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Bidens plants are annuals or perennials of Asteraceae and usually used as medicinal
materials in China. They are difficult to identify by using traditional identification methods
because they have similar morphologies and chemical components. Universal DNA
barcodes also cannot identify Bidens species effectively. This situation seriously
hinders the development of medicinal Bidens plants. Therefore, developing an
accurate and effective method for identifying medicinal Bidens plants is urgently
needed. The present study aims to use phylogenomic approaches based on organelle
genomes to address the confusing relationships of medicinal Bidens plants. Illumina
sequencing was used to sequence 12 chloroplast and eight mitochondrial genomes of five
species and one variety of Bidens. The complete organelle genomes were assembled,
annotated and analysed. Phylogenetic trees were constructed on the basis of the organelle
genomes and highly variable regions. The organelle genomes of these Bidens species had
a conserved gene content and codon usage. The 12 chloroplast genomes of the Bidens
species were 150,489 bp to 151,635 bp in length. The lengths of the eight mitochondrial
genomes varied from each other. Bioinformatics analysis revealed the presence of 50–71
simple sequence repeats and 46–181 long repeats in the organelle genomes. By
combining the results of mVISTA and nucleotide diversity analyses, seven candidate
highly variable regions in the chloroplast genomes were screened for species identification
and relationship studies. Comparison with the complete mitochondrial genomes and
common protein-coding genes shared by each organelle genome revealed that the
complete chloroplast genomes had the highest discriminatory power for Bidens
species and thus could be used as a super barcode to authenticate Bidens species
accurately. In addition, the screened highly variable region trnS-GGA-rps4 could be also
used as a potential specific barcode to identify Bidens species.
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1 INTRODUCTION

Bidens plants are annuals or perennials of Asteraceae. In China,
this genus includes 10 species (Shi et al., 2011), five of which are
medicinal plants recorded in different local standards for Chinese
medicinal materials. Bidens plants have a long history of
medicinal use in China (Chen et al., 2009). There are many
kinds of compounds in the Bidens plants, including flavonoids,
phenylpropanoids, triterpenoids, alkaloids and organic acids, of
which flavonoids are the main effective components in the
medicinal Bidens plants (Wang et al., 2010). Modern
pharmacological studies show that these compounds in Bidens
plants have antiinflammatory, analgesic, antibacterial, antitumor,
hypolipidemic, and liver protection functions (Lin et al., 2013;
Shandukani et al., 2018). However, some problems exist in the
records of these medicinal plants in local standards. For example,
their scientific names are inconsistent with their Chinese names
and records in the Flora of China. Bidens plants commonly have
homonyms and synonyms. Furthermore, they are difficult to
identify by using traditional identification methods because they
have similar morphologies and chemical components (Bartolome
et al., 2013; Chen et al., 2013; Wang et al., 2014; Yang et al., 2020).
Reports on the molecular identification of Bidens species are
limited. Tsai et al. (2008) (Tsai et al., 2008) used the noncoding
regions of the chloroplast genome (trnL intorn and trnL-trnF)
and nuclear ribosomal DNA (ITS1, 5.8S and ITS2) to identify
Bidens species and found that ITS1, 5.8S, ITS2 and the trnL intron
could separate only Bidens biternata and B. pilosa var. pilosa from
each other. Our preliminary experiments showed that the
universal DNA barcodes ITS, ITS2 and psbA-trnH were all
ineffective in identifying Bidens species. The difficulties
encountered in the identification of Bidens species seriously
hinder the development of medicinal Bidens plants and reduce
their medicinal quality. An accurate and effective method for
identifying medicinal Bidens plants is urgently needed.

The main content of phylogenomic studies includes the use
of large-scale molecular data to investigate the phylogenetic
relationships between organisms at the genomic level and the
application of evolutionary relationships to study the
evolutionary mechanisms of genomes, such as the process
of DNA repair and the functional annotation of unknown
genes (Delsuc et al., 2005). In general, plant cells contain three
kinds of genomes, namely, the chloroplast, mitochondrial and
nuclear genomes. The chloroplast and mitochondrial genomes
are also called organelle genomes. The relative abundances of
the three genomic DNA in cells show significant differences.
For example, a leaf cell of the model plant Arabidopsis thaliana
contains approximately 1,000 copies of chloroplast DNA, 100
copies of mitochondrial DNA and two copies of nuclear
genomic DNA (Logan 2006). Given the important role of
the chloroplast and mitochondrial genomes in phylogenetic
and nucleo-cytoplasmic interactions, their sequence analysis is
becoming increasingly important. The chloroplast is an
organelle that plays an important role in plant
photosynthesis (Clegg et al., 1994). The chloroplast genome
is more conserved than the nuclear genome in terms of gene
content and order and contains more variations than DNA

barcodes. Therefore, the chloroplast genome is widely used in
species identification and plant evolution studies. Zhang et al.
(Zhang et al., 2019) found that the whole chloroplast genome
could be used as a super barcode to identify Dracaena species.
Chen et al. (Chen et al., 2018; Chen et al., 2019) successfully
identified six Ligularia and three Ephedra herbs by using the
chloroplast genome as a super barcode. A growing number of
works have provided support showing that identifying related
species by using the molecular markers of the chloroplast
genome or the complete chloroplast genome as super
barcodes is practicable. The mitochondrial genome, another
important organelle genome, is usually similar to the
chloroplast genome, which has a circular molecular
structure. The mitochondrial genome is used in species
identification because it is complex and highly variable with
abundant noncoding regions and introns and a relatively fixed
sequence (An et al., 2017; Park and Lee, 2020; Jeong and Lee,
2021). The mitochondrial genome of angiosperms could reveal
the phylogenetic relationship between species and be used to
investigate intraspecific differentiation (Fujii et al., 2010).
However, the number of reported mitochondrial genomes is
not as large as that of chloroplast genomes.

Studying organelle genomes is an essential way to analyse the
genetic information of a species. The excavation of organelle
genomes is helpful for analysing the inherent properties and
changes of organelle genomes and thus contributes to the genetic
evolution, identification and breeding research of various species.
In addition, organelle genomes are important data sources for
comparative genomics, phylogenetics and population genetics
(Qian 2014). Organelle genomes are smaller and easier to
sequence than nuclear genomes. In this work, we sequenced
and analysed the 12 chloroplast and eight mitochondrial
genomes of five species and one variety of Bidens to solve the
difficulties encountered in the identification of Bidens species.
Finally, we constructed phylogenetic trees by using different
datasets and analysed the feasibility of identifying Bidens
species on the basis of organelle genomes. This research could
provide a foundation for the species identification, phylogeny,
medication safety and plant resource protection of Bidens.

2 MATERIALS AND METHODS

2.1 DNA Sources
The DNA sources were the fresh leaves of B. biternata, B.
bipinnata, B. pilosa var. pilosa, B. pilosa var. radiata, B.
parviflora and B. tripartita. These species were identified by
Prof. Yulin Lin from the Institute of Medicinal Plant
Development (IMPLAD), Chinese Academy of Medical
Sciences and Peking Union Medical College. Voucher
specimens were deposited in the herbarium at IMPLAD. The
ID numbers and collecting locations are shown in
Supplementary Table S1. The total DNA of the species was
extracted by using the DNeasy Plant Mini Kit (Qiagen Co.,
Germany), and DNA concentration and quality were assessed
by using Nanodrop 2000C spectrophotometry and
electrophoresis in 1% (w/v) agarose gel, respectively.
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2.2 DNA Sequencing, Assembly and
Annotation
The DNA was used to generate libraries with an average insert
size of 350 bp and sequenced by using Illumina NovaSeq6000 in
accordance with standard protocols, and the sequencing
information was shown in Supplementary Tables S2, S3.
Paired-end sequencing was performed to obtain 150 bp
sequences at both ends of each molecule. Adapters and low-
quality regions in the original data were trimmed by applying
Trimmomatic software (Bolger et al., 2014). Reference organelle
sequences from the family of Asteraceae were downloaded from
NCBI genome resources (https://www.ncbi.nlm.nih.gov/
genome). The gene sequences of each reference were extracted
to build a custom database, and clean reads were mapped by using
BWA 0.7.17 (Li and Durbin 2009). NOVOPlasty 4.2 (Dierckxsens
et al., 2017) was used to assemble organelle genomes, which
needed a sequence as the initial seed. For the chloroplasts, a read
from the psbA gene was selected as the seed input, and the output
chloroplast sequences were manually adjusted for the start
position. For the mitochondria, seed reads from the conserved
cox and nad genes were separately tested, and the output contigs
were combined and manually linked to obtain the mitochondrial
sequences. Then, clean reads were mapped back to the chloroplast
and mitochondrial genomes and inspected in IGV (Robinson
et al., 2017) to exclude any assembly error. Finally, a custom-
made script that took the assembly and the bam files as input was
utilised to correct ambiguous bases and generate the complete
organelle genome sequences. The sequences were initially
annotated by using the CPGAVAS2 software (Shi et al., 2019)
and the GeSeq (Tillich et al., 2017) and corrected manually.
tRNAs were annotated by using tRNAscan-SE software
(Schattner et al., 2005). Genes, introns and coding region
boundaries were compared with reference sequences. Then the
borders of LSC, SSC and IR regions in the chloroplast genomes
were validated by designing primers and polymerase chain
reaction (Supplementary Table S4).

2.3 Structural Analyses
Chloroplast and mitochondrial genome maps were generated by
using the Organellar Genome DRAW v1.2 (Lohse et al., 2007)
and manually corrected. The CodonW software (Sharp and Li
1987) was adopted to analyse codon usage. Simple sequence
repeats (SSRs) were detected by using the MISA (Beier et al.,
2017) with the definition of ≥ 10 repeat units for mononucleotide
SSRs, ≥ 5 repeat units for dinucleotide SSRs, ≥ 4 repeat units for
trinucleotide SSRs, and ≥ 3 repeat units for tetranucleotide,
pentanucleotide and hexanucleotide SSRs. Long repeated
sequences were detected by using REPuter (Kurtz et al., 2001).
Sequence homology analysis was carried out by using EMBOSS
(Rice et al., 2000). The boundaries of the four regions of the
chloroplast genomes were compared by applying IRscope
(Amiryousefi et al., 2018).

2.4 Comparative and Phylogenetic Analyses
The chloroplast genomes of Bidens species were compared by
using mVISTA software (Frazer et al., 2004). The nucleotide

diversity (Pi) values of shared genes and intergenic spacers were
calculated with DnaSP software (Librado and Rozas 2009). By
combining the mVISTA results and Pi values, seven highly
variable regions were screened out. The complete organelle
genome sequences of Asteraceae species and common protein-
coding genes shared by these genomes were used to construct
maximum likelihood (ML) phylogenetic trees by utilising IQ-
TREE (Nguyen et al., 2015) with a bootstrap of 1,000 repetitions.
ML analysis was conducted based on the TVM + F + R4
(complete chloroplast genomes), TVM + F + I + G4 (complete
mitochondrial genomes), TVM + F + R3 (common protein-
coding genes shared by chloroplast genomes), and GTR + F + G4
(common protein-coding genes shared by mitochondrial
genomes) models. MEGA software (Tamura et al., 2013) was
used to construct Neighbor-joining (NJ) phylogenetic trees based
on seven highly variable regions. NJ analysis was conducted based
on the K2P model.

3 RESULTS

3.1 Organelle Genome Structure of Bidens
Species
The 12 chloroplast genomes of these Bidens species showed a
typical circular tetramerous structure and included two inverted
repeats (IRs), a large single copy (LSC) and a small single copy
(SSC) (Figure 1A). The lengths of the chloroplast genomes of the
same species were the same or similar. The total lengths of the
chloroplast genomes were 150,489 bp (B. tripartita) to 151,635 bp
(B. pilosa var. radiata). The sizes of the LSC regions ranged from
83,499 bp (B. tripartita) to 83,899 bp (B. biternata). The sizes of
the SSC regions varied between 17,628 bp (B. tripartita) and
18,439 bp (B. pilosa var. radiata). The sizes of the IR regions
varied from 24,652 bp (B. bipinnata) to 24,701 bp (B. pilosa var.
radiata). The total GC contents of the 12 chloroplast genomes
were all 37.5%, indicating that the base composition of the Bidens
species was relatively conserved (Supplementary Table S5).

The 12 chloroplast genomes were all annotated with 130 genes,
including 85 protein-coding genes, 37 tRNA genes and eight
rRNA genes (Supplementary Table S6). Amongst these genes, 17
were located in IR regions. They included six protein-coding
genes (ndhB, rpl2, rpl23, rps7, rps12 and ycf2), four rRNA genes
(rrn4, rrn4.5, rrn5 and rrn16) and seven tRNA genes (trnA-UGC,
trnI-CAU, trnI-GAU, trnL-CAA, trnN-GUU, trnR-ACG and
trnV-GAC). In addition, ycf1 and rps19 were annotated as
pseudogenes. At the junctions, the gene positions in the
boundary regions of the chloroplast genomes of the Bidens
species were conserved. The difference was that the ndhF gene
of B. tripartita was located at the boundary of the SSC and IRb
regions, and the ndhF genes of the other five species were located
in the SSC regions (Figure 2). Coding regions (protein-coding
regions, tRNA genes and rRNA genes) accounted for 56.0–59.4%
of the regions, and the rest were noncoding regions (pseudogenes,
introns and gene spacers).

The eight mitochondrial genomes of these Bidens species all
had a circular molecular structure (Figure 1B; Supplementary
Figure S1) that ranged in length from 183 kb (B. pilosa var.
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pilosa) to 216 kb (B. tripartita). The GC contents were between
45.4 and 45.8%. The mitochondrial genomes of B. biternata and
B. bipinnata were annotated with 83 genes, including 30 protein-
coding genes, 18 tRNA genes, three rRNA genes and 32 open
reading frames (ORFs). A total of 81, 87, 90 and 82 genes were
annotated in the mitochondrial genomes of B. pilosa var. pilosa, B.
pilosa var. radiata, B. parviflora and B. tripartita, respectively.

The total proportion of all genes in the mitochondrial genomes of
the Bidens species was between 24.4 and 28.6% (Supplementary
Table S7).

The genes annotated in the mitochondrial genomes of the
Bidens species could be divided into 11 categories
(Supplementary Table S8). The similar gene types and
numbers of complex I, complex III, complex IV, complex V,

FIGURE 1 | Chloroplast (A) and mitochondrial (B) genome maps of Bidens species. The transcription directions of the inner and outer genes are listed clockwise
and anticlockwise, respectively, and are represented by arrows. The dark grey colour in the inner circle corresponds to the GC content, whereas the light grey colour
corresponds to the AT content.

FIGURE 2 | Comparison amongst the borders of LSC, SSC and IR regions in the chloroplast genomes of Bidens species. The number above the gene features
indicates the distance between the ends of genes and the border sites. These features are not to scale. JLB: junction of LSC/IRb; JSB: junction of IRb/SSC; JSA: junction
of SSC/IRa; JLA: junction of IRa/LSC.
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rRNA genes and maturation enzyme genes indicated that these
genes were highly conserved in the mitochondrial genomes. The
number of tRNA genes ranged from 18 to 20, and the number of
ORFs was quite different.

3.2 Relative Synonymous Codon Usage
The relative synonymous codon usage (RSCU) of the chloroplast
and mitochondrial genomes of the Bidens species was calculated
on the basis of all protein-coding genes (Figure 3). The results
showed that the chloroplast and mitochondrial genomes of the
Bidens species contained 64 types of codons encoding 20 amino
acids. Leucine, serine and arginine all had six types of codons.
Amongst all amino acids, leucine had the highest number of
codons, whereas cysteine had the lowest.

Given that methionine and tryptophan possess only one
codon each, no codon usage bias was found, and the RSCU
value was 1. Codon usage bias was found for the rest of the amino
acid codons. In the chloroplast genomes, 30 codons were found
with RSCU > 1, of which 29 were A/U-ending codons, and 34
codons were found with RSCU ≤ 1, of which 31 were G/C-ending
codons. The highest and lowest RSCU values were recorded for
UUA and CGC, which encoded leucine and arginine,
respectively. In the mitochondrial genomes, 30 codons were
found with RSCU > 1, of which 28 were A/U-ending codons,
and 34 codons were found with RSCU ≤ 1, of which 30 were
G/C-ending codons. The highest and lowest RSCU values were
recorded for GCU and CAC, which encoded alanine and
histidine, respectively. These results indicated that the
chloroplast and mitochondrial genomes exhibited a higher bias
towards A/U-ending codons than towards G/C-ending codons.

3.3 Simple Sequence Repeats and Long
Repetitive Sequences in the Organelle
Genomes of Bidens Species
In this study, a total of 56 (B. parviflora) to 71 (B. tripartita) SSRs
were detected in the chloroplast genomes of these Bidens species.
The distribution of SSRs in the three samples of B. biternata was
the same. It was also the same in the four samples of B. bipinnata.
Bidens bipinnata had one more mononucleotide repeat than B.
biternata, and the remaining SSR types and numbers were the
same. SSR distribution differed between the two B. pilosa var.
radiata samples. The MW551955 sample had two more
mononucleotide repeats, one more dinucleotide repeat and
one more trinucleotide repeat than the MW551952 sample,
indicating obvious SSR polymorphism in the chloroplast
genome of B. pilosa var. radiata. Mononucleotide to
hexanucleotide repeats were present in the Bidens species,
most of which were mononucleotide repeats, followed by
dinucleotide and tetranucleotide repeats (Supplementary
Table S9). The SSRs of the mitochondrial genomes of the
Bidens species were also analysed. A total of 50 (B. pilosa var.
pilosa) to 62 (B. pilosa var. radiata) SSRs were detected in the
mitochondrial genomes of the Bidens species. Six types of SSR
were detected in the mitochondrial genomes of B. biternata, B.
bipinnata, B. pilosa var. radiata and B. parviflora, whereas only
five types were detected in B. pilosa var. pilosa and B. tripartita
(Supplementary Table S10).

Some repetitive sequences with length ≥ 30 bp and sequence
similarity ≥ 90% were found. These sequences were called long
repetitive sequences, namely, forward (F), palindrome (P),
reverse (R) and complement (C). In the chloroplast genomes

FIGURE 3 | Heat map of the RSCU values of the chloroplast (A) and mitochondrial (B) genomes of Bidens species.

Frontiers in Pharmacology | www.frontiersin.org February 2022 | Volume 13 | Article 8421315

Wu et al. Organelle Genomes of Medicinal Bidens

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


of Bidens species, our analysis revealed 46 (B. biternata and B.
bipinnata) to 114 (B. pilosa var. radiata) long repeats, most of
which were F and P repeats. The long repeats mainly had lengths
of 30–39 bp and included four types. Repeats that were larger
than 40 bp were mainly F and P repeats. No repeats with lengths
of 50–59 and 60–69 bp were found in B. biternata, B. bipinnata
and B. parviflora, and no repeat with lengths of 60–69 bp was
found in B. tripartita (Supplementary Table S11). The
mitochondrial genomes of Bidens species all contained F and
P repeats. The mitochondrial genomes of B. biternata, B.
bipinnata, B. pilosa var. pilosa, B. pilosa var. radiata and B.
parviflora contained R repeats. Only the mitochondrial
genomes of B. biternata, B. bipinnata and B. pilosa var. pilosa
contained C repeats. The mitochondrial genome of B. tripartita
did not contain R and C repeats. The F and P repeats accounted
for more than 90% of the long repeats in the mitochondrial
genomes of the Bidens species. The number of long repeats was
the highest in B. pilosa var. radiata and B. tripartita, with 106 and
108 F repeats, respectively. In these species, the number of repeats
with lengths of 30–39 bp was the largest, followed by that of
repeats with lengths of 40–99 bp; repeats with length ≥ 1 kb were
rare (Supplementary Table S12).

3.4 Variation in the Organelle Genomes of
Bidens Species
Consistent with the chloroplast genome analysis above, the global
comparison of the chloroplast genomes of the Bidens species
showed that the seven chloroplast genomes of B. biternata and B.
bipinnata were highly similar. A high degree of similarity was
found between the samples of B. pilosa var. pilosa and B. pilosa

var. radiata. The difference between B. tripartita and the other
five species was the largest, and a mutation locus was found in the
intergene region of ndhF-rpl32. In addition, the results revealed
that the variation in the noncoding region was considerably
greater than that in the coding region. Most of the variation
was located in the LSC and SSC regions, and slight variation
occurred in the IR regions. The rRNA genes of these species were
highly conserved with little variation (Figure 4).

The Pi values of the shared genes and intergenic spacers of the
chloroplast genomes of the Bidens species were calculated.
Figure 5 shows the intergenic spacers and genes with Pi > 0.
Intergenic spacers had more polymorphisms than gene regions,
and these results were consistent with the mVISTA analysis
results. By combining the mVISTA and Pi results, seven
candidate highly variable regions (Pi > 0.018; length > 200 bp)
were screened out for species identification and relationship
studies.

Consistent with the result based on chloroplast genomes, the
results of collinearity and homology analysis showed that the
mitochondrial genomes of B. biternata and B. bipinnata had high
homology. The mitochondrial genomes of B. pilosa var. pilosa, B.
pilosa var. radiata, B. parviflora and B. tripartita were quite
different from those of B. biternata and B. bipinnata
(Figure 6). The dot plot of the mitochondrial genome
sequences between B. biternata and B. bipinnata showed an
evident line on the diagonal, indicating that the chloroplast
genome sequences of B. biternata and B. bipinnata had high
homology (Supplementary Figure S2). In the dot plot of
mitochondrial genome sequences between B. pilosa var. pilosa
and B. pilosa var. radiata, only several diagonal lines made up of
marker points were parallel to the diagonal lines, which represent

FIGURE 4 |Global alignment of the chloroplast genomes of Bidens species. The x-axis represents the coordinates in the chloroplast genome. The y-axis indicates
the average percent identity of sequence similarity, which ranged between 50 and 100%, in the aligned regions.
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FIGURE 5 | Nucleotide diversity of various shared regions in the chloroplast genomes of Bidens species. (A) Pi values in the gene regions. (B) Pi values in the
intergenic spacer regions.

FIGURE 6 | Collinearity analysis of the chloroplast genomes of Bidens species. Local collinear blocks are represented by blocks of the same colour connected
by lines.
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the same substring of two sequences. This result indicated that the
mitochondrial genome sequences of B. pilosa var. pilosa and B.
pilosa var. radiata have low homology (Supplementary
Figure S3).

3.5 Identification and Phylogenetic Analysis
of Bidens Species
In the current study, the complete chloroplast genome sequences
of five species and one variety of Bidens and 21 other Asteraceae
species were used to construct a phylogenetic tree withMagnolia
officinalis and Nicotiana tabacum as the outgroups (Figure 7).
The results showed that the Bidens species clustered in a big
branch and that different samples of the same species clustered
together. The three samples of B. biternata clustered in one
branch, which was sister to the cluster comprising the four
samples of B. bipinnata. Bidens pilosa var. radiata and B.
pilosa var. pilosa clustered together. Bidens tripartita and B.
parviflora clustered in a single branch, respectively. In
addition, the species in Ligularia were close to those in Bidens.

Then, the common protein-coding genes shared in these
chloroplast genomes were applied to construct the ML
phylogenetic tree (Supplementary Figure S4). The result was
slightly different from the finding based on the complete
chloroplast genome sequences. The four samples of B.
bipinnata did not cluster together. For the seven candidate
highly variable regions, only trnS-GGA-rps4 showed the
capability to identify Bidens species (Supplementary Figure
S5). The species of B. bipinnata, B. biternata and B. pilosa
clustered in different branches, respectively. In contrast to the

tree based on the complete chloroplast genome, B. parviflora was
sister to the B. pilosa species but with a low bootstrap value.

The ML phylogenetic tree was constructed by using the
complete mitochondrial genomes and common protein-coding
genes shared by themitochondrial genomes of Asteraceae species,
including the Bidens species (Supplementary Figures S6, S7).
The Bidens species did not cluster together in the tree based on
the complete mitochondrial genomes, whereas the Bidens species
clustered together in the tree based on the common protein-
coding genes shared by these mitochondrial genomes. However,
species within the genus Bidens were indistinguishable from each
other. The results showed that in contrast to the chloroplast
genome, the mitochondrial genome was unsuitable for the
identification and phylogenetic analysis of Bidens species.

4 DISCUSSION

The lengths of the chloroplast genomes of these Bidens species
were similar to those of other reported Asteraceae species, such as
Ligularia species (151,118–151,253 bp) (Chen et al., 2018),
Artemisia frigida (151,076 bp) (Liu et al., 2013) and
Stilpnolepis centiflora (151,017 bp) (Shi and Xie 2020). The GC
contents of the chloroplast genomes of the Bidens species were all
37.5%, which was similar to those of Carthamus tinctorius (Lu
et al., 2016), Saussurea involucrata (Xie et al., 2017) and Arctium
lappa (Xing et al., 2019). The majority of the chloroplast genomes
of Asteraceae species, such as Soroseris umbrella (Lv et al., 2020),
Saussurea inversa and Saussurea medusa (Wang et al., 2021), as
well as Pertya phylicoides (Wang et al., 2020), contained

FIGURE 7 | Phylogenetic tree constructed by using the MLmethod based on the complete chloroplast genome sequences of Asteraceae species. The numbers at
the nodes are the values for bootstrap support.
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approximately 130 genes, which included approximately 113
unique genes. The global comparison of the chloroplast
genomes showed that the variation of the noncoding region
was considerably larger than that of the coding region, most
of the variation was located in the LSC and SSC regions, and very
little variation occurred in the IR regions. The same findings were
also found for Arctium lappa (Nie et al., 2020), Ligularia species
(Chen et al., 2018) and Artemisia species (Liu et al., 2013).
Moreover, we compared the CDS of the chloroplast genomes
of 11 Asteraceae medicinal plants, including the Bidens species in
this study, Bidens frondose (Knope et al., 2020), Arctium lappa
(Nie et al., 2020), Atractylodes lancea (Shi et al., 2021), Aster
tataricus (Shen et al., 2018) and Artemisia annua (Shen et al.,
2017). The results showed that although the gene composition of
the chloroplast genome of Asteraceae medicinal plants was highly
conserved, slight variations were still present. The chloroplast
genome of A. annua, but not the chloroplast genomes of other 10
medicinal plants, contained the photosystem II gene psbG. Only
the chloroplast genome of B. frondose did not contain the ycf1
gene. The chloroplast genomes of 11 medicinal plants contained
the ycf2 gene, whereas in the chloroplast genome of A. tataricus,
ycf2 gene did not repeat in the IR regions. The ycf15 gene existed
only in the chloroplast genome of B. frondose and A. annua and
not in other medicinal plants (Supplementary Figure S8).
Bioinformatics analysis revealed the presence of SSRs and long
repeats in the chloroplast genome of Bidens species. Given that
long repeats are abundant in the chloroplast genomes of some
highly recombinant algae and angiosperms, especially at the end
of the recombinant site, they are considered to be one of the main
reasons for promoting the recombination of chloroplast genomes.
However, in the chloroplast genome without recombination, the
role of these repeats remains unclear (Qian 2014). The SSRs and
long repeats contained in the chloroplast genome can be used as
important sources of molecular markers for the development of
research on Bidens species.

The lengths of the mitochondrial genomes of these Bidens
species were similar to those of most land plants reported in
the organelle database of NCBI (Supplementary Figure S9)
and was similar to that of Tanacetum vulgare (Won et al.,
2018). The total GC content of the mitochondrial genomes of
the Bidens species was between 45.4 and 45.8% and were
similar to that of Helianthus annuus (Grassa et al., 2016). The
number of CDS in the mitochondrial genomes of the Bidens
species was approximately 30 genes and was similar to that of
most of reported plants in the NCBI organelle genome
databases (30–45). In contrast to those of the conserved
chloroplast genome, the sizes and structures of the
mitochondrial genomes of angiosperms vary greatly
(Levings and Brown 1989; Adams et al., 2002). Studies
have shown that the plant mitochondrial genome is a
mixture of DNA molecules with different shapes (Kubo
and Newton 2008). The mitochondrial genomes of
chrysanthemum and sunflower are circular (Makarenko
et al., 2019; Wynn and Christensen 2019), whereas those of
wheat, rape and cucumber comprise multiple rings (Handa
2003; Ogihara et al., 2005; Alverson et al., 2011). The
mitochondrial genomes of plants are considerably larger

than those of animals and range from 200 to 2,500 kb with
a variation of more than 10 times (Levings and Brown 1989).
In most angiosperms, the size of the mitochondrial genome is
concentrated within the range of 300–600 kb (Levings and
Brown 1989). The secondary structure of the mitochondrial
genome is complex and changeable, and gene recombination
frequently occurs in the mitochondrial genomes of
angiosperms (Kubo and Newton 2008; Gualberto and
Newton 2017). Mitochondrial genomes are generally used
for high-level classification, such as intergenus and
interfamily classification (Qiu et al., 2010).

In this study, phylogenetic trees were constructed on the basis
of the complete chloroplast genomes, complete mitochondrial
genomes, common protein-coding genes shared by each
organelle genome, and seven selected highly variable regions.
The complete chloroplast genomes showed the best capability for
the identification and phylogenetic analysis of Bidens species. The
chloroplast genome is an ideal material for species authentication
and phylogenetic studies because it can be maternally inherited,
usually does not undergo genetic recombination and has highly
conserved gene content and order (Verma and Daniell 2007;
Jansen and Ruhlman 2012). In fact, chloroplast genomes have
been successfully used as a super barcode to identify numerous
species and individuals (Doorduin et al., 2011; Kane et al., 2012;
Chen et al., 2019; Wu et al., 2020). The phylogenetic trees
constructed in this study demonstrated that complete
chloroplast genome sequences can also be used as a super
barcode for the identification of Bidens species. Bidens pilosa
var. pilosa and B. pilosa var. radiata had similar morphological
characteristics. In the Flora of China database, B. pilosa var.
radiata and B. pilosa var. pilosa have been merged into one
species named B. pilosa, and the Latin name B. pilosa var. radiata
has been listed as a synonym of B. pilosa. In this study, the
chloroplast genomes of B. pilosa var. pilosa and B. pilosa var.
radiata were similar to each other. The ML phylogenetic tree
showed that B. pilosa var. radiata and B. pilosa var. pilosa
clustered together with a bootstrap value of 100%. Therefore,
the analysis results of this study provided support for the merging
of B. pilosa var. pilosa and B. pilosa var. radiata into the same
species.

CONCLUSION

In this study, 12 chloroplast and eight mitochondrial genomes of
five species and one variety of Bidens were analysed. Then,
identification and phylogenetic analysis were performed by
constructing phylogenetic trees on the basis of the complete
chloroplast genomes, complete mitochondrial genomes,
common protein-coding genes shared by the chloroplast
genomes, common protein-coding genes shared by the
mitochondrial genomes, and seven selected highly variable
regions. The results of phylogenetic trees based on the
complete chloroplast genomes and trnS-GGA-rps4 showed that
different samples of the same species clustered together. This
work indicated that complete chloroplast genomes could be used
as a super barcode to authenticate Bidens species accurately, and
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the screened highly variable region trnS-GGA-rps4 could be used
as a potential specific barcode to identify Bidens species.
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