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Clinical and basic experimental approaches to pediatric acute lung injury (ALI), including 
acute respiratory distress syndrome (ARDS), have historically focused on acute care 
and management of the patient. Additional efforts have focused on the etiology of 
pediatric ALI and ARDS, clinically defined as diffuse, bilateral diseases of the lung that 
compromise function leading to severe hypoxemia within 7 days of defined insult. Insults 
can include ancillary events related to prematurity, can follow trauma and/or transfusion, 
or can present as sequelae of pulmonary infections and cardiovascular disease and/
or injury. Pediatric ALI/ARDS remains one of the leading causes of infant and child-
hood morbidity and mortality, particularly in the developing world. Though incidence is 
relatively low, ranging from 2.9 to 9.5 cases/100,000 patients/year, mortality remains 
high, approaching 35% in some studies. However, this is a significant decrease from the 
historical mortality rate of over 50%. Several decades of advances in acute management 
and treatment, as well as better understanding of approaches to ventilation, oxygen-
ation, and surfactant regulation have contributed to improvements in patient recovery. 
As such, there is a burgeoning interest in the long-term impact of pediatric ALI/ARDS. 
Chronic pulmonary deficiencies in survivors appear to be caused by inappropriate injury 
repair, with fibrosis and predisposition to emphysema arising as irreversible secondary 
events that can severely compromise pulmonary development and function, as well as 
the overall health of the patient. In this chapter, the long-term effectiveness of current 
treatments will be examined, as will the potential efficacy of novel, acute, and long-term 
therapies that support repair and delay or even impede the onset of secondary events, 
including fibrosis.

Keywords: acute lung injury, pediatric pulmonary fibrosis, lung injury repair, pediatric lung inflammation, pediatric 
respiratory distress syndrome, surfactant therapy

iNTRODUCTiON

Since first described by Ashbaugh and colleagues in 1967 as “Adult Respiratory Distress Syndrome in 
Children,” Pediatric Acute Respiratory Distress Syndrome (Pediatric ARDS) has been recognized as 
a distinct syndrome, with hallmarks and outcomes that differ from those of patients suffering from 
adult ARDS or neonatal RDS (1–3). Pediatric ARDS is a syndrome of non-cardiogenic pulmonary 
edema with clinical hallmarks including hypoxemia, bilateral radiographic opacities, increased 
venous admixture, decreased functional residual capacity, increased physiological deadspace, and 
decreased lung compliance. Early studies singled out lung surfactant deficiency that can be caused by 
a large variety of pulmonary and extra-pulmonary insults as an underlying factor in Pediatric ARDS, 
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but the pathophysiology has since been recognized as much 
more complex (3). Key precipitating events are (1) activation of 
an unruly inflammatory milieu, which leads to (2) injury to the 
alveolar epithelial-endothelial permeability barrier, followed by 
(3) impaired alveolar fluid clearance. This fundamental change 
in pulmonary homeostasis can be caused by injury to either the 
alveolar or the capillary epithelium (4). The time course of lung 
structural damage in Pediatric ARDS has been classically thought 
to occur in three phases: an inflammatory exudative phase, char-
acterized by diffuse alveolar injury with necrosis of alveolar type 
I cells, increase in vascular permeability, and an influx of inflam-
matory cells; a proliferative phase, starting approximately 72  h 
after the initial insult and lasting approximately 7 days, associated 
with alveolar epithelial type II (AEC2) repair; mesenchymal cell 
(interstitial fibroblast and myofibroblast) migration, proliferation, 
and secretion of extracellular matrix proteins, such as collagen; 
and a fibrotic phase, characterized by significant upregulation of 
collagen synthesis and chronic remodeling (4–10). Conventional 
treatments include ventilatory support, fluid clearance, and/or, in 
the most extreme cases, extra-corporeal membrane oxygenation 
(ECMO). Exogenous surfactant administration, prone position-
ing, and anti-inflammatory approaches, including administration 
of corticosteroids, may also be used, though consensus on the 
efficacy of these therapies is not universal, especially in children, 
for whom data are sparse (3, 11–14). Pediatric survivors with a 
history of ARDS exhibit pulmonary function characteristic of 
restrictive lung disease, though the severity of this functional 
deficit may fade over time, indicating a capacity for repair in a 
significant subset of patients. It has come to be understood that 
the timeline of disease progression in Pediatric ARDS is not as 
clearly as demarcated as originally described and outcomes can 
vary, dependent on both individual response and course of treat-
ment. In this chapter, the complex cellular and molecular events 
that determine whether outcome features a more reparative or a 
more fibrotic profile will be examined. A better understanding of 
how fibrosis is precipitated and how repair might be facilitated in 
pediatric patients is critical for addressing the pulmonary fibrotic 
outcome of Pediatric ARDS, which is associated worldwide with 
significant levels of morbidity and mortality.

PATHOPHYSiOLOGY AND OUTCOMeS: 
PeDiATRiC ARDS veRSUS ADULT ARDS 
AND NeONATAL RDS

Classically, Neonatal RDS has been described as a disease of 
lung immaturity with consequent surfactant insufficiency, which 
responds well to supplementary surfactant treatment. This 
approach has substantially changed outcomes for premature 
newborns and is one of the great success stories of modern 
neonatal medicine. In contrast, treatment of adult ARDS with 
supplementary surfactant has not been as successful (15–18). 
Studies by Willson and colleagues on pediatric patients show that 
children, while not as responsive as neonates, are still much more 
responsive to surfactant replacement therapy than adults. In a 
number of studies, Pediatric ARDS patients show improvement 
following administration of synthetic exogenous surfactants, 

particularly when the formula is stabilized (19–22). These dif-
ferences in response are presumably due to the etiology of the 
syndrome in neonatal versus pediatric versus adult patients. In 
neonata patients suffering from prematurity, surfactant therapy 
not only supports pulmonary function but may also aid in lung 
maturation. In pediatric and adult lung, in which lungs have 
matured or are in the latter stages of maturing and which have no 
prior surfactant compromise, exogenous surfactant may acutely 
support lung function, but may not have as striking an impact 
on already mature epithelium. Although ARDS patients do suffer 
from diminished surfactant levels due to trauma to the surfactant 
secreting AEC2 population and/or sequestration of surfactant by 
substances present following edema or inflammation, the patho-
physiology of the syndrome is clearly more complex than can be 
ascribed to this loss. Pediatric ARDS can occur in children with 
no pre-existing illnesses, but occurrence and mortality are both 
significantly higher in those with serious underlying conditions, 
including oncologic diagnoses and especially immune deficiency 
(23). The syndrome in children also differs from adult disease in 
outcome, again pointing to potential, underlying differences in 
pathophysiology. Overall mortality in Pediatric ARDS patients 
is much lower than that for adult patients. In fact, a subset of 
pediatric patients show a remarkable capacity for repair, whereas 
in Adult ARDS survivors, lung function is more often reduced 
long-term, with permanent alveolar simplification and fibrosis 
presumably due to regenerative failure. While pediatric survivors 
can be compromised by exertional dyspnea, hypoxemia, and, in 
some cases, persistent peripheral airway disease, these patients as 
a whole appear to possess a notable capacity to recover alveolar 
units destroyed by trauma (24–26).

Pediatric ARDS develops following a broad range of injuries, 
when breakdown of the alveolar permeability barrier leads to an 
influx of proteins and fluids across lung epithelium and endothe-
lium and accumulation of protein-rich inflammatory fluid in the 
normally fluid-free alveolar space. Altered alveolar permeability 
and fluid accumulation occur in the setting of inflammation, 
featuring inappropriate activation of leukocytes and platelets, 
and uncontrolled activation of coagulation pathways. Solutes 
and large molecules, such as albumin, enter the alveolar space, 
creating a highly proteinaceous edema. Significant concentra-
tions of cytokines [e.g., interleukin (IL)-1, IL-8, and tumor 
necrosis factor (TNF)-α] and lipid mediators (e.g., leukotriene 
B4) are also present. In response to pro-inflammatory mediators, 
leukocytes – especially neutrophils – migrate into the pulmonary 
interstitium and alveoli (4). The presence of protein, fibrinogen, 
and fibrin degradation products in the edema fluid due to impair-
ment of alveolar fluid clearance leads to surfactant degradation 
and a subsequent increase in alveolar surface tension. A resulting 
fall in pulmonary compliance and increased alveolar instability 
ultimately lead to areas of atelectasis and significant pulmonary 
dysfunction.

Following acute lung injury (ALI), not only inflammatory 
cytokines but also growth-promoting agents, especially in 
pediatric patients that are still developing (e.g., PDGF, TGF-α, 
TGF-β), are released systemically and locally, as well as acti-
vated in the disrupted alveolar structure, which initiate repair 
processes in response to the injury. It appears that in a subset 
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of pediatric patients, this response can occur swiftly in response 
to trauma. One retrospective study showed that Pediatric ARDS 
survivors that exhibit immediate, positive changes in response 
to treatment over the first 3  days following onset have much 
faster, more complete reparative outcomes compared to those 
who do not respond as quickly (27). How a slower response to 
treatment might contribute to fibrosis in survivors is still under 
investigation. Inappropriate mesenchymal cell proliferation and 
extracellular matrix production (known downstream responses 
to TGF-α and TGF-β, in particular) due to severe or repeated 
epithelial cell damage have been shown in both animal models 
and in human patients to eventually evolve into alveolar fibrosis 
(28, 29). As intra-alveolar fibrosis evolves, infiltrating leukocytes 
decrease and are replaced by increased numbers of mononuclear 
phagocytes within the alveolar wall and airspace. Additionally, 
a variety of signals that are capable of stimulating alveolar 
macrophage growth factor release (e.g., endotoxin, activated 
complement components) are present in the distal lung under 
most of the circumstances associated with acute pediatric lung 
injury. It may be that slower patient responses allow a cascade of 
signaling events to occur that promotes long-term, pro-fibrotic 
remodeling. Though this hypothesis has yet to be completely 
tested, multiple studies in animal models and on cadaveric 
human tissue have demonstrated potential mechanisms and 
intervention points for the development of fibrosis following ALI 
resulting in Pediatric ARDS.

This fibroproliferative response, which precludes alveolar 
repair, is regulated by many factors (30, 31). Madtes et  al. 
described a role for the epithelial and mesenchymal cell mitogen 
transforming growth factor (TGF)-α in the fibroproliferative 
response in ARDS and have shown that significant levels of 
TGF-α and procollagen peptide (PCP) III, a biological marker 
of fibroproliferation, are present in the BAL fluid of ARDS 
patients. Armstrong et  al. noted that BAL fluid from patients 
with ARDS showed an early shift in the balance between type I 
collagen synthesis and degradation by collagenase, which favors 
development of fibrosis (32). As early as 36 h following the onset 
of injury, this fibrotic phase begins with extensive remodeling 
of sparsely cellular and collagenous tissue within the distal lung 
(30). Early morphologic examination of the lungs of patients 
that die from ALI reveals a common anatomic theme, in which a 
marked accumulation of mesenchymal cells and their connective 
tissue products appear in the alveolar airspace and in the walls of 
intra-acinal microvessels, i.e., an acute fibroproliferative response 
(33). On gross examination, the lungs of patients with ARDS 
appear heavy and edematous. The surface appears violaceous 
and hemorrhagic fluid exudes from the cut pleural surface (4). 
Microscopically, within hours of the onset of lung injury, the 
air-lung interface is denuded as type 1 epithelial cells (AEC1) 
die; within a few days after the inciting injury, there are intra-
alveolar accumulations of mesenchymal cells, macrophages, and 
inflammatory cells (33–35). The interstitium becomes expanded 
with an increasing number of mesenchymal cells and numerous 
collagen fibrils and elastic fibers (35). The epithelial basement 
membrane becomes compromised with gaps of denuded areas, 
leaving the disrupted interstitium in direct communication with 
the alveolar airspace. Hyaline membranes form in the absence of 

alveolar epithelium. Vascular obliteration by microthrombi and 
fibrocellular proliferation also occurs. Activated myofibroblasts 
from the interstitium migrate into the alveolar airspace through 
the gaps in the compromised basement membrane and attach to 
the luminal surface of the damaged basement membrane (36). 
While presumably an attempt at repair, blockage of further dam-
age, and/or a valiant effort to prevent drowning due to vascular 
leak, once myofibroblasts proliferate and persist, the excessive 
production of abnormal extracellular matrices ultimately oblit-
erates the gas exchange unit. Immunohistochemical studies have 
shown increased amounts of fibronectin in the airspaces of ARDS 
patients. Biochemical analysis has also shown an accumulation of 
collagens type I and III in the expanded interstitium, with type III 
collagen predominantly present in the early stages following lung 
injury and type I collagen present at a later stage (36, 37).

Thus, the fibrotic phase of Pediatric ARDS is identified by the 
deposition of excess collagen and other extracellular matrix mate-
rial and is associated with intra-alveolar, alveolar septal wall and 
alveolar ductal fibrosis as there is an attempt by the body to recre-
ate the alveolar basement membrane that overlies collapsed and 
atelectatic regions of the lung (30, 38). Together, these pathologic 
changes result in the impaired lung physiology characteristic of 
Pediatric ARDS, which includes decreased functional residual 
capacity, diminished compliance accompanied by an increase in 
the work of breathing, increased deadspace and shunt fraction, 
and impaired gas exchange (39–41). The persistence of fibrosis in 
adult ARDS survivors has been documented to 2 years or more, by 
biopsy (25). Data on pediatric ARDS survivors show much more 
potential for repair, though this has mainly been demonstrated 
indirectly, by follow up that includes spirometry. Conversely, 
pediatric patients that respond poorly to initial treatments, even 
if they do not succumb, exhibit a problematic course of recovery 
that may require prolonged ventilation that can last much longer 
than that administered to quickly responding pediatric patients 
and adult survivors (23, 42). Unfortunately, this mechanical 
intervention has a well-known capacity to feed forward to create 
further injury via mechanical stretch and mesenchymal activa-
tion, thereby exacerbating the development of fibrosis.

MeCHANiCAL veNTiLATOR ASSOCiATeD 
FiBROSiS

It is important to consider the role of mechanical ventilation 
in the development of fibrosis in Pediatric ARDS patients. 
Protective mechanical ventilation is considered the most impor-
tant supportive therapy for pediatric patients with ARDS. This 
approach was first validated by a multicenter randomized trial 
on Adult ARDS patients conducted by the ARDS Network under 
the auspices of the National Institutes of Health (43). Subsequent 
trials for Pediatric ARDS patients have generated some equivocal 
data, but the general agreement in the field is that ventilator sup-
port, including high-frequency oscillating ventilation (HFOV), 
especially if applied early in the disease course, has a beneficial 
impact (11, 12, 42). However, mechanical ventilation can also 
induce or aggravate lung injury, referred to as ventilator-induced 
lung injury (VILI) (5), to which the smaller, still maturing lungs of 
children can be particularly susceptible. The level of antioxidants, 
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TABLe 1 | Pediatric ARDS Therapies (NB: impact on repair versus fibrosis as a long-term outcome is currently unknown, even for animal studies, for all 
treatments).

Therapy Data from animal models 
(adult or neonatal)

Data from pediatric pilot and 
experimental studies and clinical 
trials

in use routinely or 
experimentally in 
pediatric patients

Ventilatory support (56–58) (3, 11, 12, 43, 59–61) Yesb

Fluid clearance (62) (59, 63–65) Yesa,b

ECMO (66) (67, 68) Yesb

Surfactant replacement therapy using synthetic and animal-
derived surfactants, ±inhaled nitric oxide

(57, 69–77), reviewed in Ref. (16) (19–21, 78–92) reviewed in Ref. (16, 22) Yesa,c,d

Corticosteroids and other anti-inflammatories and fluid 
clearance agents

(93–95) (96)e,f Yesa,c

Gene therapy for fluid clearance and anti-inflammatory impact (97–105), reviewed in Ref. (106) NDe No

Mesenchymal (or other) stem cells Reviewed in Ref. (107) NDe No

Growth factors (epidermal and fibroblast growth factor family 
members)

(108–113) ND No

aUsed in conjunction with ventilatory support.
bRecommended by the Pediatric Acute Lung Injury Consensus Conference Group.
cNot recommended by the Pediatric Acute Lung Injury Consensus Conference Group but may be considered in severe cases.
dClinical trials have curtailed use of certain synthetic surfactants that have shown lesser efficacy than animal-derived surfactants.
eTrials, safety, pilot, or experimental studies performed in adult patients; few or no studies in pediatric patients.
fTrials, safety, pilot, or experimental studies performed in neonatal or premature patients; few or no studies in pediatric patients.
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a critical component of lung homeostasis, can be compromised 
in Pediatric ARDS by alterations in both cell populations and 
the balance of proteins and water in interstitial spaces, leading 
to increased susceptibility to oxygen toxicity induced by forced 
ventilation. Pro-inflammatory and profibrotic responses may 
become persistent or uncontrolled during mechanical ventilation. 
Notably, recent ventilation strategies aimed at decreasing lung 
stretch has significantly decreased mortality (11, 12). However, 
the morbidity of mechanical ventilation remains as ventilation 
at high transpulmonary pressures leads to “barotrauma” and 
alveolar overdistention leads to “volutrauma,” both character-
ized by increased alveolar-capillary leak and pulmonary edema 
(44, 45). Repeated opening and collapsing of delicate alveolar 
spaces at abnormally high pressures contributes to injury via a 
mechanism called “atelectrauma” (46). In all, there is an emerging 
evidence demonstrating that barotrauma, volutrauma, and/or 
atelectrauma from mechanical ventilation influence the course of 
lung remodeling in experimental models, which provide insight 
into the pathologies observed in over-ventilated Pediatric ARDS 
patients (47, 48).

In isolated rat lung and in lung parenchymal strips, mechani-
cal stretch results in enhanced PCPIII expression. Application 
of recruitment maneuvers associated with atelectasis has also 
been shown to increase PCPIII expression in animal models of 
ARDS. In open-chest rabbits, mechanical ventilation with a high-
positive end expiratory pressure led to greater gene expression 
of PCPIII, procollagen IV, fibronectin, and TGF-β1, the classical 
growth factor for fibrosis formation (49–51). In contrast, ventila-
tion with a low PEEP did not stimulate expression of these genes. 
Furthermore, mechanical ventilation causes injury not only by 
structural disruption of the lung but also by induction of inflam-
matory responses associated with mediator release, which can 
worsen lung injury and potentially cause systemic organ dysfunc-
tion (52–55). The physical forces generated during mechanical 
ventilation can induce the release and/or activation of cytokines, 

chemokines, and growth factors in lungs, which together with 
inflammatory cell recruitment, may play a significant role in 
the progression from injury to fibroproliferation in pediatric 
patients. This altered condition in the lung presumably impacts 
any ability to repair. It can also alter the homeostatic profile and 
function of the lung even after repair, making once-damaged 
lungs especially vulnerable to further injury. Taken together, 
these studies suggest that atelectasis and alveolar overdistention 
due to mechanical ventilation are harmful and can lead to or 
exacerbate the development of fibrosis, while careful ventilation 
management in responsive patients, can support repair.

RePAiR

Pediatric lungs in general have a substantial potential for repair 
and recovery after ARDS. In major treatment centers, a major-
ity of pediatric patients recover from ARDS. In community 
treatment settings, as well as globally, this percentage is lower, 
however, indicating that a critical, early time frame exists for 
effective intervention. This hypothesis is reinforced by the obser-
vation that pediatric patients that respond rapidly to treatment 
and/or recover by 6  months following the initial insult often 
recover completely (23). However, pediatric lung injury can have 
divergent outcomes, with the appearance of fibrosing alveolitis in 
some patients versus others with seemingly equivalent degrees 
of lung injury that resolve the inflammation without evidence of 
fibrosis. The underlying molecular basis of these different out-
comes is unclear. Tissue repair involves a variety of mechanisms 
including edema reabsorption, resolution of inflammation, and 
cell proliferation in order to repopulate the alveolar epithelium. 
Strategies that support these natural mechanisms of repair are 
currently under study using both animal models and clinical trials 
(Table 1). Unfortunately, few of these present data on long-term 
outcomes for Pediatric ARDS patients. Thus, a better understand-
ing of the mechanisms underlying repair in the juvenile lung, and 
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how they may be supported by conventional and experimental 
therapies, is highly warranted.

The inflammatory response in ARDS is a complex sequence of 
events that requires the interplay between several immune media-
tors (114, 115). In the most reparative scenario, anti-inflammatory 
cytokines (e.g., IL-10) are released as a negative feedback mecha-
nism. When pro-inflammatory pathways are downregulated, 
these anti-inflammatory mediators can then decrease cytokine 
expression. Although anti-inflammatory mediators are involved 
in limiting inflammation, there are also pro-resolution mediators 
that act to mitigate inflammation and restore tissue homeostasis 
without causing immune suppression. Pro-resolution mediators 
include several classes of signaling molecules generated from 
polyunsaturated fatty acids: lipoxins, resolvins, and protectins (4). 
These agents appear to signal the recruitment of macrophages, 
the phagocytosis of apoptoic neutrophils, and the secretion of 
molecules that can act as anti-inflammatory agents at later stages 
of recovery, such as IL-10 and TGF-β. Apoptosis of inflammatory 
cells, mainly neutrophils, has also been shown when pro-survival 
signals such as granulocyte-colony stimulating factor (G-CSF), 
disappear. Alveolar macrophages have also been shown to play 
a role in this phase by engulfing apoptotic cells (114). Therefore, 
modulation of the inflammatory milieu using corticosteroids, 
direct administration of anti-inflammatory cytokines, or admin-
istration of recombinant viruses or modified stem cells that 
secrete immunomodulatory molecules have all been proposed to 
address this aspect of Pediatric ARDS. As yet, with the exception 
of steroid administration, these approaches have yet to move 
beyond the experimental phase.

The regeneration of the alveolar structure requires the pro-
liferation and differentiation of AEC2 progenitors into AEC1 
pneumocytes (116). It was recently established that the oxygen 
environment has a significant impact on AEC2 stem cell capac-
ity during development, which may also occur following injury 
(117). This may particularly hold true in the case of Pediatric 
ARDS, where oxygenation is disrupted by trauma and artificially 
modulated by ventilation. Repair of the epithelium is a complex 
process that involves epithelial cell spreading and migration, as 
well as proliferation and differentiation of the stem cell popula-
tion. It is this critical response that may underlie the difference 
between Pediatric and Adult ARDS patients in their capacity 
for both initial recovery and long-term return to normal lung 
function. Given the more robust nature of chronologically 
younger stem cells, therapeutic approaches that support stem 
cell function should be a priority for pediatric patients as newer 
treatments are developed. During the early stages of epithelial 
repair, epithelial progenitor cells migrate along the underlying 
matrix that is, in turn, remodeled during the repair process. 
Growth factors (EGF, KGF, and HGF) that act through tyrosine-
kinase receptors, promote cell proliferation (116), and exogenous 
administration of KGF in  vivo has been shown to speed this 
process [(118–120), reviewed in Ref. (121)]. Multiple other mol-
ecules that support lung progenitor cells have been extensively 
studied, ex vivo, in isolated primary human and animal cells in 
culture and in  non-transformed human lung cell lines. These 
include chemokine receptors, anti-inflammatory ILs, eicosinoids, 
modulators of integrins, and matrix metalloproteinases (MMPs) 

to aid spreading and wound closure while blocking excessive 
collagen deposition, modulation of Rho GTPases and MAP 
kinases, modulation of STAT, PTEN, and PI3 kinase signaling, 
all critical for a broad range of stem cell functions, modulators of 
epithelial-mesenchymal transition, including Wnt1, TGF-ß, and 
E-cadherin (121). As yet, few of these attempts to modify and/or 
support epithelial stem cell-directed repair have been translated 
to even comprehensive in  vivo studies, and clinical trials have 
yet to be achieved. Likewise, use of gene therapy or modified 
stem cell therapy approaches that modulate the function of 
these molecules and pathways within the context of Pediatric 
ARDS are still highly speculative approaches, with limited data 
available from laboratory studies and contraindications from 
experimental adult human trials (106). Additional studies have 
attempted to determine the regenerative capacity of subsets of 
endogenous progenitor cells in the absence of exogenous support, 
though these studies too are at a very early stage and recapitula-
tion using human lung stem cell and progenitor populations has 
been slow. Endogenous progenitor cells include both resident 
epithelial and mesenchymal stem cells and bone marrow-derived 
mesenchymal cells. Recent studies in rodent models suggest 
that there may be other lung progenitor cells involved in the 
repair of the lung epithelium, including club cells, integrin α6β4 
alveolar epithelial cells, and Scgb1a1-expressing cells and AEC1 
themselves (122–124). However, the majority of data to date on 
lung epithelial response to injury has been generated by focus-
ing on the role of AEC2. AEC2 classically represent the resident 
stem cells that can proliferate after injury and transdifferentiate 
into AEC1. In experimental models, AEC2 have been shown to 
migrate, proliferate, and differentiate into AEC1 (125). A recently 
developed experimental mouse model of extreme (>80%) AEC2 
depletion that results, at both acute and long-term follow up 
stages, in a distal lung that phenotypically resembles that of ARDS 
patients that suffer fibrotic outcomes, indicating the essential role 
for these cells in alveolar homeostasis (126). Furthermore, newer 
data show that if this depletion is induced in juvenile mice, repair 
is more robust and outcome is much more favorable. These data 
indicate that resident distal lung stem cell populations harbor 
highly functional stem cells capable of efficient repair under 
favorable circumstances.

In addition to its stem cell capacity, the AEC2 population also 
plays a critical role in surfactant production. Though surfactant 
therapy is often considered an acute response to the problem of 
surfactant deficiency that occurs within the early stages of ARDS, 
there are experimental data to show that the presence of surfactant 
itself is critical for maintaining AEC2 homeostasis (127–129). 
Additional data from animal models and studies using isolated 
patient cells indicate that a robust, functional AEC2 population 
and the presence of normal surfactant levels function as a defense 
against development of fibrosis (130–133). Thus, surfactant therapy 
for Pediatric ARDS, while it has still not achieved the level of success 
when used for Neonatal RDS, is still considered a promising and 
important mechanism for supporting repair (16, 22), particularly 
when used in conjunction with standard ventilation approaches. 
This is especially true for ARDS caused by direct pulmonary insults 
(infection, trauma, radiation, drowning, toxin exposure), where 
the pulmonary epithelium, including AEC2 is the main target, 
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versus indirect causes (sepsis, burns, shock, transfusions), where 
damage to the alveolar capillary epithelium may play a greater role. 
Thus, this latter variety of Pediatric ARDS may not be as responsive 
to alveolar epithelial supportive therapy (21, 78).

Interestingly, there is also evidence that populations of pul-
monary and even extra-pulmonary-derived stem cells that are 
present in the circulation in response to ARDS may play a role in 
alveolar regeneration. Lung mesenchymal cells are activated after 
lung injury and, in addition to collagen synthesis, may secrete 
growth factors and modulate the immune system by secreting 
anti-inflammatory cytokines (134). Clinical observations indi-
cate the presence of endothelial progenitor cells post-ALI that 
may contribute to repair, though findings so far have been limited 
to adult and neonatal patients and to animal models (107). In 
contrast, a study by Bui and colleagues pediatric patients being 
treated by ECMO, including some suffering from Pediatric 
ARDS, showed that distinctive populations of stem-like cells of 
hematopoietic, mesenchymal, and epithelial lineages could be 
isolated from ECMO circuits, indicating that novel stem-like cell 
populations may be mobilized into the circulation by severe lung 
injury (135). Interestingly, the lineage prevalence and stem-like 
characteristics of these cells differed with patient age, again sup-
porting the observation that pediatric ARDS patients respond in 
ways unique to their chronological age, in ways that differ from 
Neonatal RDS and Adult ARDS patients. An additional finding 
from this study was that a significant number of stem-like cells, 
especially those exhibiting characteristics of epithelial progenitors, 
were isolated from ECMO circuits very early in course of treat-
ment, which correlates with the observation that those patients 
that respond quickly to treatment exhibit better outcomes. Taken 
together, these data indicate that early interventions that support 
endogenous stem cell function and take advantage of the patients’ 
own response to pulmonary insult should be a focus of future 
treatments. In addition, conventional treatments that support 
reparative outcomes should also be more thoroughly investigated 
and augmented where possible.

One conventional treatment that impacts surfactant function, 
as well as the general integrity of the alveolar space, is fluid reduc-
tion. In order to restore normal respiratory function post-injury, 
collagen scars formed to preserve alveolar integrity and prevent 
drowning due to edema caused by vascular leak. These scars 
must be processed and removed by MMPs, a family of enzymes 
that digest extracellular fibers (136). One of the most important 
sources of MMPs is inflammatory cells, such as neutrophils and 
macrophages. Thus, ironically, the inflammatory response that 
can cause acute injury is important during resolution stages for 
adequate lung repair. MMPs represent one of the links between 
these two phenomena of inflammation and repair. MMPs are 
upregulated during the repair process and appear to be involved 
in facilitating cellular migration and the remodeling of the ECM 
(121). Studies in animal and tissue culture models indicate that 
migration and proliferation of epithelial progenitor cells are regu-
lated by soluble factors released in response to lung injury. These 
factors include members of the epidermal growth factor family 
(EGF and TGF-α) and fibroblast growth factor family (HGF, KGF, 
FGF-10). Once the alveolar permeability barrier is re-established, 
removal of lung edema occurs via movement of water out of the 

airspaces through aquaporins (water channels) in AEC2, which 
is driven by the active transport of sodium and chloride through 
specific epithelial cell ion channels (eNAC and CFTR) (101, 106, 
137–140). This endogenous repair function can be augmented 
by mechanical suction, with or without saline lavage (140, 141). 
More recent studies have focused on pharmacological stimula-
tion of epithelial ion channels, though these studies, again, are 
still at the experimental stage.

SUMMARY

Since identification of the pathways involved in lung injury, 
most of the literature has been focused on the use of therapies 
aimed at truncating the inflammatory response. However, recent 
studies have, and future studies should, focus on enhancing the 
repair process. Using approaches that address both acute inflam-
mation and support repair in combination has also been given 
recent consideration, as each may address particular pathways 
that contribute to shifting long-term outcomes from pro-fibrotic 
to pro-repair (16, 142, 143). While Pediatric ARDS survivors 
exhibit an obstructive disease phenotype, at least during the acute 
phase and within the first year following recovery, significant 
long-term improvement in some patients has been documented. 
It is therefore imperative to consider bold strategies that could 
support repair during this period. A variety of approaches have 
been suggested, ranging from the use of biocompatible materials 
or cells to bolster remodeling to the therapeutic use of mediators 
aimed at promoting normal cell proliferation, migration, and dif-
ferentiation. Because the mechanisms that cause tissue disruption 
and inflammation in the early phase of lung injury also contribute 
to repair and matrix remodeling later on, a fundamental key to 
future therapy is impeding the onset of fibrosis. Thus, therapies 
that disrupt pro-inflammatory pathways, such as MMP inhibi-
tion, may have a prophylactic value. Growth factors, exogenous 
stem cells, or drugs that promote matrix remodeling could also 
improve both the short- and long-term prognosis of patients with 
ARDS. Knowledge of the mediators involved in tissue repair and 
re-establishment of normal development and lung homeostasis 
could lead to new therapeutic strategies being applied of pediatric 
patients after the initial insult has been controlled. In fact, given 
the much higher potential for regeneration and repair in chil-
dren, future experimental and clinical studies should be directed 
toward therapies for these patients that support effective repair, 
proper regeneration, and a return to homeostasis.
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