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Abstract

The treatment of Lung adenocarcinoma (LUAD) could benefit from the incorporation of pre-

cision medicine. This study was to identify cancer-related genetic alterations by next gener-

ation sequencing (NGS) in resected LUAD samples from Korean patients and to determine

their associations with clinical features. A total of 201 tumors and their matched peripheral

blood samples were analyzed using targeted sequencing via the Illumina HiSeq 2500 plat-

form of 242 genes with a median depth of coverage greater than 500X. One hundred ninety-

two tumors were amenable to data analysis. EGFR was the most frequently mutated gene,

occurring in 106 (55%) patients, followed by TP53 (n = 67, 35%) and KRAS (n = 11, 6%).

EGFR mutations were strongly increased in patients that were female and never-smokers.

Smokers had a significantly higher tumor mutational burden (TMB) than never-smokers

(average 4.84 non-synonymous mutations/megabase [mt/Mb] vs. 2.84 mt/Mb, p = 0.019).

Somatic mutations of APC, CTNNB1, and AMER1 in the WNT signaling pathway were

highly associated with shortened disease-free survival (DFS) compared to others (median

DFS of 89 vs. 27 months, p = 0.018). Patients with low TMB, annotated as less than 2 mt/

Mb, had longer DFS than those with high TMB (p = 0.041). A higher frequency of EGFR

mutations and a lower of KRAS mutations were observed in Korean LUAD patients. Profiles

of 242 genes mapped in this study were compared with whole exome sequencing genetic

profiles generated in The Cancer Genome Atlas Lung Adenocarcinoma. NGS-based
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diagnostics can provide clinically relevant information such as mutations or TMB from read-

ily available formalin-fixed paraffin-embedded tissue.

Introduction

Lung adenocarcinoma (LUAD) is the leading cause of cancer death worldwide. In particular,

the incidence of LUAD is increasing in both never-smokers and females[1]. This means that

prognosis and treatment of each patient can differ widely at the molecular level based on their

gene expression patterns, copy number alterations, and mutations. Previous genomic studies

of LUAD have shown that patients with driver gene mutations, such as those in epidermal

growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK), receive a significant

survival benefit from personalized therapy for LUAD [2, 3]. The recent discoveries of C-Ros

oncogene 1, receptor tyrosine kinase (ROS1) and Ret proto-oncogene (RET1) fusions have

raised expectations for the development of new targeted agents in LUAD. In molecularly

selected patients, response rates to the appropriate targeted treatment can reach 60–70% or

more, compared to the 20–30% response rate in an unselected population treated with conven-

tional chemotherapy [4].

Ethnicity plays a distinct role in the prevalence of some genetic markers[5]. Asian patients

with LUAD have a longer survival (11.0 vs. 8.9 months, p< 0.001), higher response rates (32.7

vs. 29.8%, p = 0.027), and greater toxicity in response to targeted therapy than Caucasian

patients [6]. However, there is still a limited understanding of the genetic features of LUAD in

Asian patients based on a lack of representation in existing public databases. Therefore, it is

worthwhile to investigate whether these ethnic differences are due to genetic variation among

ethnic groups. In this study, we investigated these variations in a Korean LUAD cohort. As we

were able to sequence individual genomes, we examined these markers via next generation

sequencing (NGS) technology, which can determine the profile of genetic changes in tumors,

including single-nucleotide variations (SNVs), copy number variations (CNVs), and complex

chromosomal rearrangements. NGS technology can provide a fast turnaround time and cost-

effective sequencing for high numbers of targets. Given this, we sought to delineate a compre-

hensive characterization of the genomic landscape in Korean patients with LUAD using for-

malin-fixed paraffin-embedded (FFPE) surgical tissues and NGS technology. We have

rendered to provide NGS results in a relevant time with simple FFPE samples rather than fresh

tissue by targeted sequencing analysis, which is feasible to apply in clinical practice. Our data

may serve as a reference in the development of precision medicine for Korean LUAD patients.

Materials and methods

Patients and data collection

A total of 201 LUAD patients with surgically resected primary lung cancer were prospectively

enrolled from the Yonsei Cancer Center and Ulsan University Hospital between 2014 and

2016. All patients provided prior written informed consent, and this study was conducted with

the approval of Institutional Review Board of Yonsei University Health System, Severance

Hospital. A predesigned data collection format was used to review the patients’ electronic

medical records for evaluation of clinicopathological characteristics and survival outcomes.

Never-smokers were defined as those with a lifetime smoking dose of< 100 cigarettes. Ten

tumor tissue sections (at least 10 μm thick) and patient blood samples (5 ml) were collected

from prospectively recruited patients to differentiate between germline and somatic genetic
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aberrancy. Genetic analyses were performed in routine practice and included EGFR mutation

and ALK/ROS1 rearrangement. We uploaded raw NGS data to National Center for Biotech-

nology Information Sequence Read Archive (NCBI SRA) website for public access. (https://

trace.ncbi.nlm.nih.gov/Traces/sra/, SRA accession ID is SRP200786.)

Targeted sequencing of tumors

Genomic DNA was isolated from FFPE samples using the QIAamp DNA FFPE Tissue Kit

(Qiagen, Hilden, Germany) for the targeted sequencing of 242 lung cancer-related genes

selected based on a literature search (S1 Table) [2, 7, 8]. The genomic regions of the 242 genes

were captured by the customized SureSelectXT Target Enrichment library generation kit (Agi-

lent, Santa Clara, CA, USA) and sequenced on the Illumina HiSeq 2500 platform with a depth

of coverage> 500X and a read length of 100 bp.

To do FFPE quality control and analysis, two cross validations were performed. First, we

checked up and confirmed that FFPE precisely detect EGFR hotspot mutations which are the

main target of LUAD therapy. We compared the NGS result with the PCR result regarding the

EGFR hotspot mutations in the same sample. Another is to compare the results of the known

frozen fresh (FF) data in public dataset. We first evaluated how similar the overall pattern of

LUAD results of current study with that of The Cancer Genome Atlas (TCGA) dataset which

was conducted by FF [2]. To evaluate the overall pattern of our data, we compared that of

TCGA dataset [2]. This TCGA data set is composed of a total of 230 patients, of which the

majorities (173 patients) were Caucasian [2].

Variant calling and functional annotation

By default, base quality trimming for short reads from the targeted sequences was performed

using Sickle[9]. Filtered reads were mapped to the human reference genome (GRCh37/hg19)

using BWA[10]. All reads with a mapping quality score < 20 were discarded. The aligned

reads (BAM file) were further processed with the Genome Analysis Tool Kit v3.5[11], includ-

ing Mark Duplicate, Local Realignment, and Base Quality Score Recalibration. Candidates for

somatic mutations were called by MuTect ver. 1.17[12] with default parameters. Somatic inser-

tions/deletions were called by Scalpel [13] with default parameters. During somatic mutation

calling, FoxoG sequencing artifacts [14] were removed using the Oxidative Damage Detection

and Removal Tools (https://github.com/migbro/IGSB_oxoG_tools) to discard skewed read-

orientation variants with the FoxoG parameter 0.625. Even after FoxoG filtration, nine samples

had unexpectedly large numbers of mutations (Z-score of tumor mutational burden (TMB) >

1) and thus were excluded from further analysis under suspicion of potential damage to DNA.

Somatic variants that passed all filters were considered high-confidence variants. CNVs were

called using a CNV kit [15]. CNVs in genes were defined as follows: deletion, 0 copies; loss, 1

copy; gain, 3 copies; and amplification,� 4 copies. The functional impacts of high confidence

variants were annotated with ANNOVAR software[16], based on the consequences, predicted

impacts, and reported allele frequencies in the population. In particular, non-rare variants

(minor allele frequency > 0.05 in gnomAD database [17]) were discarded to remove non-

pathogenic variants. Finally, CIVic and DoCM databases were used for clinical interpretation

of variants in cancer. TMB was measured by the number of non-synonymous missense muta-

tions per megabase (Mb) within the range of the targeted capture region. An ‘Oncoprint’ is a

way to visualize overall genomic alteration events using a heatmap. Mutations of each sample

on the Oncoprint are aligned in a mutually exclusive manner. For example, the samples with

the highest frequency in the entire sample are aligned on the top left, and the samples with the

next highest frequency are aligned on the back. This is a kind of clustering that can easily
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distinguish between co-occurrence and mutually exclusive patterns on the major genes. It was

drawn using the bioconductor package ‘Complex Heatmap’ [18] in R ver. 3.4. Using the pack-

age ‘maftools’ [19], lollipop plots were drawn for frequently mutated genes to check the recur-

rence of genomic loci with variants, and somatic interactions between mutually exclusive or

co-occurring sets of genes were investigated. Mutations and putative CNVs stored in cBiopor-

tal[20, 21] were used for the above genomic analysis. Pathway diagrams were depicted using

Pathway Mapper[22]. To identify the clinical importance of mutations, we created a mutation

classification system based on knowledgebase databases and a computational prediction algo-

rithm. Clinical importance was ranked using CIVic(criteria: predictive & sensitive & evidence

level = {A, B, C} & supports categories), Cancer Genome Interpreter (CGI) (criteria: drug

Table 1. Baseline patient characteristics of the analytic population.

Characteristic Median (Range) Analytic Population (N = 201)

Age in years 63 (34–83)

Sex

Male 87 (43.3%)

Female 114 (56.7%)

Smoking

Never smoker 125 (62.2%)

Former smoker 51 (25.4%)

Current smoker 25 (12.4%)

Residence

Urban 119 (59.2%)

Non-urban 68 (33.8%)

Unknown 14 (7.0%)

ECOG

ECOG 0, 1 199 (99.0%)

ECOG 2 2 (1%)

Stage

IA, IB 113 (56.2%)

IIA, IIB 44 (21.9%)

IIIA, IIIB, IIIC 42 (20.9%)

IV 2 (1.0%)

EGFR Mutation (N = 110)a) 57 (51.8%)

Exon 19 del, L858R 42 (73.7%)

Othersb) 15 (26.3%)

ALK Fusion (N = 98)c) 4 (4.1%)

ROS1 Rearrangement (N = 140)d) 1 (0.7%)

Adjuvant chemotherapy

Yes (Platinum doublet) 94 (46.8%)

Yes (Others)e) 1 (0.05%)

No 106 (52.7%)

a) EGFR mutation test was performed using the Peptide nucleic acid (PNA) clamping method in 110 patients.

b) L861Q, T790M, exon20 insertion: c.2316_2317ins TACAACCCC; exon20 mutation: Ser768Ile, c.2303G>T,

Val774Met, c.2320G>A; exon21 mutation: Leu858Arg, c.2573T>G, G719X, S768I

c) ALK fusion test was performed by fluorescence in situ hybridization (FISH) analysis in 98 patients.

d) ROS1 rearrangement test was performed by immunohistochemistry (IHC) analysis in 140 patients.

e) One patient enrolled adjuvant erlotinib clinical trial.

https://doi.org/10.1371/journal.pone.0224379.t001
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prescription & responsive & alteration match–complete categories)[23], and CRAVAT(crite-

ria: CHASM FDR� 0.1 & TARGET DB only categories), sequentially. To confirm how many

ranked mutations were included, Venn diagrams were drawn using Venny [24].

Statistical methods

All statistical analyses were performed using R and Python (Scipy and Seaborn packages). Stu-

dent’s t-test or Fisher’s exact test was used for group comparisons. Disease-free survival (DFS)

was measured from the date of diagnosis to tumor recurrence or death, while overall survival

(OS) was measured from the date of diagnosis until the date of death. Patients were censored

on October 2017 if alive and recurrence free. Patients without a known date of death were cen-

sored at the time of last follow-up. A log rank test for mutations of each gene, signaling path-

ways, and TMB was used to compare the DFS between groups. Two-sided p-values < 0.05

were considered significant.

Results

Clinical characteristics

We enrolled 201 patients with LUAD, and their characteristics are summarized in Tables 1

and S2. This entire cohort included 87 men and 114 women; the median age was 63 years

(range, 34–83), and 157 patients (78.1%) had stage I or II disease at initial diagnosis. One hun-

dred twenty-five patients (62.2%) were never-smokers; never-smokers were defined as those

with a lifetime smoking dose of< 100 cigarettes. One hundred nineteen patients (59.2%) were

urban residents and 68 patients (33.8%) were non-urban residents. Ninety-four patients

(46.8%) had adjuvant platinum-based chemotherapy as a standard treatment. EGFR mutations

(51.8%, 57/110), ALK rearrangements (4.1%, 4/98), and ROS1 rearrangements (0.7%, 1/140)

were identified based on genetic mutation testing in routine practice. The mean follow-up

period was 42 months (range, 7–114 months). During follow-up, recurrence was observed in

55 patients (27.4%), and median DFS was 89 months (95% confidence interval [CI], range

63.68–114.32 months). DFS was separated by each stage (S1 Fig). Since only 10 patients died,

the median OS was not yet reached (Table 2).

Genomic landscape of LUAD

We analyzed 192 of 201 samples, after excluding nine with excessive FoxoG artifacts. To con-

firm FFPE quality control, we compared the NGS result with their PCR result on the well-

known EGFR hotspot mutations (i.e.S768I, L858R, L861Q, E19 DEL) and identified that about

90% (45/51) were identical to each other. Next, we evaluated the overall pattern of our data

compared with that of TCGA data set as positive control (S2 Fig) [2]. We confirmed that the

mutation patterns of EGFR, TP53, KRAS, and PIK3CA of our data are the comparable with

Table 2. Clinical outcomes of the analytic population.

Characteristic Median (Range) Analytic Population (N = 201)

Recurrence

Yes 55 (27.4%)

No 146 (72.6%)

Death 10 (0.05%)

Disease free survival (DFS) 89 months (63.68–114.32)

Overall survival (OS) Median not reached

https://doi.org/10.1371/journal.pone.0224379.t002
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TCGA (S2A Fig). In TCGA LUAD dataset, EGFR hotspot mutations were observed in L858R,

exon19 deletion and other hotspot mutations order, which is similar pattern to our result (S2B

Fig). TP53 tends to be widely distributed in the DNA binding domain (S2C Fig). KRAS (G12,

Q61) and PIK3CA (E542, E545, H1047) were observed in TCGA dataset, which are compara-

ble with ours (S2D and S2E Fig). In terms of CNV, we found out that the oncogene and tumor

suppressor gene (TSG) are similar to TCGA and COSMIC (https://cancer.sanger.ac.uk/

cosmic) (S2F Fig). Collectively, based on the quality control process, we analyzed genetic anal-

ysis in this study.

A total of 761 somatic non-silent SNVs and 388 insertions and deletions (indels) were iden-

tified from the targeted sequencing regions of the 192 tumors, corresponding to a median of

2.08 SNVs per Mb. The Oncoprint demonstrated that SNV alterations included missense, non-

sense, frameshift indel, in-frame indel, and splice site mutations. We found that EGFR was the

most frequently mutated gene (n = 106, 55%), followed by TP53 (n = 67, 35%) and KRAS
(n = 11, 6%) (Fig 1A). EGFR and KRAS mutations were mutually exclusive (S3A Fig). EGFR
mutation were strongly enriched in patients that were female and never-smokers. In female

and never-smokers, between patients with EGFR mutation and EGFR wild type are statistically

significant (p = 0.005). Rates of mutations in other genes were 8% for ADGRV1 (n = 15), 8%

for SMARCA2 (n = 15), 7% for BIRC6 (n = 13), 7% for NF1 (n = 13), 6% for RELN (n = 12),

6% for KMT2C (n = 12), 6% for FAT3 (n = 12), 6% for ATM (n = 11), and 5% for RB1 (n = 9)

(Fig 1A). Copy number gain or amplification was detected in HRAS (n = 38, 20%), FGFR3
(n = 36, 19%), TERT (n = 34, 18%), CREBBP (n = 30, 16%), MYC (n = 26, 14%), AKT (n = 25,

13%), and EGFR (n = 24, 12%). Copy number loss or deletion was observed in CDKN2A
(n = 26, 14%), SMAD4 (n = 17, 9%), VHL (n = 15, 8%), STK11 (n = 16, 8%), PTEN (n = 13,

7%), and KMT2D (n = 13, 7%) (Fig 1B). We found that smokers had a significantly higher

TMB than never-smokers (average 4.84 vs. 2.84 mt/Mb, respectively, p = 0.019) (S3B Fig).

Mutation mapper plot and pathway diagram

In the mapper plot for EGFR, L858R and exon 19 deletion were the most common alterations,

observed in 35 samples (18%) and 55 samples (29%), respectively. This was followed by

L861Q, observed in 5 samples (3%). In the mapper plot for TP53, the P112S (n = 2, 1%),

V118F (n = 2, 1%), R136H (n = 2, 1%), N171fs (n = 2, 1%), H175R (n = 2, 1%), G206C/V

(n = 2, 1%), R234H (n = 2, 1%), and E246K (n = 2, 1%) mutations were identified at similar

rates. In PIK3CA, the established canonical E542K missense mutation was the most common

(n = 3, 2%). In addition, among KRAS mutations in codon 12, G12D/V/C/S/A was the most

common (n = 10, 5%) (Fig 2). We also depicted pathway diagrams of four canonical pathways:

canonical WNT, cell cycle, PI3K, and RTK-RAS (S4 Fig) [25]. In the canonical WNT pathway,

we observed rates of 3% for SNVs in CTNNB1 (n = 6, 5 missense mutations, 1 nonsense muta-

tion), 4% for SNVs in APC (n = 8, 2 missense mutations, 2 nonsense mutations, 3 frameshift

indels, 1 splice site mutation), 1% for SNVs in AMER1 (n = 1 missense mutation), and 1% for

CNVs in APC (n = 2, 1 gains with 3 copies, 1 loss with 1 copy) (S4A Fig).

Clinical implication with somatic mutation classification system for LUAD

We attempted to implement a precision medicine approach for application in the clinical field.

The purpose of precision medicine through NGS is to determine the link between each muta-

tion with an associated targeted therapy and the clinical outcome in cancer patients. Although

there are many clinical annotation databases for various somatic mutations, the determination

of which mutations have clinical implications differs slightly in each. Hence, a harmonized sys-

tem for a meta-knowledgebase of clinical interpretations of cancer genomic variants is
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Fig 1. Genomic landscape of lung adenocarcinoma (LUAD). (A) This is the oncoprint of the somatic single-nucleotide

variations (SNVs) in 192 LUAD patients. SNV alterations included missense, nonsense, frameshift indel, in-frame indel, and

splice site mutations. (Red, oncogene; Blue, tumor suppressor gene) The upper bar chart is the total number of mutations or

CNVs. The order of the genes is performed by the frequency of the mutations or CNVs across all samples. (B) This is the

oncoprint of the somatic copy number variations (CNVs) in 192 LUAD patients. CNV alterations included copy number

gain, amplification, loss, or deletion.

https://doi.org/10.1371/journal.pone.0224379.g001
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Fig 2. Gene mutation mapper plot of EGFR, TP53, PIK3CA, and KRAS. (A) Among EGFR mutations, L858R/M and

exon 19 deletion were the most common alterations, followed by L861Q/R. (B) In TP53, P112S, V118F, R136H,

N171fs, H175R, G206C/V, R234H, and E246K mutations were identified at similar rates. (C) In PIK3CA, the

established canonical E542K missense mutation was the most common. (D) Among KRAS mutations in codon 12,

G12V/D/C/S/A was the most common.

https://doi.org/10.1371/journal.pone.0224379.g002
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required to reliably determine clinical implications for as many patients as possible[26]. Of

192 LUAD patient samples, 121 samples (63%) were clinically annotated in CIVic[27], vali-

dated through various publications and clinical trials, and annotated through CGI[23], result-

ing in the annotation of 151 samples (79%). Potential targets that still remain are annotated

with CRAVAT[28] (155 samples, 81%), which involves computational prediction (Fig 3A).

There were a total of 86 samples annotated in the three databases, 3 of which were annotated

only in CIVic, 11 only in CGI, and 4 only in CRAVAT (Fig 3B). The somatic mutations

reported in CIVic were the well-known EGFR L858R, exon 19 deletion, and T790M mutations;

the G12V/D/C/S/A mutation in KRAS; E542K in PIK3CA; and Y220C and R175H in TP53.

Genes with CNVs included CDKN2A, EGFR, and PTEN, among others. Somatic mutations

annotated only in CGI were ARID1A, BRAF, BRCA, STK11, and BAP1, while SETD2 and

STK11 were the annotated somatic CNVs. The somatic mutations independently estimated by

CRAVAT were H179R and G245C for TP53 and P750R for DNMT3A. Prospective application

of this approach should be assessed in a future umbrella trial of lung cancer patients.

Clinical correlation

Among 192 patients with available NGS and survival data, TP53 (p = 0.062), EGFR (p = 0.299),

the RTK-RAS pathway (p = 0.089), and the PI3K pathway (p = 0.149) were not associated with

shorter DFS (S5 Fig); however, mutations in APC (8 samples with 2 missense mutations, 2

nonsense mutations, 3 frame shift indels, and 1 splice site mutation; 2 samples with 1 gain and

1 loss), CTNNB1 (6 samples with 5 missense mutations and 1 nonsense mutation), and

AMER1 (1 sample with 1 missense mutation) in the canonical WNT pathway were associated

with shorter DFS (p = 0.018) (Fig 4). In addition, based on TMB annotations, cut-offs were

used to divide patients into tertiles of low (� 2 mt/Mb, n = 88), intermediate (> 2 to� 7 mt/

Mb, n = 81), and high TMB (> 7 mt/Mb, n = 23) groups, and these were associated with differ-

ences in DFS. Patients with a low TMB showed better prognosis than those with high or inter-

mediate TMB (p = 0.041) (Fig 5A). The low TMB group had more EGFR exon 19 deletions

than the other groups (36%). In the intermediate TMB group, EGFR L858R was the most com-

mon mutation (30%) (Fig 5B).

Discussion

Our study shows that it is feasible to incorporate NGS into the clinical care of lung cancer

patients. Through our NGS analysis, the most common genomic alterations (EGFR, TP53,

ADGRV1, and SMARCA2) were slightly different from those observed in present investiga-

tions of LUAD in Caucasian [2]. In The Cancer Genome Atlas (TCGA), the rate of KRAS
mutation in LUAD is 33%, while that of EGFR mutation is only 14%[2]. It should be noted

that we have a higher proportion of female (56.2%) and non-smokers (62.2%) than is found in

TCGA. However, the most prominent difference is the ethnicity of the patients. Only eight

Asian patients are included in TCGA[2]. We analyzed only ethnic Korean patient samples and

can conclude that EGFR mutation is the most common (55%) in Koreans, based on the current

study and a rate of 59% among Asian patients with LUAD in previous reports [29]. Since

KRAS mutation occurs exclusive of EGFR mutation, KRAS mutations are slightly less frequent

in ethnic Koreans than in Caucasian patients. Luo published the results of whole genome

sequencing for young never-smoked Asian with lung adenocarcinoma[30]. Compared with

this study, we conducted in a more practical way by targeted sequencing with FFPE. In Luo

study, EGFR mutation was found to be somatic SNV 25% and CNV 19% but ours was 64%,

15% respectively. And KRAS of Luo study was sSNV 11% but ours was 2%. Interestingly,
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Fig 3. Mutation classification system. (A) Hierarchical mutation classification system based on knowledgebase database

and the computational prediction algorithm. (B) Venn diagram to confirm how many ranked mutations were included.

https://doi.org/10.1371/journal.pone.0224379.g003
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several genes showed almost the same ratio (TP53 sSNV, Luo 28% vs. ours 31%; MYC sCNV,

14% vs. 10%; TERT sCNV, 17% vs. 17%, respectively).

Similar to the discovery of EGFR, ALK, and ROS1, various studies for identifying molecular

characterizations of LUAD are under way, and our study is also part of this effort. Mutations

in specific genes affect not only the carcinogenic process but also dysfunction of signaling

pathways and can be important mediators in tumorigenesis[31]. The WNT pathway is

involved in the formation of lung homeostasis and tumor angiogenesis[32]. WNT pathway

aberrations are potential therapeutic targets in lung cancer patients[33]. The most studied

WNT pathway mutations in cancers include sporadic mutations in APC and β-catenin genes.

Since APC is part of the degradation scaffold for β-catenin, mutations of APC result in reduced

degradation and increased nuclear accumulation of β-catenin, leading to activation of target

oncogenes including cyclin D1 and c-Myc[33]. Clinical trials of WNT signaling pathway

inhibitors have been conducted in advanced solid tumors (NCT03355066). Our analysis also

shows that patients with APC, CTNNB1, and AMER1 mutations in the WNT pathway show

shorter DFS compared to wild-type patients (Fig 4). In addition, we investigated the clinical

significance of TMB in patients with LUAD and examined the relationship between TMB and

prognosis. TMB is thought to be associated with the amount of tumor neoantigen and to have

an important role in predicting the effect of immune checkpoint inhibitors[34]. We found that

smokers had a significantly higher TMB than never-smokers (average 4.84 vs. 2.84 mt/Mb,

respectively, p = 0.019). Devarakonda et al. also annotated a TMB greater than 8 mt/Mb as

high and reported a better prognosis in this group[35]. On the other hand, Owada-Ozaki

reported that shorter OS and DFS was associated with high TMB in stage I NSCLC[34]. In our

Fig 4. Disease-free survival (DFS) by somatic mutation in the canonical WNT pathway (p = 0.018). APC, CTNNB1, and AMER1 were

mutated in the WNT pathway.

https://doi.org/10.1371/journal.pone.0224379.g004
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Fig 5. Disease-free survival (DFS) by tumor mutation burden (TMB). (A) Kaplan-Meier plots showing prognostic effect of nonsynonymous TMB on

disease-free survival (p = 0.041). (B) The low TMB group had more EGFR exon 19 deletions among various mutations than other groups (36%). In the

intermediate TMB group, EGFR L858R was the most common (30%). Fisher’s exact test was used to compare low and intermediate TMB groups for the EGFR
exon 19 deletion (p = 0.041) and EGFR L858R variants (p< 0.001). No significant differences were found for other comparisons.

https://doi.org/10.1371/journal.pone.0224379.g005
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data, patients with a TMB< 2 mt/Mb showed longer DFS than patients with a TMB� 7 mt/

Mb (p = 0.041) (Fig 5A). Since there are still many conflicting results, further studies are

needed to validate TMB as a prognostic marker. Notably, exon 19 deletion was the most com-

mon mutation in the low TMB group, which exhibited good prognosis. It is already known

that exon 19 deletion results in a better prognosis than other EGFR mutations[36] (Fig 5B).

In order for the above analyses to be applied to clinical practice, appropriate use of a meta-

knowledgebase of clinical implications of cancer genomic variants is necessary[37]. A meta-

knowledge-based framework of holistic interpretation comprehensively covers hundreds of

genes, disease and drugs. Hence, we included predicted target mutations in CRAVAT, as well

as providing annotations via CIVic and CGI. Overall, this methodology may expedite the

widespread implementation of an umbrella trial of lung cancer patients.

Several technical limitations were identified in this study. First, a low tumor cellularity in

samples, owing to normal cell contaminants, and high levels of intra-tumor heterogeneity

make it difficult to accurately call SNVs and CNVs. For this reason, the variant allele frequency

was lower than the theoretical value of 0.5 (S6 Fig). Second, targeted sequencing for the identi-

fication of CNVs remains a secondary option when more sensitive methods, such as whole-

genome sequencing or specialized array-based methods, are unavailable. As targeted sequenc-

ing-based CNV analysis generally performs better in a larger cohort, the size and sustainability

of clinical trials should be considered when they are designed. Third, the NGS platform used

in this study detected only SNVs and CNVs although diverse structural variations and epige-

netic events exist outside of the captured exons. Active participation of genome analysis

experts is strongly recommended to manage these technical issues. Finally, since we used only

242 genes in this study, other factors including genetic alteration in other genes, epigenetic

alterations, gene and protein expression may be related to LUAD risk. There are recent reports

that exposure to outdoor particulate matter (PM10)[38, 39] or indoor secondhand smoke and

high temperature cooking oil fumes[40] are associated with lung cancer. Since, there were

inadequate information for patient’s dwelling or occupation, it was precluded to analyze envi-

ronmental factor.

Conclusions

In conclusion, targeted sequencing using NGS can provide clinically relevant mutation profil-

ing information from readily available FFPE tissues. EGFR was the most frequently mutated

gene (55%), followed by TP53 (35%) and KRAS (6%). This may assist in decision to the use of

innovative clinical trials of genotype-matched drugs and provide benefits to many cancer

patients.
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