendelian Inheritance in Man (OMIM) to determine active site
residues. Similarly, Ligsite uses a set of ligand–receptor complexes to lo-
cate pockets on a protein surface and can analyze a large set of proteins
rather quickly [50]. PocketFinder and geometric potential also analyze
the topological and geometric features of the protein surface. However,
PocketFinder locates ligand binding envelopes instead of scanning the
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surface of a protein to find different sized pockets. Geometric potential
adds local structural analysis in parallel with global structural analysis
to analyze the residues within the pockets.

In addition to geometry-based methodologies, dockingmethods are
another type of structure-based approach. Docking approaches such as
Q-SiteFinder [51] and computational solvent mapping [52] identify
the position and properties of the catalytic site regions within proteins
through the use of small molecule probes. Q-SiteFinder exploits the en-
ergy differences between spaces in a protein and van derWaals probes.
This helps find the locations in a protein that are energetically favorable
for ligand binding. Similarly, solvent mapping uses small organic mole-
cule probes to analyze a protein surface, locates favorable areas where
the probes may bind, and then ranks the positions based on their free
energies. These methods help locate both catalytic sites and non-
catalytic, small molecule binding sites, such as allosteric sites within a
given protein structure.

THEoretical Microscopic Anomalous TItration Curve Shapes (or
THEMATICS) [53–55], a functional site predictionmethod, is able to pre-
dict accurately the ionizable active site residues within a given protein
using only the 3D structure of the query protein. THEMATICS identifies
ionizable amino acid residues (Arg, Asp, Cys, Glu, His, Lys, and Tyr, plus
the N- and C- termini) that participate in catalysis or ligand recognition.
The ionizable side chains of amino acid residues in protein active sites
exhibit unusual electrostatic properties, specifically theoretical titration
curves as shown in Fig. 1. These curves are obtained by approximate cal-
culation of the electrostatic potential function, followed by a calculation
of the average charge of each ionizable residue as a function of pH. These
theoretical titration curves of active site residues are perturbed from the
normal sigmoidal shape that is characteristic of the Brönsted acid–base
chemistry of the free amino acid [53]. In a normal titration curve, the
proton occupation is one at low pH and as the pH is increased, the pro-
ton occupation suddenly drops sharply around the pKa, approaching
zero at higher pH. Normally this transition, where both the protonated
and deprotonated forms exist in appreciable population, occurs in a nar-
row pH range. However, the residues within the active site tend to be
partially protonated over a larger pH range and in this manner the
shape of the titration curve is perturbed [53]. This method has been
described previously as based on computed pKa shifts [38,56]; however,
this is incorrect. Onlymetrics that characterize the shape of the titration
curves, and not the pKa shifts, are used in the THEMATICS predictions.
The degree of deviation of a catalytic ionizable residue from the typical
Henderson–Hasselbalch titration curve can be quantified by the mo-
ments of the first derivative of the curve [57]. This method has been
tested on the Catalytic Site Atlas (CSA) 100, and THEMATICS-predicted
residues have been shown to constitute good predictions of the active
Fig. 1.Three histidine residues fromhistidinol phosphate phosphatase (HPP) (PDB2yz5)were a
charge of a given residue of a large ensemble of protein molecules as a function of pH, and first d
sigmoidal curve shapes with a small buffer range, while the catalytic H226 displays a curve w
derivatives of the titration curves, non-catalytic residues display symmetrical, highly peaked
derivative plots and may have multiple peaks.
site for proteins in the benchmark set [55]; they have also been shown
to be generally well conserved [58].
2.3. Combined methods

In order to take advantage of the strengths of each approach to im-
prove the performance of active site predictors, many current methods
utilize structure and sequence-based properties in parallel [59–67].
ConCavity [68] is one method that utilizes both sequence and structure
information to predict the functionally active residues of a protein. It
uses algorithms that analyzenot only the surface of a protein for binding
pockets, but also uses evolutionary conservation to help locate these
pockets. First, ConCavity scores areas on the surface of a protein
according to the topology, using methods such as Ligsite or Surfnet
(mentioned above). It then combines the conservation scores of resi-
dues within these pocket areas. Next, pocket structures are constructed
based on the analysis and the structure of theprotein. Finally, the poten-
tial pockets are mapped on the structure and the residues are analyzed
and scored based on their positionwith respect to the pockets.With this
information, ConCavity is able to predict spaces within a protein struc-
ture where a ligand is most likely to bind. The creators of ConCavity
have shown that combining structure and sequence analyses signifi-
cantly improves the ability to identify active site pockets and the resi-
dues responsible for catalysis [68].

Since THEMATICS can only predict the seven ionizable amino acids,
machine learningmethods were developed that can extract more infor-
mation from the computed electrostatic and chemical properties and
can predict all 20 amino acid types. The ionizable residues arginine,
aspartate, cysteine, glutamate, histidine, lysine, and tyrosine make up
about 76% of active site residues within functionally annotated proteins
in databases [69]. To predict all 20 amino acid residue types, a new
machine learning method was developed that can analyze the non-
ionizable residues as well. This led to the development of Partial Order
Optimum Likelihood, or POOL. POOL, a machine learning method, is a
maximum likelihood, monotonicity-constrained multidimensional iso-
tonic regression method that has the ability to identify both ionizable
and non-ionizable active site residues [70]. POOL accepts THEMATICS
metrics for the ionizable residues as one of its input features. However,
it also calculates environment variables for all residues based on the
THEMATICS metrics for the ionizable residues in the neighborhood of
each residue. POOL can accept other input features, including scores
from INTREPID [43,44] and the structure-only version of ConCavity
[68]. Using structure-based geometric features, ConCavity supplies a
score for each residue based on its likelihood of binding to a ligand.
nalyzedby THEMATICS to produce theoretical titration curves (A),whichplot themeannet
erivative plots (B).The titration curves of two non-catalytic residues, H84 and H150, show
ith an anomalous shape, shallow slope, and larger buffer range. When analyzing the first
plots. However, active site residues such as H226 shown here display broad, asymmetric
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Together, these three input types from THEMATICS, INTREPID, and
structure-only ConCavity generate POOL rankings that yield predictions
of the residues that are important for catalysis.

For instance, THEMATICS and POOL were used to analyze the
Structural Genomics protein Bifidobacterium adolescentis YP_910028.1
of unknown function and predicted that it is a metal-dependent
phosphoesterase [71]. Sequence and structure comparisons with
BLAST and Dali were inconclusive and suggested multiple different
functions. The closest structurematchwas to aDNApolymerase catalyt-
ic domain. Initial phylogenetic analysis suggested that this protein
could function to repair DNA or function as a DNA polymerase.

The crystal structure of YP_910028.1 contains a PHP domain, but
PHP domains are present in multiple functional types, including
X-family DNA polymerases [72], DNA polymerase III [73], and a
histidinol phosphate phosphatase [74]. The location of the iron and
zinc metals can suggest a general location for the active site, but cannot
be used to determine a specific function since these trinuclear metal-
binding sites are seen in a range of diverse proteins including
Fig. 2. (A) Themetal binding pocket of YP_910028.1, containing a PHP (Polymerase andHistidin
III alpha subunit (PDB ID 2hpi, shown in magenta). However, C145 and Y74 of DNA Pol III are m
hand, the metal binding pocket of YP_910028.1 (PDB 3e0f) aligns perfectly with the pocket of
endonucleases, phosphatases, and phospholipases [75–78]. Other anal-
yses [79,80] were unable to provide a definitive functional annotation.

THEMATICS and POOL analysis of YP_910028.1 predicted sets of res-
idues that closely match those predicted for histidinol phosphate phos-
phatase (HPP, PDB ID 2yz5) in a local structure alignment, with weaker
matches to the other proteins of known function with similar folds,
suggesting phosphoesterase activity for the enzyme. DNA polymerase
III (PDB: 2hpi) has a similar metal-binding motif, but key cysteine and
tyrosine residues are replaced by histidine and threonine residues in
YP_910028.1, respectively. When YP_910028.1 is superimposed with
both DNA polymerase III and HPP, the predicted active site residues
align better with HPP (Fig. 2). This indicates that YP_910028.1 pos-
sesses phosphoesterase activity and not DNA polymerase activity.
Phosphoesterase activity was detected by observation of the hydrolysis
of the phosphate group of para-nitrophenyl phosphate (pNPP) to form
p-nitrophenol and was shown to be dependent on the concentration of
YP_910028.1. However, the tests for DNA polymerase activity resulted
in no detectable activity regardless of the conditions used [71].
ol Phosphatase) domain (PDB ID 3e0f, shown in dark blue) alignswellwith that of DNA Pol
ismatched with a histidine and threonine, respectively in YP_910028.1. (B) On the other

histidinol phosphate phosphatase (HPP) (PDB 2yz5), shown in green.
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3. Annotating protein function

3.1. Local active site prediction methods

In comparison to global sequence- and structure-based methods
that analyze an entire protein, local active site prediction methods
find the biochemically active local region of the structure and then
focus on the residueswithin the pocket and in the immediate surround-
ings. These methods are useful when analyzing entire families of pro-
teins for which a specific signature is observed within the local active
site.

For example, ProBiS [81] is a web server that utilizes an algorithm
to detect similarities within protein binding pockets through local
structural alignments of multiple proteins. ProBiS provides access to a
database of 420 million pairwise local structure alignments and will
perform pairwise local alignments for structures that are not in its
database.

3.1.1. ProFunc
ProFunc [82] is a metaserver that combines sequence, global struc-

ture, and local structure-based methods to obtain a set of function
predictions from which one might seek consensus. First, the protein
of unknown function is analyzed by numerous sequence searches,
shown on the left-hand side in Fig. 3. BLAST [20,21] analysis scans
both the PDB and UniProt and uses multiple sequence alignment to de-
termine sequence similarities and detect sequence motifs [83]. Gene
neighbors are also examined based on the query protein's predicted lo-
cation within the genome. The genes located near each other are often
functionally related or functionally similar [82]. Next, structure-based
analyses are performed on the protein of interest. This involves
searching a number of databases for global folds or local structures
that are similar to the query protein. Surfnet, mentioned in the above
section, is one of these databases. Another database, secondary struc-
ture matching (SSM) [84] evaluates the secondary structure elements
Fig. 3. Schematic diagram outlining the different methods utilized in ProFunc. HMM: Hi
(SSEs) of the query protein of unknown function and compares them
to the SSEs of protein structures within its database. The algorithm re-
trieves high, strong matches and superimposes the structures with the
query protein to give a root mean square deviation (RMSD) so that a
common number can be used to compare the results. Finally, ProFunc
utilizes other servers to search for 3D templates of proteins with
known binding sites. These binding sites may be simple active sites
with the residues important for catalysis known [85], or ligand binding
sites wherein residues important for catalysis are known and also the
natural ligand/substrate is known. In some cases, the databases can
also compare DNA-binding sites and motifs known to be associated
with binding DNA.

3.1.2. Structurally Aligned Local Sites of Activity (SALSA)
The computationalmethod Structurally Aligned Local Sites of Activity,

or SALSA [86] utilizes a combination of functional residue prediction from
POOL with local three-dimensional structural alignments. The character-
istic spatial patterns of predicted residues at the local active site are used
to identify biochemical functions. For example, a superfamily can consist
of a number of functional families, each with a biochemical function that
is different from the othermembers of that superfamily. SALSA tables can
be constructed using the locally aligned residues at the predicted active
sites across the entire superfamily. Proteins with the same function gen-
erally possess a particular spatial pattern or signature of predicted func-
tional residues, while proteins of different functions possess different
signatures. This consensus signature for each functional family is
established using POOL predictions for a set of proteinswith known com-
mon function; this defines the signature for each of the known functional
types within a superfamily. If the superfamily contains SG proteins, the
predicted sets of functional residues for the SG proteins can be compared
with the consensus signatures for the known functional families. Thus,
SALSA defines the different kinds of active sites, and therefore different
functional types, within a superfamily. The general method is illustrated
in the workflow shown in Fig. 4.
dden Markov Model; SSM: Secondary Structure Matching; HTH: Helix–Turn–Helix.



Fig. 4. Schematic diagram outlining the SALSA method of annotating protein function.
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3.2. Community initiatives and projects

In an effort to tackle the growing challenges of protein function pre-
diction and the correction of enzyme function misannotations within
databases, the community has come together to take on the challenge.
These global projects involve collaboration between numerous groups,
employing theory, computation, and experiment, and have started to
make significant progress toward the confirmation of protein function,
thus adding a substantial value to the information on structural geno-
mics proteins currently available.

3.2.1. The Enzyme Function Initiative (EFI)
The Enzyme Function Initiative (EFI) [3], funded by NIGMS, began

10 years after the start of the PSI. This initiative combines bioinformatics
with experimental enzymology to help determine the substrate speci-
ficity of proteins of unknown function. Each aspect of the EFI can be
divided into whether or not thework can be done in a high throughput,
moderate throughput, or low throughput manner. Generally, the first
steps of the project, computational and bioinformatics analysis, fall
under high throughput methods that help focus the experimental
work in the final stages of this project, which involve lower throughput
methods. The initial bioinformatics analyses, including database
searches for sequences and structures of unknown function, prelimi-
nary molecular ligand docking, and clustering of pathways, can be
executed on a high throughput basis [87]. Experimental enzymology,
including preliminary homology modeling, expression and purification
of enzymes of interest, and screening enzymes for different activities
can be done at a rate of a few enzymes per month and falls under mod-
erate throughput. The limiting factors of this project, however, are the
experiments that fall under the low throughput category, including
obtaining higher resolution homology models and docking studies, de-
termining structure–function relationships, in vivo studies of functional
predictions, and identification of enzymes with functional promiscuity
[88,89], each ofwhich can be highly demanding of time and labor. How-
ever, the preliminary work helps refine the experimental analysis,
which highlights the necessity of reliable computational prediction
methods to be used in parallel with experimental validation methods.

The project focuses these methods on five superfamilies with
diverse functions that have been selected as test cases for developing
the strategy outlined above: (1) amidohydrolase (AH), (2) enolase (EN),
(3) glutathione transferase (GST), (4) haloalkanoic acid dehalogenase
(HAD), and (5) isoprenoid synthase (IS). These Bridging Projects help
determine target enzymes as well as information about the enzymes
of known function in each superfamily.

In order to be successful, the EFI strategy must be able to assign a
novel function for enzymes that are functionally diverse from en-
zymes of known function. However, molecular docking of a ligand
into an enzyme is not always a reliable way to determine substrate
specificities. In particular, substrates can cause conformational
changes in vitro that are not observed in silico and the scoring algo-
rithms may not be accurate [3]. At the end of its term, the EFI pro-
poses that it will have a working strategy consisting of a set of
databases and programs that the scientific community can utilize in
expanding this analysis to every protein superfamily.
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This method has been successfully tested on numerous proteins of
unknown function. Specifically, the in silico docking method of the EFI
described above has been successfully applied to the entire dipeptide
epimerase family within the EN superfamily. Within this superfamily,
a member of the cis,cis-muconate lactonizing enzyme (MLE) family
encoded by the Bacillus cereus ATCC 14579 genomewith previously un-
known function was predicted to have N-succinyl arginine racemase
function based on docking approaches [90]. A virtual library consisting
of N-succinyl amino acids and dipeptides was virtually docked into a
homology model of this enzyme. The homology model was created
using a series of template structures from the PDB. The structure of
L-Ala-D/L-Glu epimerase from Bacillus subtilis (PDB ID 1TKK) was the
template that contributed the most to the homology model. This tem-
plate was also prominent in many subsequent homology models for
members of the dipeptide epimerase family and was useful in the
docking studies of nearly 700 enzymes.

Another successful docking study, performed by one of the Bridging
Projects, aided in assigning function to Thermotoga maritima Tm0936,
a member of the AH superfamily whose function was previously
unknown. Tm0936 was predicted to have a novel function as an S-
adenosylhomocysteine deaminase [91]. This study involved docking
thousands of metabolites into Tm0936 and creating a target list
comprising adenine analogues. Five potential substrates were chosen
based on availability and rank within the docking study; of these,
the enzyme had significant activity with three: adenosine, 5-
methylthioadenosine (MTA), and S-adenosylhomocysteine (SAH)
(Fig. 5). It was concluded that this enzyme is involved in the deamina-
tion of metabolites within the MTA/SAH pathway.
3.2.2. Critical Assessment of Function Annotation (CAFA) experiment
Until recently, there was noway to compare the performance of dif-

ferent automated function predictionmethods. Over the past few years,
Iddo Friedberg and Predrag Radivojac, through collaborationwithmany
computational research groups, have designed an experiment to test
multiple automated function prediction tools and programs. This Criti-
cal Assessment of Function Annotation (CAFA) [92] experiment is a
large-scale community-wide collaboration designed to evaluate the
performance of the many diverse methodologies [60,82,93–99] devel-
oped by research groups over the years. These methods range from
studying protein–protein interactions [100–103] to analyzing se-
quences [104–108] to examining evolutionary features of proteins
[109–113]. The main focus is to evaluate the quality of current
sequence-based automated function predictionmethods and to identify
the computational methods that perform the best in predicting correct
or novel functions.

So far, the CAFA experiment has gone through two experimental
periods, with the second experiment recently completed. In both in-
stances, the protocols, or “rules,” are similar. The classification system
used by the CAFA experiments was developed based on the definition
of protein function classification by the Gene Ontology (GO)
Fig. 5. Themetabolites above dock in silico into Tm0936 and are substrates of the enzyme Tm0
moieties shown in the boxes.
Consortium [114]. The GO project utilizes many different databases
[115–142] to help provide a solution to the problem of automated func-
tion prediction. Themain goal of the GO Consortium is to develop a uni-
form vocabulary to use when describing the functions of all eukaryotic
proteins. The first CAFA project lasted 15 months and consisted of 30
teams of researchers from around the globe, who tested over 50 algo-
rithms designed to annotate protein function. The different methods
were tested on a set of over 860 protein sequences spanning 11 species,
including Escherichia coli, B. subtilis, and Homo sapiens [92].

From the GO Consortium categories, this project involves informa-
tion from the “Biological Process” and “Molecular Function” sections.
These sections are two of the three structured vocabularies that the
GO project has developed to describe gene products. The experiment
began with providing a set of over 48,000 proteins of uncertain bio-
chemical function to the teams involved. After the teams worked on
annotating these proteins, the assessors performed GO experimental
annotations over the course of almost a year. Of the protein sequences
analyzed, a set of 866 were chosen based on the accumulation of func-
tional annotations made over the 11 month period. The published
results revolve around a maximum F-measure, also known as Fmax,
which corresponds to a “harmonic mean between precision and recall”
[92]. Two methods, BLAST [20,21] and a Naïve baseline method [92],
were used to compare the test methods. In the BLAST method, the GO
terms that define any protein sequences for which a function has been
experimentally determined are assigned to the sequence being
analyzed. In the Naïvemethod, the GO terms used to describe the target
sequences are scored based on how frequently the term comes up in the
Swiss-Prot database overall.

This large-scale CAFA experiment and others to follow like CAFA2
are designed to help researchers evaluate their methods in comparison
to other methods in existence. They also provide the community with a
set of predictions for a number of proteins of unknown or uncertain
function. Overall, the results of the first experiment showed accurate
performances when predicting the “Molecular Function” of the target
proteins. However, the same could not be said for predicting the
“Biological Processes” of the target proteins, which shows room for
improvement in all methods.

The two top performing methods for predicting both “Molecular
Function” and “Biological Process” ontologies were Jones—UCL [143]
and Argot2 [144]. The Jones—UCL method uses known protein–protein
interactions, gene expression, and sequence similarity to assign protein
functions [143]. The Argot2 method analyzes a given protein sequence
by BLAST [20,21] and HMMer [145,146] first, followed by a search of
GO terms from theUniProtKB-GOAdatabase [138]. The results highlight
the improvement in function prediction that can be gained from com-
bining multiple input features.

In the first CAFA global project (CAFA1), an analysis of humanmito-
chondrial polynucleotide phosphorylase 1 (hPNPase) from a family of
exoribonucleases was reported. This large protein works in complex
with other portions of themitochondrial degradosome and is character-
ized by a number of diverse functions forwhich experimental data exist.
936. The general structure of these three metabolites is the same with the exception of the



189C.L. Mills et al. / Computational and Structural Biotechnology Journal 13 (2015) 182–191
These functions include hydrolyzing single-stranded RNA [147], facili-
tating the import of RNAs into the mitochondrial matrix [148], and
responding to oxidative stress [149]. A number of methods under
examination in the CAFA project made predictions for hPNPase. In the
“Molecular Function” GO terms category, most methods were able to
predict correctly two functions for hPNPase: single-stranded RNA hy-
drolysis and import of small RNAs. Other functions aremore uncommon
within the family of hPNPase, which may contribute to the lack of
methods able to predict these functions [92]. The most well-known bi-
ological function of hPNPase is the import of RNA into themitochondria.
Within the “Biological Process” GO terms category, this major function
as well as others were not predicted.

3.2.3. COMputational BRidges to EXperiments (COMBREX)
The COMBREX Project's main goal is to understand and annotate the

function of microbial proteins [150]. As its name implies, this project
brings theorists and experimentalists together in order to increase
the rate at which proteins from archaeal and bacterial genomes are
functionally annotated [151]. There are three main components to this
project: the COMBREX Community, the COMBREX Database, and the
COMBREX grants. The grants are used to fund community members
working on the efforts described above, while the database serves as a
universal place to house the list of functionally annotated proteins. Cur-
rently, this database contains more than 3.3 million proteins spanning
over 1000 microbial genomes [150]. Of the genes in the database, less
than 0.5% have experimental data regarding the function of the gene.
However, over 75% of the genes contain a computationally predicted
function, but lack experimental validation. In general, the COMBREX
project is working toward creating a Gold Standard Database to serve
as the basis for training algorithms for future protein annotation
methods. During the beginning of the COMBREX-funded projects, ex-
perimentalists were assigned 140 proteins on which to perform exper-
iments. Of these 140 proteins, 37 contain 28 unique domains that are
similar to human proteins, which potentially can lead to new informa-
tion about human health and diseases. Also within this group of pro-
teins are eight domains of unknown function defined by Pfam, which
allows for some novel predictions of function to be made. Of these 140
proteins, about half have a successfully validated functional prediction
[152–156]. In one instance [155], bacterial YbbB is identified in twelve
archaeal genomes and its function is determined to be a tRNA 2-
selenouridine synthase. In order to confirm this functional classification,
first preliminary computational analysis, including BLAST [20,21]
searches, was performed on the protein of uncertain function. Next,
structure-based alignments and neighboring genes were analyzed
using CLUSTAL W [157] and a neighbor-joining method [158]. To vali-
date the results of the computational methods, in vitro activity assays
were performed by gene complementation/replacement [159,160]
and tRNA selenation [155] experiments. In the end, the computational
predictions were successfully validated by the experimental methods,
and the function of this protein was determined.

4. Summary and outlook

The process of annotating proteins of unknown and uncertain func-
tions continues to be challenging yet critical for understanding the enor-
mous amount of information generated by genome sequencing and
structural genomics projects. Function prediction methods that focus
on the local spatial region of biochemical activity show promise for im-
proving predictive capability. Proteins that contain high sequence simi-
larity on a global level do not always have that same sequence similarity
at the local active site. Conversely, proteins with low overall sequence
similarity can have high similarity in the spatial region of the active
site. Too often, the function of a protein that has high global sequence
similarity with a protein of unknown function is transferred to the tar-
get protein without analyzing the local active site sequence similarities.
In an effort to provide useful information about enzymes of
unknown function, many research groups have developed methods to
predict protein function. However, the probability of misannotation is
higher when only one type of analysis, sequence- or structure-based,
is used whenmaking predictions. As methods continue to be optimized
and used in parallel with other methods, the information obtained
though the genome projects can become more useful and complete.
With the help of these breakthrough computational methods listed
above and others to come in the future, the challenges of assigning func-
tions to proteins can begin to be resolved. Even with the number of
methods available today to predict the function of proteins, it is clear
that the field of protein function prediction will continue to grow, espe-
cially as the quality and quantity of data continue to increase. While
these computational methods are being optimized, biochemical studies
can be used to validate the predictions made. Such experimental verifi-
cation is amajor current need in the field. In the future, as computation-
al methods improve and are subjected to experimental verification,
biochemical studies can be more focused and less time consuming.
Future automation of the computational methods will enable fast,
high-throughput functional annotation of these proteins and thus add
significant value to the vast, growing store of genomics data.
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