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Summary Metastases to the skeletal system are commonly observed in cancer patients, high-
ly affecting the patients’ quality of life. Imaging plays a major role in detection, follow-up, and
molecular characterisation of metastatic disease. Thus, imaging techniques have been opti-
mised and combined in a multimodal and multiparametric manner for assessment of comple-
mentary aspects in osseous metastases. This review summarises both application of the most
relevant imaging techniques for bone metastasis in preclinical models and the clinical setting.
Copyrightª 2015, The Authors. Published by Elsevier (Singapore) Pte Ltd. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Metastases to the skeletal system are observed in up to 70%
of all cancer patients [1]. In terms of breast cancer, bony
metastases are in almost one third of all patients the only
site of presentation at the initial diagnosis of metastatic
disease [2]. Whereas overall survival of patients with breast
cancer bone-only metastases is > 2 years, it is drastically
reduced to approximately half a year in patients with
simultaneous liver metastases [3]. Patients with bone
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metastases of lung cancer exhibit per se lower overall
survival measured in months [1]. Even though bone me-
tastases are not necessarily a life-threatening component
of cancer, their complications highly compromise the pa-
tients’ quality of life. Complications of osseous metastases
are referred to as skeletal-related events (SRE) and include
pathologic fractures, spinal cord compression, and hyper-
calcemia leading to renal failure.

Established localised treatments of bone metastases
imply surgery and external beam radiotherapy [4e6],
providing pain relief and reducing SRE [5,6]. Besides
chemotherapy, systemic treatment approaches include, in
particular, bisphosphonates as an integral part of bone
metastases management to reduce SRE and bone pain and
to improve quality of life [7]. Targeted treatment options
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such as the monoclonal antibody denosumab binding re-
ceptor activator of nuclear factor-kappa B ligand inhibitor
are increasingly applied. Beside the reduction of SRE and
bone pain, the newly introduced [223Ra] dichloride for the
treatment of bone metastases in castration-resistant pros-
tate cancer showed a significant improvement in overall
survival [8]. Nonetheless, these systemic treatment options
have to be considered palliative in most cases [9].

The standard criteria for evaluating the course of a
cancer disease are the Response Evaluation Criteria In Solid
Tumours (RECIST) in their current version (1.1). These
criteria are only partially applicable to bone metastases as
merely lytic lesions with soft tissue components > 1 cm are
taken into account [10]. Objective tumour response of lytic
lesions is defined as the shrinkage of the soft-tissue
component of > 30% measured as the largest diameter,
progression with growth of � 20% or new lesions. The only
nonmorphological exception for response assessment is the
appearance of new metastases with fludeoxyglucose posi-
tron emission tomography (FDG-PET) [11]. Osteoblastic le-
sions are considered immeasurable [10].

Further sets of criteria for the evaluation of bone me-
tastases are the International Union against Cancer (UICC)
and World Health Organisation (WHO) criteria. They have
been used since the 1970s and include plain radiography
(UICC) or radiography along with skeletal scintigraphy (SS,
WHO). The UICC criteria are only valid for lytic lesions and
distinguish between stable disease (growth of < 25% or
decrease by < 50%), progressive disease (> 25%), or new
lesions, complete response (disappearance of all lesions),
and partial response (shrinkage > 50%) [12]. The more
recent MD Anderson (MDA) criteria include plain radiog-
raphy, SS, computed tomography (CT), and magnetic reso-
nance imaging (MRI) [13]. They have been shown to be
superior compared with the WHO classifications in differ-
entiating between responders and nonresponders in terms of
progression-free survival and clinical response [13]. The MDA
criteria describe the same four response types as UICC, but
take morphological criteria such as sclerosis or fill-in of lytic
lesions and normalisation of blastic lesions into account.
Partial response is thus defined by the acknowledgment of a
response rather than quantification [12,14].

Irrespective of the set of criteria there is a time lag of
6e12 months for reliable radiographic evidence of response
in many patients [15]. Owing to this lack of adequate im-
aging criteria most studies define SRE as the primary
endpoint. Moreover, due to this time lag patients with
bone-only disease are often excluded from clinical trials,
which is undesirable as they occur frequently and cause
severe symptoms. Overall, early treatment response is an
important determinant of survival that can currently not be
measured sufficiently in patients with predominant or
exclusive bone disease [16]. Obviously there is a clinical
need for accurate response criteria in terms of skeletal
involvement, allowing for prediction of therapy efficacy
early after treatment initiation.

This review outlines current and future directions in
experimental and clinical settings of bone metastasis im-
aging for detection and follow-up of bone metastases, with
a focus on the assessment of therapy response and molec-
ular characterisation of osseous metastases. Major animal
models currently used for investigation of skeletal
metastases are summarised, including preclinical imaging
modalities and techniques for this purpose. Furthermore,
advantages and disadvantages of current clinical imaging
modalities for skeletal metastases are reported.

Preclinical imaging

Animal models and clinical relevance

In order to facilitate diagnosis and follow-up of experi-
mental bone metastases, animal models need to closely
mimic the clinical situation. For this purpose, several ani-
mal models have been developed, each with a combination
of distinct advantages and disadvantages.

The primary method to study breast cancer in transgenic
mice has been the overexpression of oncogenes. The
transgenic mice then develop tumours spontaneously.
Whereas these models have the advantage of keeping the
host in an immune competent state, they suffer from the
fact that in the vast majority of cases bone metastases only
occur rarely [17].

To efficiently mimic and investigate bone metastases,
models have been developed involving transplantation of
tumour cells. The most frequently used method for this
purpose is the intracardiac injection of tumour cells in
immune-compromised hosts leading to disseminated
metastasis to multiple organs including bone, while lacking
the process of cellecell detachment and plasma intra-
vasation of primary tumour cells. To further select for bone
tropism skeletal metastases can be isolated and grown as a
bone-specific sub-cell line. The above mentioned model for
example has been used to develop bone-tropic sublines of
MDA-MB-231 human breast cancer cells [18]. Another model
utilizes an intravenous injection of tumour cells leading to
lung metastases in most cases. Nonetheless, some of the
tumour cells are able to escape the lungs and metastasise
further to the bone or liver [19]. Bäuerle et al [20] describe
a rat model relying on injection of MDA-MB-231 breast
cancer cells into the superficial epigastric artery. This leads
to the induction of bone metastases exclusively in the rats’
hindlegs, with a tumour take rate of 93% and no further
distant metastases [20].

A more direct way to induce bone metastases is to
implant tumour cells into the bone marrow cavity (e.g.,
tibia). Such a model also skips many early steps of metas-
tasis, but can be used to investigate the ability of tumour
cells to colonise bone. Hereby, it was possible to specify
important interactions between tumour cells and bone
referred to as the vicious cycle [21]. This term refers to the
fact that bone resorbed by tumour cells releases factors
like tumour growth factor-beta (TGF-b), which in turn
positively influence tumour growth and survival. Variations
of this model have also been used to test agents like
bisphosphonates [22] and denosumab [23].

In a so-called orthotopic transplant model, tumour cells
are injected into the primary site (e.g., the mammary fat
pad). This requires the cells to undergo the full process of
metastasis: development of a primary tumour, intra-
vasation, extravasation, and colonisation. As this model is
preferable in terms of fully simulating the metastatic pro-
cess, many tumour cell lines are not able to metastasise to
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the skeleton when transplanted orthotopically for yet un-
known reasons [18]. One exception is the human breast
cancer 4T1 cell line, which metastasises to bone infre-
quently, but allowed the isolation of a highly osteotropic
subline [24]. Another model describes the implantation of
human bone tissue or a bone-like matrix into the flank of
immune-deficient mice, followed by transplantation of
human breast cancer cell lines into the mammary fat pad.
In this model, the interesting case of a cell line metasta-
sising to the transplanted human bone, but not to the
mouse bones was observed, suggesting a species-specific
mechanism for osteotropism [25].

All the above-mentioned models feature their specific
strengths and weaknesses. Most models do not fully simulate
the completemetastatic process, which can be of advantage
or disadvantage, dependent on the particular aims of the
study. Others rely on destruction of bone in the case of local
implantation into the bone marrow and others depend on
relatively time-consuming surgical procedures. For imaging
purposes, however, such animal models are adequate in
anticipating the location of metastasis appearance to opti-
mise methods for early detection of lesions. For follow-up of
skeletal metastases, animal models with one or few loca-
tions of metastasis are appropriate to allow for a relatively
long observation period, which is hampered in diffuse met-
astatic disease due to ethical reasons.

Though animal models shall closely mimic the clinical
situation, the potency of experimental approaches for early
detection, follow-up, and characterisation of metastases is
critically dependent on data acquisition and imaging. Ideal
imaging modalities are quantitative, have high spatial
resolution and sensitivity, can detect little tumour masses
and allow for longitudinal in vivo imaging over longer time
periods. Most promising for this purpose is the simultaneous
or sequential use of complementary methodsdreferred to
as multimodal imagingdcombining the advantages of
several modalities to overcome particular drawbacks of
individual modalities.
CT

Micro-CT has the advantage of high spatial resolution (as
low as 10e200 mm) and rapid data acquisition within mi-
nutes. Moreover, it is cost-effective and can display the
microarchitecture of bone for the determination of effects
on bone structure, even in early stages of bone destruction.
Furthermore, after contrast media application, CT-
angiography enables visualisation and follow-up of the
abundant vasculature found particularly in osteolytic le-
sions (Figure 1) [26e28]. Besides assessing morphology of
skeletal lesions, dynamic contrast-enhanced CT (DCE-CT)
allows for early treatment response assessment of anti-
angiogenic therapy in an experimental breast cancer bone
metastasis model [26,27].

Drawbacks include the low soft tissue contrast compared
with MRI and the levels of radiation potentially high enough
to induce changes in immune response and biological
pathways, thus imitating radiotherapy [29]. Although radi-
ation is more or less negligible in a one-time scan, it might
turn out to a more severe problem in longitudinal studies
with several imaging procedures.
MRI

MRI offers noninvasive high spatial resolution images (as
low as 50e100 mm) along with excellent soft tissue
contrast. For small animal imaging mMRI units with ultrahigh
magnetic fields were developed for even higher resolution.
Apart from morphological imaging, functional data can be
obtained including information on tissue composition,
perfusion, oxygenation, elasticity, metabolism, and mo-
lecular structures (Figure 1) [28,30]. As an example of
functional imaging in analogy to mCT, DCE-MRI allows for
quantitative assessment of microcirculation parameters to
evaluate the role of angiogenesis in skeletal metastases
(Figure 1) [26e28]. In another study, mesenchymal stem
cells were labelled with superparamagnetic iron oxide
nanoparticles and could be traced with MRI both in vitro
and in vivo, indicating that MRI can potentially be used
to assess even small amounts of cells (e.g., cancer stem
cells) [31].

Drawbacks, especially in small animal imaging, are
movements that disturb the high spatial resolution and
should be compensated for by anaesthesia and gating al-
gorithms. Further disadvantages include the poor sensi-
tivity in terms of molecular structures and reactions as well
as relatively long acquisition times resulting in high costs
[32].

Ultrasound

Ultrasound (US) offers high spatial and temporal resolution
along with good soft tissue contrast. However, it has limited
depth penetration compared with MRI and CT. This issue is
particularly relevant for imaging of bone metastases as
penetration of US is limited by cortical bone [30]. After
local destruction of bone in osteolytic lesions, US none-
theless is applicable to assess the soft tissue component of
skeletal metastases and DCE-US allows for real-time imag-
ing of vascularisation in bone metastases after intravenous
injection of microbubbles [28,33].

PET and single photon emission CT

CT and MRI provide mainly information on morphological
and functional aspects of bone metastases, other modal-
ities from nuclear medicine rather record information on
tumour metabolism and molecular structures. PET is a
technique detecting pairs of high energy g-rays emitted
indirectly by a positron-emitting radiotracer. Single photon
emission-CT (SPECT) is very similar but uses lower energy g-
rays and traces only single radiation, thus displaying a lower
sensitivity compared with PET, but offering true three-
dimensional (3D) information [34]. PET and SPECT are used
not to localise tumour sites but rather provide information
on metabolic processes including whole-body pharmacoki-
netics [35].

One advantage of SPECT is that multiple molecular
functions can be evaluated by the use of different energy
radioisotopes. For PET, one commonly used tracer is fluo-
rodeoxyglucose (FDG) to explore glycolysis in tumouri-
genesis [36]. Major drawbacks are high costs and the poor
spatial resolution of 1e2 mm3. This disadvantage can be



Figure 1 (A) 3D VCT reconstructions of an osteolytic bone metastasis (a) and angiography of tumour-induced new vessel for-
mation (b) as well as a DCE-CT colour map in axial orientation from the parameter peak enhancement (c). The colour map for DCE-
CT data ranges from red (high values) to blue (low values). (B) Axial MR sections. T2w MRI (a) and DCE-MRI colour maps for
amplitude A (associated with blood volume; b), exchange rate constant kep (associated with vessel permeability; c). The colour
map for DCE-MRI data ranges from red (high values) to blue (low values). Arrows point to bone metastases. From “Multi-modal
imaging of angiogenesis in a nude rat model of breast cancer bone metastasis using magnetic resonance imaging, volumetric
computed tomography and ultrasound” by T. Bäuerle et al, 2012, Journal of Visualised Experiments, 14, p. e4178. Copyright 2012,
MyJoVE Corporation of 1 Alewife Center, Suite 200, Cambridge, Massachusetts 02140. Adapted with permission. 3D Z 3 dimen-
sional; CT Z computed tomography; DCI Z dynamic contrast-enhanced; MRI Z magnetic resonance imaging; VCT Z volumetric
computed tomography.
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overcome by combining mPET with mCT (mPET/CT). The
increased sensitivity of this combination to molecular de-
tails holds several advantages over other methods, mainly
the ability to estimate the activity of osteoblasts and os-
teoclasts within the tissue [37].

In an experimental study [68Ga] DOTA-E-[c(RGDfK)]2 was
shown to be a promising novel PET tracer suitable for the
imaging of avb3 and avb5 integrins which are overexpressed
in bone metastases. The tracer featured rapid and specific
uptake into these metastases and fast blood clearance,
rendering it an interesting target for detection and follow-
up of osseous metastases (Figure 2; [38]).

Optical imaging

Optical imaging is based on the emission of light from
labelled cells or probesdeither bioluminescent or fluores-
cent light.

Bioluminescence imaging is most frequently used for
tracking cancer cells and studying their distribution and
activity in vivo. It is easy to use, cost effective, sensitive,
has a high signal-to-noise ratio, and short acquisition time
[39]. Bioluminescence detects photons emitted by a
biochemical reaction catalysed by luciferase [34]. As lucif-
erase genes are not natively expressed, these models rely on
the use of transgenic cells with luciferase expressed under
specific promoters. For example, in a model with luciferase
under the control of a TGF-b-responsive promoter, activa-
tion of TGF-b during the development of bone metastases
was demonstrated by increased luciferase activity [40]. Due
to low-signal intensity, the technique is still restricted to
small animals and remains superficial in larger objects [34].

Fluorescence imaging detects emitted light subsequent
to excitation by light of a specific wavelength. Markers for
this technique are fluorescent proteins or fluorochromes
targeted to specific cell compartments or molecules (e.g.,
receptors). As tissue penetration is higher in the far-red or
near-infrared, fluorescent substances have to be in these
regions for deeper noninvasive imaging of small animals
[41].

For optical imaging applications, Zaheer et al [42]
introduced the bisphosphonate pamidronate covalently
coupled to a near-infrared fluorophore, and subsequent
studies proved that osteoblast activity can be monitored



Figure 2 (A) Three-dimensional volumetric computed tomography reconstruction of the pelvis and the hind legs of the same
animal (upper reconstruction: anterior-posterior; lower reconstruction: posterior-anterior); (B) coronal mPET image (single frame)
of a nude rat bearing a bone metastasis after the injection of [68Ga] DOTA-E-[c(RGDfK)]2. From “A novel PET tracer for the imaging
of alphavbeta3 and alphavbeta5 integrins in experimental breast cancer bone metastases,” by U. Mühlhausen et al, 2011, Contrast
Media & Molecular Imaging, 6, p. 413e20. Copyright 2011, John Wiley and Sons. Reprinted with permission. Bm Z bone metastasis;
bl Z bladder; CT Z computed tomography; kd Z kidneys; PET Z positron emission tomography.
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using near-infrared fluorophore-tagged bisphosphonate
[43]. This study, moreover, employed fluorescence
molecular tomography resulting in true 3D images. Addi-
tionally, several bone-specific probes have been developed
commercially including fluorescently labelled bisphospho-
nates, which are incorporated at skeletal sites with high
turnover, e.g., during cancer-induced bone remodelling
[43].

Another technique referred to as quantum dots includes
the coupling of fluorescent particles to antibodies, e.g., for
detection of cell surface markers [44]. However, these
probes tend to have high background levels due to the
presence of unbound probes. A smart probe is a cleavable
probe providing information on enzyme activity. The enzyme
substrate is coupled to a fluorophore, which is quenched due
to the close localisation of these two components. Upon
cleavage, the fluorophore is released and can be detected.
For example, the smart probe prosense can be used to
visualize cathepsin-K activity which is significantly higher in
osteolytic bone lesions and sites of resorption [43]. Other
smart probes allow for visualisation of matrix metal-
loproteases, which are important for cancer cell motility and
invasion [45], or for targeting integrins [46].

Clinical imaging

SS

SS is a common technique for the detection of bone me-
tastases and has been used for decades to detect bone le-
sions of osteotropic tumours (e.g., breast, prostate,
thyroid, and kidney cancer). SS utilizes technetium-99m
bound to bisphosphonates such as methylene diphospho-
nate [(99mTc) MDP], hydroxymethylene diphosphonate, or
dicarboxypropane diphosphonate to visualise increased
osteoblastic activity and skeletal vascularity [47]. Thus,
rapid whole-body imaging for screening of metastases is
feasible at relatively low costs.

For the assessment of disseminated metastatic skeletal
lesions, SS was successfully applied and shown to correlate
with prognosis as well as treatment response [48]. Response
evaluation though is limited due to a lack of sensitivity,
specificity, spatial resolution, and the delay of changes
compared with clinical parameters [16]. Computer-assisted
SS image analysis can optimize SS assessment by deter-
mining the percentage of positive areas in scintigraphy
(%PABS). The importance of %PABS as a prognostic indicator
can be seen in survival curves, in patients with > 25%
decline in %PABS after therapy surviving longer than those
with less decline [48].

As a major drawback, lytic lesions or rapidly growing
lesions with thus reduced osteoblastic activity feature little
or no uptake and cannot sufficiently be assessed with SS
[49]. However, increased osteoblastic activity due to the
formation of new bone causes a “flare phenomenon”
evident 4e12 weeks from therapy onsetdthis phenomenon
has been described in 6e25% of patients with prostate
cancer metastases and in 33% of patients with treated
breast cancer metastases [50]. Whereas the flare phe-
nomenon is rather a sign of treatment response, it might be
misinterpreted as disease progression [51]. A solution to
avoid misinterpretation of the flare reaction is to wait 6
months (according to MDA criteria) before evaluating a
response [52], hampering the possibility of an early
response assessment.



Figure 3 Bone metastases of a neuroendocrine tumour in the
thoracolumbar spine, coronal reconstructions. (A) PET-CT, with
the CT component in bone window (a) exhibiting only decent
sclerosis of the metastatic lesions, [68Ga] DOTATATE PET (b)
and fused image (c). (B) PET-MRI with a T2w MRI sequence (a),
[68Ga] DOTATATE PET (b) and fused image (c). Note the signal
alteration of the metastases in the vertebral bodies on T2w
images with different tracer uptake on PET. CT Z computed
tomography; MRI Z magnetic resonance imaging;
PET Z positron emission tomography.
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Apart from the flare reaction, other false positive SS
results are obtained due to increased tracer accumulation
in fractured bone, Paget’s disease, or inflamed areas [53].
As an additional drawback, no information on anatomical
structures adjacent to bone is retrieved with SSde.g., it is
not possible to evaluate the spinal canal in patients with
vertebral metastases and the soft tissue component of bony
metastases, which in many cases exceeds the size of the
bony lesion.

Conventional radiography

Conventional radiography (CR) using X-rays may be useful
as a complement to SS in atypical findings, or to assess the
osteolytic or osteoblastic nature of a lesion and the frac-
ture risk, as it is able to display osteolytic lesions as areas of
reduced density and osteoblastic lesions as areas of
increased intensity without providing information on the
tumour itself.

Whereas SS is sensitive, lesions are sufficiently visible
with CR only when their bone loss exceeds 50% [12]. Signs of
treatment response in metastatic lesions are the evolve-
ment of a sclerotic rim, lesion fill-in, formation of blastic
bone, or in highly responsive patients complete fading of
the lesion [54]. Nonetheless, increasing bone density is
seen in responding patients as well as in patients with
progressing osteoblastic lesions, rendering response evalu-
ation difficult [55]. Due to the low sensitivity of CR, changes
are often not seen until 3e6 months after therapy initiation
[55] and sometime even absent despite clinical improve-
ment [14].

CT

CT offers higher sensitivity compared with CR, as it lacks
superposition of anatomical structures along with higher
spatial resolution of morphological details. In addition, CT
allows for 3D volume rendering and windowing to adjust
bone and soft tissue contrast, which makes CT especially
superior to CR in the evaluation of tumours of the spine
(Figure 3) [56]. Bone metastases can be assessed in the
state of bone marrow infiltration prior to evident bone
destruction [57], and in more advanced disease stability
and fracture risk can be evaluated [58].

As in CR, fill-in or fainting of lesions indicates therapy
response, whereas an increase of the lesion size suggests
disease progression.

Interestingly, it was reported that directly after
completion of radiotherapy bone density decreased by 25%
in 19 patients with vertebral metastases, followed by a
significant increase of 61% after 3 months and reossification
being accompanied by pain relief [59].

An increase in size of osteolysis in previously sclerotic
lesions or an increase in soft tissue extension are reliable
signs of disease progression [14]. A lack of changes or the
appearance of new sclerotic lesions have to be considered
more cautiously in terms of response evaluation [14].

CT is superior to CR as responses after chemotherapy
and hormonal treatment of breast cancer patients with
bone metastases concurred in 65% of patients with clinical
parameters, whereas CR results concurred in only 35% of
patients [60]. Furthermore, whole body imaging of the
skeleton can be performed in a low-dose technique in a
fraction of the time needed for a CR survey. Dose saving
techniques, such as automatic tube current modulation,
can reduce radiation exposure by 10e68% [61]. Further
improvements are forthcoming by the increasing use of
iterative reconstruction algorithms. Additionally, CT ex-
aminations of the thorax, abdomen, and pelvis are in many
cancer patients repeatedly performed for visceral lesion
detection and follow-up, thus offering a nonsuperimposed
acquisition of the bones, particularly spine and pelvis.
MRI

MRI offers a sensitivity and specificity of 70e100% for the
detection of bony metastases. A meta-analysis of patients
with bony metastases of breast cancer described a pooled
sensitivity for MRI of 97%, significantly higher than for FDG-
PET (83%) and SS (87%). The pooled specificity values for
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MRI (97%) and FDG-PET (95%) were both significantly higher
than for SS (88%) [62]. It is, moreover, considered at least as
sensitive as CT, SS, or CR [63].

MRI is especially useful for evaluation of bone marrow
infiltration [64] with excellent negative and positive pre-
dictive values [65] using T1-weighted spin-echo and fat-
suppressed short tau inversion recovery sequences. Due to
the high soft tissue and bone marrow contrast, MRI is su-
perior to CT in defining soft tissue components of bony
metastases [66] according to RECIST with a study leading to
almost twice as many patients that could be classified via
RECIST (73% vs. 37%) [67]. In terms of whole body imaging,
MRI is superior to CT in staging patients with bone marrow
lesions and multiple myeloma [68].

MRI, moreover, allows for the assessment of complica-
tions such as spinal cord or nerve compression with further
impacts on clinical management [69]. Additionally, where
pathologic fractures are an obvious sign of disease pro-
gression, benign osteoporotic fractures may also occur
during the course of disease. By conventional methods,
such fractures could be misinterpreted as disease progres-
sion, while MRI can prove their benign origin. The possibility
of imaging cortical bone is limited due to its very short T2
relaxation time.

The application of a contrast agent along with dynamic
sequences (dynamic contrast-enhanced MRI, DCE-MRI) fa-
cilitates the discrimination between viable and necrotic
tumour masses. The DCE-MRI parameter amplitude-A re-
flects blood volume and was proven to be an early indicator
of treatment response in antiangiogenic therapies, even
before a change in morphology was observable [26].
Amplitude-A was moreover identified as a statistically sig-
nificant variable of event-free survival in patients with
multiple myeloma [70] and correlated to vessel density in
histology [71]. Both DCE-MRI parameters, amplitude-A and
the exchange rate reflecting vascular permeability (kep)
were significantly higher in lesions with marked bone
marrow infiltration than in lesions with mild or no infiltra-
tion [71], and kep was significantly decreased in myeloma
patients after antiangiogenic therapy in combination with
chemotherapy [72]. DCE-MRI, however, is not relevant for
the detection and whole-body assessment of metastatic
disease, as anatomic coverage is limited. Furthermore,
standardisation across different platforms and institutes is
challenging [52].

Diffusion-weighted imaging (DWI) depends on the
microscopic mobility of water. The so-called Brownian
motion is resulting from thermal agitation of water mole-
cules and is highly influenced by the cellular microenvi-
ronment of tissues. DWI has been linked to cancer
aggressiveness, although the biophysical reasons for this
are incompletely understood.

In terms of screening and staging, DWI featured poor
specificity and a low positive predictive value for the
detection of tumour involved lymph nodes and bone me-
tastases in a study including 20 breast cancer patients [73],
but proved to be superior to SS and PET in prostate cancer
[74]. DWI, nonetheless, has the potential to predict re-
sponses to chemotherapy and assess treatment responses
before a reduction in tumour volume becomes visible [75].
Changes in the corresponding apparent diffusion coefficient
(ADC) values were shown to be early indicators of therapy
response. In prostate cancer bone metastases, variations in
ADC were seen 2 weeks after androgen blockade with CT,
SS, and conventional MRI showing no significant differences
at the same time [75]. However, a rat model of bone me-
tastases from breast cancer showed no significant changes
in ADC in treated rats compared with untreated animals
[26]. A clinical study in prostate cancer patients observed
an ADC increase in responders, but some lesions in both
responders and progressors demonstrated an ADC decrease
beyond the limits of reproducibility [50].

These inconsistent and somewhat confusing results on
DWI suggest a certain heterogeneity of ADC changes
possibly due to cancer subtype and composition of bone
marrow, leading to a lack of specificity of DWI and
emphasising the need for additional morphologic sequences
[74]. In addition, more recently presented analysis methods
(AC parametric response functional diffusion map) take
spatial information and tumour heterogeneity into account,
enable careful voxel-by-voxel follow-up of treatment-
induced changes, and thus an evaluation of the propor-
tion of tumour tissues with significant changes [76].

SPECT

SPECT uses similar radiotracers as SS, but offers higher
sensitivity due to its tomographic imaging capabilities [77].
It is thus especially useful in areas of complex anatomy or
bones extensively surrounded by soft tissue such as the
thoracolumbar spine or the pelvis. The main limitation of
SPECT is the lack of absolute quantification compared with
PET, which renders it a less favourable tool in evaluating
therapy response.

PET

As PET utilizes the uptake of positron-emitting radiophar-
maceuticals, [18F] fluoride as a nonspecific bone tracer or
[18F] FDG are mostly used to evaluate bone metastases. The
mechanism of [18F] fluoride is based on diffusion of the
tracer molecule through capillaries and the formation of
fluoroapatite at the bone surface in areas where remodel-
ling is pronounced [78]. FDG is taken up by most tumours
and their metastases including bone metastases with the
uptake reflecting metabolic activity. For this reason, some
slowly growing tumours (e.g., neuroendocrine and prostate
tumours) cannot be detected by FDG. However, FDG is a
convenient tracer for the detection of osteolytic metasta-
ses with little osteoblastic activity and has been shown to
be superior to SS [79] and SPECT [80] in these cases, but less
sensitive for osteoblastic metastases. In predominantly
sclerotic prostate cancer metastases [99mTc] MDP-
scintigraphy has been shown to be advantageous over
FDG-PET [81].

An important drawback of FDG-PET is the unspecific
uptake by muscle, inflammation, bowel, and blood pool
activity in great vessels [82]. Other false positive results
may derive from therapies involving the application of
granulocyte colony-stimulating factor, e.g., during chemo-
therapy. The resulting increase of FDG uptake by hyper-
plastic bone marrow can mimic diffuse bone marrow
infiltration by tumour [83]. Importantly, this interference
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has not been described with [18F] fluoride-PET, encouraging
its use in patients under chemotherapy along with gran-
ulocyte colony-stimulating factor [84]. [18F] Fluoride-PET
has also been shown to detect some lytic and early
marrow-based metastases [85] as well as sclerotic lesions
due to prostate cancer metastases [86] that could both not
be identified by [99mTc] MDP-SS. Nonetheless, the usage of
[18F]-FDG might be more attractive in certain situations,
since uptake of this radiotracer resembles the mass of
viable tumour cells, whereas [18F] fluoride is rather
reflecting the extent of bone reaction [12].

Depending on the primary tumour, some dedicated ra-
diopharmaceuticals can be used for specific imaging as
well. Concerning neuroendocrine tumours, [68Ga] labelled
peptides like DOTATOC or DOTANOC are used (Figure 3)
[87]. DOTATOC however showed no advantage over con-
ventional anatomic imaging, although it detected new
metastases earlier during therapy [88].

[18F] fluorothymidine is a biomarker reflecting cell pro-
liferation with a good correlation between uptake in breast
cancer and the Ki-67 labelling index [89]. In comparison to
FDG, [18F] fluorothymidine was shown to exhibit stronger
correlation to outcomes [90] and a potentially predictive
role at an even earlier time point during chemotherapy
[91]. 16-alpha-[18F] fluoroestradiol or progesterone allows
for specific imaging of receptor-positive breast cancer
metastases with low 16-alpha-[18F] fluoroestradiol uptake
in tumour lesions showing a strong predictive value for the
failure of antihormonal therapy [92]. These results also
support future trials to reassess oestrogen receptor
expression in metastases in a noninvasive manner, e.g., in
patients that cannot be biopsied. It is a valuable tool in
differentiating between benign and malignant lesions and
between metastases from different tumour types [93].

In a feasibility study in HER2-positive metastatic breast
cancer patients [89Zr] trastuzumab was proven to effec-
tively visualise HER2-positive lesions including bone me-
tastases [94].

Another example is the prostate-specific membrane
antigen PET with a [68Ga] labelled small molecule antago-
nist against the prostate specific membrane antigen. This
antigen is expressed intracellularly by prostate cells but
becomes extracellularly located during malignant trans-
formation of prostate cells. The receptor density shows a
positive correlation with the tumour grading leading to
higher tracer uptake in dedifferentiated malignancies [95].
Compared to the established [18F] choline PET/CT,
prostate-specific membrane antigen PET/CT showed a
significantly higher detection rate of prostate cancer le-
sions overall and also at low prostate specific antigen levels
[96].

PET moreover allows for absolute quantification with the
standardized uptake value (SUV) quantifying the tracer
uptake of target lesions. SUVmax in this context is the value
limited to the most active voxel and is highly reproducible
across observers. In breast cancer patients with dissemi-
nated bone metastases the change in pre- to posttreatment
SUV values correlated strongly with both clinical response
and percentage change in tumour marker value [97], with
30e54% decreased values in responding sites versus
marginally or unchanged values in nonresponding lesions
[98]. The parameter Ki indicates regional clearance of [18F]
fluoride from blood plasma to bone mineral and was shown
to be three times higher in metastatic lesions compared
with adjacent unaffected bone [78]. The already described
flare phenomenon following (hormonal) therapy can also be
observed in PET and is an indicator of early therapy
response [99].

The European Organisation for Research and Treatment
of Cancer defined criteria for the quantitative assessment
of metastatic lesions using PET [100]. These criteria and the
PET response criteria in solid tumours [36] yield very similar
results in terms of response classification of patients [101].

Hybrid techniques

The combination of imaging techniques such as PET/CT,
SPECT/CT, and PET/MRI allows for the fusion of comple-
mentary images and adds specificity to the assessment of
metastatic lesions compared with either modality sepa-
rately. SPECT-guided CT was able to clarify > 90% of SPECT
findings classified as indeterminate in an analysis that was
masked as to clinical pretest probability and the planar
scan findings [102]. PET/CT assessment of bone metastases
revealed an increase in CT attenuation and decrease in SUV
as potential predictors of early therapy response [103].
Interestingly, CT attenuation and SUV showed a significantly
negative correlation. The additional benefit of hybrid im-
aging mainly derives from the combination of the assess-
ment of tumour cells by PET metabolically and the
assessment of bone structure by CT in a microanatomic
manner (Figure 3).

Comparing [18F] FDG PET/CT with SS, the hybrid tech-
nique was shown to be superior in evaluating bone metas-
tases of hematologic malignancies [104], as well as head
and neck cancers [105]. In a study with 39 breast cancer
patients with bone metastases, overall sensitivity and
specificity for [18F] fluoride PET were 91% and 91%,
respectively, compared to 77% and 93%, respectively, for
CT. The integrated assessment ([18F] fluoride PET/CT)
yielded a combined sensitivity of 98% with a corresponding
specificity of 93% [106]. Newly introduced methods allow
for absolute quantification in SPECT/CT. Based on the CT
derived attenuation correction local tracer uptake in kBq/
mL and in addition body weight normalised SUV values can
be calculated [107]. The published data to date regarding
SS showed a high correlation to uptake measured with [18F]
fluoride PET [108].

Conclusion and future directions

Multimodal imaging of bone metastases facilitates the
assessment of various parameters and biomarkers on a
morphological, functional, and molecular level. A major
challenge for detection, follow-up, and molecular charac-
terisation of skeletal metastases is the appropriate choice
of imaging modality and technique, respectively.

Animal models of bone metastases are helpful for the
evaluation of novel imaging techniques to be correlated
with histology, which in most cases is not applicable in
patients. In particular, monitoring growth of metastases
longitudinally and therapy response assessment in animal
models is essential for further improvement of imaging
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techniques and parameters, e.g., in regard to the respec-
tive therapy mechanism. While some clinically applied im-
aging techniques can be back-translated for optimisation
and histologic correlation in animal models, such improved
imaging methods can subsequently find their way back into
clinical application. Thus, preclinical modelling of meta-
static skeletal disease is an important part of the devel-
opment of novel and improved imaging techniques.

The most frequently applied clinical classification sys-
tem for treatment response assessment is RECIST. To
further improve the therapeutic response evaluation of
skeletal metastases there is urgent need for inclusion of
more sophisticated morphological and functional criteria,
e.g., to specifically assess responses to targeted therapies.
These might include quantitative measurements of bone
density and MRI-derived signal intensity to improve accu-
racy and objectivity [109]. Moreover, metastatic bone le-
sions are mainly measured unidimensionally. With the
increasing spatial resolution of almost all imaging tech-
niques, in particular contemporary CT scanners offering
isotropic or near isotropic resolution, lesion measurement
in three dimensions, and evaluating changes in lesion vol-
ume rather than lesion diameter might provide an easy-to-
apply and sensitive way for earlier detection of therapy
response or failure. Further value could be added by
automatic pattern and contour recognition algorithms,
allowing for higher interobserver agreements in longitudi-
nal evaluations. Regarding functional imaging, DCE-MRI and
DWI are promising techniques that will need further im-
provements in terms of standardised data acquisition and
quantification of parameters to reliably assess treatment
response.

Even with modern imaging techniques, early detection
of bone metastases remains challenging. Nuclear medicine
techniques such as SS, SPECT, or PET are highly sensitive for
this purpose, but feature major drawbacks in terms of
lesion follow-up and response quantification. Therefore, for
detection as well as follow-up of metastases, hybrid im-
aging with PET/CT or PET/MRI holds great potential as it
provides quantifiable functional or metabolic parameters as
well as molecular information in combination with the
anatomical information provided by CT and MRI.

Concerning the choice of radiotracers [18F] fluoride is
currently very promising for this purpose due to facilitating
early identification of skeletal metastatic lesions, stronger
tracer accumulation in the skeletal system as compared
with [99mTc] MDP and easy patient preparation (no limita-
tions to diet or physical activity required and the possibility
of conducting the scan regardless of glucose concentration
in the blood) [110]. The recently established quantitative
SPECT/CT and multimodal reconstruction algorithms have
yet to be transferred into clinical routine and further
studies are needed. Molecularly specific tracers allow for
non-invasive assessment of receptor status in disseminated
lesions as discordances between primary tumour and me-
tastases occur in up to 40%, which necessitates therapy
adjustments. Thus, guidelines advise reevaluation of re-
ceptor status in metastatic patients using biopsies, which
could be performed alternatively by imaging [111].

In summary, imaging is indispensible in bone metastasis
detection, follow-up, and molecular characterisation.
Evaluating disseminated osseous lesions remains
challenging due to the complex morphology, slow meta-
bolism, and heterogeneity on the molecular level. These
issues might be overcome by advanced and optimised im-
aging techniques, as well as by the suitable combination of
respective modalities, in terms of multiparametric and
multimodal imaging.
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