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Dengue is considered the most important emerging, human arboviruses, with worldwide
distribution in the tropics. Unfortunately, there are no licensed dengue vaccines available or
specific anti-viral drugs.The development of a dengue vaccine faces unique challenges.The
four serotypes co-circulate in endemic areas, and pre-existing immunity to one serotype
does not protect against infection with other serotypes, and actually may enhance severity
of disease. One foremost constraint to test the efficacy of a dengue vaccine is the lack
of an animal model that adequately recapitulates the clinical manifestations of a dengue
infection in humans. In spite of this limitation, non-human primates (NHP) are considered
the best available animal model to evaluate dengue vaccine candidates due to their genetic
relatedness to humans and their ability to develop a viremia upon infection and a robust
immune response similar to that in humans. Therefore, most dengue vaccines candidates
are tested in primates before going into clinical trials. In this article, we present a compre-
hensive review of published studies on dengue vaccine evaluations using the NHP model,
and discuss critical parameters affecting the usefulness of the model. In the light of recent
clinical data, we assess the ability of the NHP model to predict immunological parameters
of vaccine performances in humans and discuss parameters that should be further exam-
ined as potential correlates of protection. Finally, we propose some guidelines toward a
more standardized use of the model to maximize its usefulness and to better compare the
performance of vaccine candidates from different research groups.
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CURRENT STATE OF THE NHP MODEL TO EVALUATE DENGUE
VACCINE CANDIDATES, USEFULNESS AND LIMITATIONS
Non-human primates (NHP) have been used to model a num-
ber of human infections and diseases, based on their genetic,
physiological, and immune similarities with humans. In the case
of dengue, NHP are the only natural vertebrate hosts besides
humans susceptible to infection with the four serotypes of dengue
viruses (DENV1–4). A number of species of NHP are infected in
the wild by sylvatic DENV strains and experimentally by human
clinical isolates without the need for virus adaptation [reviewed
in Ref. (1, 2)]. A major limitation of this model for the study
of dengue pathogenesis and vaccine efficacy evaluations is that
the outcome of infection is subclinical in most instances (3),
and does not recapitulate the symptoms seen in patients with
dengue fever (DF) and dengue hemorrhagic fever and shock syn-
drome (DHF/DSS). Nevertheless, important similarities make it
the best available model to evaluate vaccine immunogenicity and
protective efficacy. Virus replication in NHP results in a periph-
eral viremia, with similar onset and duration to that reported
in humans, although lower in magnitude. The induction of a
robust neutralizing antibody (NAb) response and cellular immune
responses also parallels the human immune response to dengue
infection.

Two comprehensive reviews have been published recently on
NHP as a potential model for dengue pathogenesis (2) and NHP
infected with dengue in natural settings (1). Therefore, those topics
will not be included here.

To date, in the absence of defined correlates of protection, the
induction of NAbs and a significant reduction of post-challenge
viremia in monkeys have been considered the closest predictors
of vaccine immunogenicity and protective efficacy in humans.
Therefore, the NHP model has been used for screening vaccine
candidates, optimizing immunization strategies, and selecting the
candidates with the best potential to work in clinical trials (4–
7). Here, we present a comprehensive review of published studies
on dengue vaccine evaluations using the NHP model (Table S1 in
Supplementary Material). These include live-attenuated virus vac-
cines (LAV) attenuated by chimerization with yellow fever virus
(8–15), by 3′ non-coding region (NCR) mutations (16–22), by
chimerization with attenuated DENV (23–26), by serial passages in
cell culture (27–29), by host range mutations (30, 31), or by muta-
tions of a viral enzyme (32). Other vaccine platforms tested in NHP
are DNA vaccines (33–39), inactivated virus vaccines (40–42), viral
vectored vaccines (43–46), subunit protein vaccines (47–55), and
prime/boost platforms (42, 43, 56, 57). A number of vaccine candi-
dates tested in NHP have now been evaluated in humans, and data
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are available for safety and immunogenicity in phase I/II clinical
trials (4, 19, 58–79), and efficacy for the leading vaccine candidate,
Sanofi’s CYD1–4 (80, 81) (Table 1). In the light of clinical data,
here we reassess and discuss the current state of the NHP model, its
usefulness, limitations, and its predictive value, suggesting guide-
lines for the improvement of the model and the development of
new reagents and standardized protocols.

EVALUATION OF ATTENUATION AND DOWN-SELECTION OF
MONOVALENT COMPONENTS
One of the challenges of developing LAV vaccines is that each
serotype component must be sufficiently attenuated relative to
the parental strain, while maintaining adequate immunogenicity
(NAbs). NHP have been used successfully to screen live-attenuated
monovalent (MV) vaccine components for a balance between
attenuation and immunogenicity. For example, Eckels et al. eval-
uated vaccine strains at different stages of attenuation by serial
passages in PDK cells by screening for reduced viremia compared
to parental strains while conserving immunogenicity (27). Down-
selection from a number of starting candidates was achieved, and
infectivity in NHP was useful to predict human reactogenicity and
infectivity (82). Similarly, developers of a recombinant live atten-
uated dengue vaccine at the National Institutes of Allergy and
Infectious Diseases (NIAID) used the NHP model to screen many
MV live vaccine candidates attenuated by engineering specific
attenuating deletions in the 3′NCR and/or by chimerization, ruling

out several candidates that were either under- or over-attenuated,
and identifying those with the most favorable attenuation and
immunogenicity profile for further evaluation in clinical trials (4,
17, 18). Two recombinant DENV2 live-attenuated vaccine can-
didates (NIAID) with different degrees of attenuation have been
characterized in both rhesus monkeys and humans for attenua-
tion and NAb titers. The replication and immunogenicity patterns
seen in NHP mimic closely those in humans (63), with one of
the strains showing higher percentage of subjects with viremia
and higher mean viremia titers (under-attenuated strain) in both
species.

Although this model establishes general safety of dengue vac-
cine candidates, and can predict attenuation based on relative
replication and viremia, the absence of human like symptoms
limits its ability to show dengue-specific safety.

A number of non-replicating (based on DNA, inactivated virus,
or subunit protein) and non-propagating (based on virus vectors)
dengue vaccines candidates also have been tested in NHP for selec-
tion of antigens and antigen doses with best immunogenicity, and
for the comparison and selection of vaccine adjuvants (Table S1
in Supplementary Material).

RELATIVE IMMUNOGENICITY AND SEROTYPE INTERFERENCE IN
TETRAVALENT FORMULATIONS
Another challenge for the development of dengue vaccines is
the need to induce equivalent and long-lasting immunity to all

Table 1 | Dengue vaccine candidates in clinical development: NHP and clinical studies.

Vaccine type Vaccine developer(s) Pre-clinical studies in NHP Clinical studies

Study type Reference Study type Reference Current Status

Live attenuated WRAIR/GSK MV (S, I) (27) MV (S, I) phase I (59, 60, 69, 82) Not being tested

TV (S, I, P) (29) TV (S, I) phase I (66, 79)

TV (I, P) (28) MV, TV (S, I) phase I (78)

TV (S, I) phase I/II (77)

Acambis/Sanofi Pasteur MV (S, I, P) (13) TV (S, I) phase I (68, 74, 76) In phase III

MV, TV (S, I) (10, 11) TV (S, I) phase II (61, 70, 71)

TV (S, I, P) (12) TV (S, I, E) phase lIb (81)

MV, TV (I) (14) (S, I, E) phase III (80)

TV (I) (8)

NIAID, NIH/Merck MV (S, I) (21, 22) MV (S, I) phase I (4, 19, 63–65) In phase II

MV (S) (19) TV (S, I) phase I (62)

TV (S, I, P) (16)

MV (S, I, P) (17, 18)

CDC/Inviragen/Takeda TV (S, I, P) (26) TV (S, I) phase I (75) In phase II

TV (S, I, P) (23)

Inactivated virus WRAIR/GSK MV (I, P) (41, 42) In phase I

Subunit (rE) Hawaii Biotech/Merck MV, TV (I, P) (51) In phase I

DNA NMRC MV (I, P) (33, 34, 36, 38, 39) MV (S, I) phase I (58) In phase I

TV (I, P) (35)

MV, monovalent; TV, tetravalent; S, safety; I, immunogenicity; P, protection; E, efficacy in humans; WRAIR, Walter Reed Army Institute of Research; GSK, Glaxo-

SmithKline; NIAID, National Institutes of Allergy and Infectious Diseases; NIH, National Institutes of Health; CDC, Center for Disease Control; NMRC, Naval Medical

Research Center.
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four serotypes, due to the theoretical enhanced risk of severe
disease if incomplete immunity is induced. The NHP model has
been used to study serotype interference and relative immuno-
genicity of tetravalent (TV) vaccine components, guiding the
identification of more balanced formulations and immunization
strategies to minimize interference. In several instances, rela-
tive serotype dominance seen in NHP has been predictive of
how the vaccine performs in the clinics, suggesting the poten-
tial for this model to predict when a candidate vaccine will
induce unbalanced immunogenicity before going to clinical tri-
als. Some examples are presented below. Guy et al. examined
interference among the four serotypes of the CYD vaccine when
present in equal concentrations (TV-5555) within the TV for-
mulation in cynomolgus macaques (14) (Table S1 in Supple-
mentary Material). NAb induced by each MV component was
compared to that in the TV formulation. Interference was iden-
tified after the first and second immunizations, being serotype
4 the dominant and serotype 2 the weakest. Although each MV
vaccine was immunogenic after one dose, the hierarchy of NAb
titers observed for the MV vaccines was amplified in the TV
mix (DENV4 > DENV1 > DENV3 > DENV2). Two phase I clin-
ical studies in naïve human volunteers vaccinated with TV-CYD
show dominance of serotype 4 as shown in NHP, while DENV1,
a close second in NHP, induced the lowest titers in humans (74,
76). Monkeys receiving a second dose of CYD1–4 several months
after the first dose developed a >fourfold anamnestic response to
DENV1, 2, and 3, while NAbs to DENV4 were not boosted (14).
Similarly, humans that received a second dose of the same vac-
cine CYD1–4 six months after the first one, produced anamnestic
NAbs to DENV1, 2, and 3 but not to DENV4 (74), suggest-
ing in both cases a robust sterilizing immunity to the dominant
serotype 4 component. Potential approaches to minimize serotype
interference were identified in macaques, by either separating the
delivery of the four components in time and in anatomical sites
of injection, or by adjusting the doses of each component (14).
However, the lack of protection data from this study has limited
its utility.

Serotype interference was also identified in different formu-
lations of the LAV DENVax developed by CDC/Inviragen/Takeda
when tested in cynomolgus macaques. When the components were
present at the same concentrations, either low (TV-3333) or high
(TV-5555), serotype 2 was the strongest and serotype 4 was the
least immunogenic after two immunizations. By adjusting the rel-
ative concentrations (TV-3355), the immunogenicity of DENV4
was improved (26) (Table S1 in Supplementary Material). Results
from ongoing phase I clinical trials (high and low doses) indicate
that NAb levels against DENV2 are the highest and NAb to DENV4
are the lowest of the four serotypes in humans, as seen in macaques
(23, 75). In a third example, the TV-3 formulation of the LAV vac-
cine developed by NIAID (LATV), resulted in robust NAbs to all
4 serotypes after a single immunization both in rhesus macaques
(16) and when tested in flavivirus-naïve adult volunteers (62).

While these examples show some similarities between vaccine
performances in NHP and humans, there are instances when the
data do not agree, and it is unclear at this time whether these dif-
ferences are the result of variability due to the small sample sizes,
or to more fundamental differences between NHP and humans.

As more data becomes available from clinical studies, these issues
will hopefully become clearer.

ASSESSING IMMUNOGENICITY IN NHP
NAb responses to infection and vaccination in NHP
Although NAbs to flaviviruses, including dengue, have been con-
sidered necessary to prevent infection and/or disease, and required
for vaccine efficacy (6), researchers are re-examining whether
Ab is the best predictor of protection, and how to best mea-
sure antibody-mediated neutralization in vitro. This has been
prompted by recent clinical findings where protection against
DENV2 infection was not provided despite the presence of high
NAb levels (80, 81).

Similarities in the humoral response after primary and sec-
ondary dengue infections between NHP and humans support the
use of this model for evaluations of vaccine-induced Ab responses.
Like humans with primary dengue infection or immunized with
a MV vaccine, a number of NHP species can mount robust
long-lasting serotype-specific NAbs responses that prevent re-
infection with the same serotype, and short-lived cross-protective
NAbs (83–88). Koraka et al. showed that the level and dura-
tion of viremia, and the kinetics and magnitude of Ab responses
observed in experimentally infected macaques were similar to
those observed in most uncomplicated human dengue infections,
and that Abs measured were largely cross-reactive (88). Upon
secondary infection, or immunization with multivalent vaccines,
NHP show a broad NAb response to multiple serotypes (88). Sec-
ondary infection with DENV3 following a DENV1 infection sug-
gested the phenomenon of original antigenic sin (89) in macaques
for that sequence of infections (88).

Recent studies point to potential similarities in the quality
of the induced NAbs in NHP and humans. In-depth charac-
terization of the primary response in NHP reveals that unlike
mice but similar to humans (90), NHP produce serotype-specific
NAbs that predominantly bind to sites other than domain III on
the E glycoprotein (EDIII) (46). Interestingly, there is evidence
that the nature of the DENV antigen modulates the NAb tar-
geting. For example, soluble E ectodomain expressed using an
alphavirus-vectored vaccine (VRP) induces in NHP NAbs that
bind predominantly to EDIII, while VRP expressing prME sub-
viral particles induce in NHP predominantly non-EDIII binding
antibodies (46). A recent study on epitope targeting using an epi-
tope transplantation approach showed that the E domain I/II hinge
region of DENV3 and DENV4 is the primary target of long-term,
serotype-specific NAbs in humans and in rhesus macaques after
primary infection (91). One implication of these observations is
that the quality of the NAb response in NHP and humans may
be different between vaccines based on live-attenuated virus or
inactivated virions and protein subunit vaccines, and the NHP
model may be able to predict these specificities. These differ-
ent vaccine platforms need to be tested in NHP and in humans
in order to help answer the question of what region(s) on E
protein are targeted by NAbs induced by a successful dengue
vaccine.

The genotypic breadth of vaccine-induced NAb responses is an
important Ab quality to examine, since some vaccine antigens may
have a narrower set of serotype-specific epitopes that may affect the
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breadth of the protective immunity. Recent studies have addressed
the breadth of vaccine-induced NAbs in NHP (8, 16, 46).

NAbs and protection from viremia in NHP
The ability of NAbs to mediate protection in NHP has been shown
by passive transfer experiments (92, 93). Hahn et al. showed that
the infusion of a bivalent monoclonal antibody in NHP was fol-
lowed by subsequent clearance of dengue virus from the vascular
system (92). Lai et al. demonstrated protection against DENV4
challenge in rhesus monkeys by passively transferred humanized
monoclonal antibody (93). In most vaccine studies in NHP, the
presence of pre-challenge NAbs seems to correlate with reduc-
tion or absence of post-challenge viremia. However, a threshold
titer that correlates with protection in NHP has not been iden-
tified, and there are reports of animals with moderate to high
Neut50 titers that show breakthrough viremia (12, 26, 29, 45, 46).
To determine whether combining and analyzing data from several
studies would provide additional insight, we collected data from 10
published studies of dengue vaccine candidates in NHP, and used

them to graph pre-challenge Neut50 titers vs. duration of viremia
(Figure 1). Four graphs were generated, Figures 1A–D, corre-
sponding to protection from viremia after challenges with dengue
serotypes 1–4, respectively. Only studies that reported Neut50 titers
and duration of viremia for individual monkeys were included,
and for each study, data from both immunized and unimmunized
controls were used (12, 26, 29, 40, 43–46, 49, 51). A strong nega-
tive correlation between pre-challenge Neut50 titers and duration
of viremia was observed, with Pearson correlation coefficients (r)
of −0.4453, −0.3367, −0.4182, and −0.3063 for serotypes 1–4
challenges, respectively. A high percentage of animals with titers=
or >20 had no viremic days after challenge (77% for DENV1, 76%
for DENV2, 94% for DENV3, and 72% for DENV4 challenges).

Figure 1 also shows breakthrough viremia for some animals
with Neut50 titers >20, although in most cases the viremia was
of shorter duration. The number of monkey with viremia out of
those with titers of 20 or higher were 10 out of 43 (23%) after
DENV1 challenge, 10 out of 41 (24.4%) after DENV2 challenge, 2
out of 36 (5.5%) after DENV3 challenge, and 7 out of 25 (28%)
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FIGURE 1 | Correlation between pre-challenge Neut50 titers and
duration of post-challenge viremia. Each data point was obtained from 1
of 10 published studies on dengue vaccine candidates tested in NHP. Only
studies that reported Neut50 titers and duration of viremia for individual
monkeys were included, and for each study, data from both immunized and
unimmunized controls were used [Men et al. (44), Guirakhoo et al. (12), Sun
et al. (29), Chen et al. (43), Raviprakash et al. (45), Bernardo et al. (49),
Clements et al. (51), Osorio et al. (26), Maves et al. (40), White et al. (46)].

Data were combined based on the challenge virus serotype into graphs
(A–D), corresponding to serotypes 1–4, respectively, regardless of vaccine
type or whether it was monovalent or tetravalent. Dotted line indicates a
Neut50 titer of 20. Titers below the limit of detection were given a value of
10, whether the limit of detection was 10 or 20. The number of XY pairs with
Neut50 titers <20 or ≥20 are indicated at the top of each graph. Pearson
correlation coefficients (r ) were −0.4453, −0.3367, −0.4182, and −0.3063
for graphs (A–D), respectively.
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after DENV4 challenge. An interesting finding is that the propor-
tion of breakthrough viremia cases after DENV3 challenge was
lower (5.5%) compared to the other three serotypes, suggesting
that a surrogate of protection may be serotype-specific.

The interpretation of these combined data is limited by the use
of a single readout of protection, duration of viremia, and because
different methods to measure viremia were employed. In addi-
tion, differences in the challenge strains and doses probably added
variability to the data, which is evident in the broad range of dura-
tion of viremia in unvaccinated controls (1–8 days). Also, the data
includes MV and TV vaccine studies. In the case of TV vaccine
studies, there are differences in the time between the last immu-
nization and the challenge, which may have affected the levels of
short-lived heterotypic, potentially protective NAbs at the time of
challenge. However, only homologous Neut50 titers are used in the
analysis.

In spite of these caveats, examining the collective data in this
way suggests a strong correlation between NAb titers and protec-
tion in the NHP model, but also indicate that NAb titers >20, as
measured in vitro on epithelial cells, not always prevent challenge
virus replication in the NHP model. This analysis raises interesting
questions. For example, could some cases of breakthrough viremia
be explained by the induction of a qualitatively distinct group of
NAbs that can neutralize infection of epithelial cells in vitro but
not infection of target cells in vivo?

On the other hand, protection from viremia has been shown
in rhesus macaques with poor NAbs (41, 94) or after NAbs have
waned (39), suggesting that other immune mechanisms may play a
role in protection, especially when Abs are suboptimal. This is sup-
ported by studies in mice, where cellular responses were sufficient
to protect from lethal challenge (95).

Current in vitro neutralization assays
Most DENV vaccine pre-clinical and clinical studies reported to
date examine neutralizing activity in serum by measuring in vitro
neutralization on epithelial cells of animal origin (LLC-MK, BHK-
21, Vero), using the standard dengue PRNT assay, originally
described by Russell (96), and recommended by the World Health
Organization (WHO) (97) (Table S1 in Supplementary Material).
Although PRNT is considered the gold standard, its use is not stan-
dardized among labs, and protocol variations in cell lines, PRNT
end point titers, virus passage number, and presence of comple-
ment are known to affect the Ab titer readout (98, 99). Variations
of the PRNT have been developed for higher throughput, reduced
duration and labor, to test against DENV clinical isolates that do
not plaque well, and to measure neutralization in more biolog-
ically relevant cells, like primary human myeloid cells. Alterna-
tive assays include ELISA-based microneutralization (ELISA-MN)
(100, 101), flow cytometry-based assay using Vero cells, or DC-
like cells (46, 102, 103), assays based on FcγR-bearing human cells
(104–106), and a reporter virus based system (107). A comparative
evaluation of MN and DC assays vs. PRNT indicated that the assays
are not always in agreement (106). Recent studies show that NAbs
measured on epithelial cells result in different titers compared to
assays that use FcγR-bearing cells (105, 108, 109).

There is an urgent need for determining what in vitro neu-
tralization assay(s) best correlate with protection in NHP and in

humans, and to minimize assay variation and experimental incon-
sistencies in the in vitro neutralization assay, which have made it
difficult to compare NAb titers among studies.

It is important to note that currently used neutralization assay
cannot determine whether a TV response is generated by four
serotype-specific responses or from cross-reactive short lived and
less protective Abs. Therefore, only by allowing cross-reactive
short-lived antibodies to decay, and confirming TV responses after
6–12 months, will the assay measure truly serotype-specific NAbs.

Cell-mediated immunity
To date, cell-mediated immunity (CMI) is not required for clinical
evaluation of dengue vaccine candidates. However, after results of
the first efficacy study in humans, there is increased interest in
measuring CMI in vaccines tested in clinical trials due to their
potential role in protection (81, 110). There have been a few stud-
ies addressing CMI in NHP after DENV infection and vaccination
(Table S1 in Supplementary Material). These studies have exam-
ined the induction of dengue-specific cytokine-producing cells
from PBMC stimulated with purified DENV or NS1, NS3, or NS5
peptide pools, using ELISPOT or intracellular cytokine staining
(ICS) or cytotoxicity assays (23, 25, 26, 28, 35, 39, 43, 45, 50–52).

Cell-mediated immunity after primary, secondary, and tertiary
experimental infection in cynomolgus macaques has been exam-
ined by Koraka et al. (88). Bulk T-cell-mediated responses were
found against homologous and heterologous viruses even after
primary infection. T-cell-mediated IFNγ production measured
after secondary DENV3 infection following a DENV1 infection
suggest a phenomenon of original antigenic sin, as described after
human infections (111). Mladinich et al. (112) studied the kinetics
of DENV specific T cells in rhesus macaques after primary infec-
tion with DENV2, showing multifunctional CD4+ and CD8+ T
cells specific for NS1, NS3, and NS5. These studies suggest that
infection of NHP with DENV result in CMI that are similar to
those in humans in kinetics and serotype-specificities (110, 113),
and suggest that NHPs may be a useful model to further under-
stand the cellular responses to vaccine candidates and their role in
pathogenesis (88, 112).

Vaccine-induced cellular responses have been studied in NHP
for a few vaccine candidates. Osorio et al. (26) reported that
macaques immunized with TV live-attenuated vaccine DEN-
Vax showed robust numbers of DENV-2-induced IFNγ and IL-2
secreting cells by ELISPOT, when peripheral blood mononuclear
cells (PBMCs) were stimulated using semi-purified concentrated
wt DENV-2. Consistent cytokine-secreting cells stimulated by
DENV1, DENV3, or DENV4 were not observed (26). A study by
Ambuel et al., using ICS and stimulation with NS1, NS3, and NS5
peptide pools, reported that the same DENVax vaccine-induced
CD4+ and CD8+ T cells producing IFN-γ, IL-2, and TNF-α and
targeted the DENV2 NS1, NS3, and NS5 (23). Human T cell
data from clinical trials is pending. A DNA vaccine developed by
the Naval Medical Research Center (NMRC), D1ME100 has been
tested in NHP and in phase I trials (Table S1 in Supplementary
Material). Chen et al. reported dengue-specific T cell responses
in cynomolgus macaques immunized with three doses of a plas-
mid DNA vaccine expressing DENV1 prME (43). The cellular
responses were measured by stimulating PBMC from immunized
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animals with purified DENV1 and measuring IFNγ secreting cells
by ELISPOT. When the prototype DENV1 DNA vaccine D1ME100
was tested in humans at high and low dose using biojector2000 to
deliver, T-cell IFNγ responses were detected after three immuniza-
tions in 50 and 83% of subjects in the low (1 mg) and high (5 mg)
dose groups, respectively (58).

In summary, measuring CMI is complex and requires careful
sample collection and storage, and standardization of assays and
antigens used to stimulate immune cells. Like the NAb assays,
CMI assays lack standardization of critical reagents and methods.
Semi-purified DENV as stimulating antigen does not result in
optimal T-cell responses. While peptide arrays for a subset of viral
proteins and serotypes are now available through BEI Resources,
other antigens/peptide arrays should be developed and validated.
Tracking specific CD4+ and CD8+ T-cell responses has been dif-
ficult due to a lack of mapped epitopes and associated reagents
within the macaque model. Mapping DENV specific CD4+ and
CD8+ T-cell responses in NHP and producing MHC:peptide
tetramers would greatly advance this model and accelerate the
pace of dengue virus vaccine development. The availability of
these reagents would allow performing more in-depth analysis
of vaccine-induced CD8+ T-cell responses that may be critical for
the success of future dengue virus vaccines.

THE NHP DENGUE CHALLENGE MODEL
In the absence of dengue-induced disease in NHP, viremia is mea-
sured post-challenge as a surrogate of protection. Even though
it is not required by the Food and Drug Administration (FDA),
to date all dengue vaccine candidates in clinical trials have previ-
ously shown efficacy in NHP (114). However, results of the lack
of protection by the CYD1-4 vaccine candidate in the first phase
IIb efficacy trial (81), and lack of protection against serotype 2 in
the first phase III efficacy trial (80) raise questions of whether the
NHP challenge model is able to predict efficacy in humans. Unfor-
tunately, the DENV challenge model in NHP is not standardized,
making it difficult to compare the results from studies performed
by different studies (Table S1 in Supplementary Material). We

discuss below how specific limitations of the NHP challenge model
may affect its performance.

Diversity in NHP used for Dengue studies
A number of NHP species used to study dengue pathogenesis and
vaccines evaluations are listed in Table 2, along with information
on the relative frequency with which they have been reported, the
number of MHC alleles known and sequenced to date for each
species, and an estimated number of reagents and/or protocols
available through a free resource tools in support of research.

The use of multiple species makes it difficult to integrate results
from different studies. In addition, within the same species, the
genetic composition and variability in the genetic background of
animals in the study can have an impact on the results (115). It
has been well documented that the geographic region from which
the founder animals are derived determines the MHC haplotype
composition of the population (116, 117). Such genetic differences
may also contribute to the phenotypic variance of pre-clinical
trials when animals from different locations are included as exper-
imental subjects, or when animals from different countries are
compared. High inter-animal additive genetic variances increase
phenotypic variance in full-breed animals and can obscure corre-
lates under study (116, 117). Theoretically, this may be particularly
relevant when addressing the role of cellular-mediated immune
responses, but no data are available yet. On the other hand, as
shown in Table S1 in Supplementary Material, six species of NHP
have been used to study vaccine-induced immunogenicity, and
NAbs have been reported in all of them. In addition, the same vac-
cine candidate has been tested in two species of monkey for two
vaccine platforms, CYD by Sanofi (10, 14), and DNA by NMRC
(34, 39), and no major differences in NAb responses can be attrib-
uted to the monkey species used. However, in most studies in this
report, large animal-to-animal variation among NAbs titers exists
even among animals in the same experimental group.

The more common species in use in biomedical research, rhesus
macaques, can be very diverse in its genetic background, with
groups of animals with Indian origin clustering more close with

Table 2 | Species of NHP used in dengue pathogenesis and vaccine studies.

Common name Scientific name Percent of published

reports (1,178

total) (%)

MHC designation/no.

alleles availablea

Number of available resources (antibodies,

cell lines, SOPs) (NIH non-human primate

reagent resource)b

Rhesus macaques Macaca mulata 51.35 Mamu/1,197 221

Green monkeys Cercopithecus aethiops 34.80 Chsa/64 38

Cynomolgus macaques Macaca fascicularis 11.62 Mafa/1,506 202

Patas monkeys Erythrocebus patas 1.0 N/A N/A

Yellow baboons Papio cynocephalus 0.6 Papa/30 N/A

Japanese macaques Macaca fuscata 0.33 Mafu/27 N/A

Mangabeys Cercocebus spp 0.1 N/A 193

Others 1 N/A N/A

aMajor histocompatibility complex genes of non-human primates. Available from the immuno polymorphism database (IPD), European molecular Biology Laboratory,

and European Bioinformatic Institute.
bwww.nhpreagents.org

Frontiers in Immunology | Microbial Immunology September 2014 | Volume 5 | Article 452 | 6

http://www.frontiersin.org/Microbial_Immunology
http://www.frontiersin.org/Microbial_Immunology/archive


Sariol and White NHP in dengue vaccine research

animals belonging to western China than to the other Indian
group, consistent with the hypothesis that they originated in
Burma, which is very close of western China (117). It has also
been proposed that a natural gene flow among populations of Chi-
nese (and Burmese) rhesus macaques andVietnamese cynomolgus
macaques (Macaca fascicularis) exists (115, 117, 118).

Being of intermediate genetic composition, admixed animals
may respond very differently to experimentation involving traits
that have a phenotypic variance that is lower than either unmixed
parent population due to increased heterozygosity and stabiliz-
ing selection. The Cayo Santiago colony at the Caribbean Primate
Research Center (CPRC) is an example of a population of rhe-
sus macaques used in biomedical research in the US in which
all the animals are derived from founders from the Indian sub-
continent and it has been demonstrated that this population is
genetically homogenous and unadmixed (117). Populations of
cynomolgus macaques, the second most frequent species used for
dengue studies can be even more genetically divergent as they
may have originated from different locations in Southeast Asia
including Sumatra, Corregidor, Mauritius, Singapore, Cambo-
dia, Zamboanga, and others. Genetic variations among regional
populations of cynomolgus macaque are the main cause of dif-
ferences in research subjects that determines the repeatability of
experimental outcomes (115). While the impact of the genetic
diversity among and within the used species on DENV replica-
tion has not been addressed carefully, there have been reports of
animals that can be considered as natural viremia controllers (29,
67, 93, 119–121).

Genetic homogeneity among research animals allows for the
utilization of fewer subjects and cost-effective research projects.
The origin ancestry and pedigree of the dengue research sub-
jects should be taken in to account. It has been proposed that
to maximize resolution of experimental treatment effects, ani-
mals of unmixed ancestry with paired coefficients of relationship
below that of first cousins (r < 0.125) should be used (115). These
considerations have important implications on what should be
the minimum number of monkeys per experimental group. Sup-
ported by published data and in our own experience, cohorts
should include at least six and not less than four, to minimize
the impact of the genetic variability in the results.

DENV challenge strain, dose, and route
A comprehensive review of DENV strains used to infect differ-
ent species of NHP and the viremia they caused can be found in
Clark (2) and Hanley (1). Most vaccine studies in NHP include a
challenge with one or more DENV serotypes to assess protective
efficacy. The challenge strains used vary among studies, including
wild-type viruses, near wild-type viruses or homologous viruses
parental to the vaccine strains (Table S1 in Supplementary Mate-
rial). To date, there is not a repository stock of DENV strains for
each serotype available to different research groups, nor a stan-
dardized challenge protocol. These are in urgent need in order
to guarantee the reproducibility and comparability of the results.
Even using same strains by different groups has shown different
outcomes. Hickey et al. (86) were unable to confirm viremia in
groups of four rhesus macaques challenged with strains of dengue
1 and dengue 4 shown to induce detectable viremia in rhesus

macaques in different protocols conducted by other groups (16,
46). This confirms that in addition to the virus strain, dose, and
route of administration, other variables like the challenge virus
passage history and the time post-challenge for sample collection,
among others, need to be considered.

To determine protective efficacy, the dose of the challenge virus
has to ensure a measurable and reproducible viremia for several
days. Only a limited number of studies have attempted determin-
ing the infectious dose delivered during natural dengue infection.
One study suggests that the amount of infectious particles trans-
mitted by A. albopictus ranges from 1× 104 to 1× 105 plaque
forming units (PFU) (122).

To our knowledge, the only study comparing inoculum dose
and viremia in NHP was performed by Halstead et al. (123). In
that study, animals were challenged with low (8–50 PFU) and
high doses (5× 103–5× 105 PFU) of DENV, which resulted in lev-
els of viremia ranging from 0.6 to 1.8× 103 PFU/ml. In general,
doses from 1× 104 to 1× 105 PFU, independent of the route, have
shown to be enough to induce detectable viremia and serocon-
version in most of the animals, or strong seroconversion in spite
of absence of viremia [reviewed in Ref. (124)]. Higher doses do
not seem to result in higher viremia. Even doses of 1× 107 PFU
delivered via intravenous injection, resulted in peak viremia of
8× 103 PFU/ml (3). In addition, a significant negative relation-
ship between challenge dose and duration of viremia has been
documented (125).

When to challenge and protection readouts
The time allowed between the last immunization and the chal-
lenge varies from 30 days to 12 months in reports of dengue
vaccine studies in NHP (Table S1 in Supplementary Material).
These differences make it difficult to compare vaccine efficacy
among vaccine candidates from different studies. There seems
to be consensus in the field to allow at least 6 months between
the last immunization and the challenge. This would increase the
stringency of the challenge and better assess protection mediated
by serotype-specific, long-term protective immunity, minimizing
protection readouts mediated by short-term heterotypic immu-
nity. In humans, heterotypic protection after primary infection
lasts for a few months (126). NHP, like humans, develop long-
term serotype-specific NAbs that last as long as the duration of the
study, 13 (86) or 24 months (91), and shorter-lived cross-reactive
NAbs. Hickey et al. reported that the duration of the heterotypic
NAbs varied among serotypes and among animals; these NAbs
were mostly absent after 120 days in a DENV3 infection, while
decreased at different rates between 120 and 390 days in animals
infected with the other serotypes (86). Messer et al. confirmed the
presence of homotypic NAbs up to 24 months after infection with
DENV3 or DENV4, and also showed detectable NAbs (Neut50

titer= 35) against the heterologous serotype in one out of four
animals 24 months after infection (91).

The major limitation of the NHP dengue challenge model is
that protection from low-level viremia in NHP may not reflect
protection from DF or DHF in humans. In the absence of better
defined correlates of protection, different readouts of protection
in the NHP model have been proposed: (1) prevention of infec-
tion (sterilizing immunity), measured by absence of viremia, and
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absence of anamnestic response, as defined by fourfold increase
in NAb titer. (2) Significant reduction in the duration and mag-
nitude of the viremia (infectious virus or RNA genome equiva-
lents) without preventing an anamnestic response, where a robust
anamnestic response is indicative of a robust memory response
with potential to prevent disease. To date, there is not clear evi-
dence that the more stringent criteria for solid immunity in
NHP is what correlates with protection in humans. Most vac-
cines tested in NHP show some level of anamnestic responses
(Table S1 in Supplementary Material), suggesting non-sterilizing
immunity. Sterilizing immunity has been reported after DENV1
MV NIH LAV vaccination and challenge (22), and after one dose
of LATV followed by DENV4 challenge (16). Viremia has been
measured by different methods. A semi-quantitative measure-
ment involves amplification of the virus collected in the blood
in insect or mammalian cells followed by IFA (34). Quanti-
tative determinations of infectious virus particles are done by
plaque assays and immune-focus assay (19, 26, 46, 86, 87, 91).
A quantitative RT-PCR has been used to determine RNA genome
equivalents (20, 32, 48, 86, 88, 121, 127, 128). However, compo-
nents in the monkey sera can inhibit non-specifically the RT-PCR
assay, rendering false negatives or amplifications that are diffi-
cult to interpret, even when using virus stocks that have been
shown to induce productive infection in NHP measured by other
methods (83, 86, 120). In addition, time to viremia was signifi-
cantly shorter, and duration of viremia was significantly longer
when measured by RT-PCR compared to plaque forming units
(125). Based on these results, it is recommended that more than
one method be used to characterize and quantify post-challenge
viremia.

Toward a NHP disease model
Although most dengue infections in NHP are subclinical, cuta-
neous hemorrhages, and lymphadenopathy have been reported
(2, 3, 123, 129–131), and only a small fraction of studies have
reported rashes post infection (3, 129). Onlamoon et al. showed
recently that by using an i.v. route and a high dose of 107 PFU, a
primary infection in rhesus macaques with DENV2 strain 16681
resulted in cutaneous hemorrhages, and suggested that further
amplification of disease severity could result from refining other
parameters like virus strain, factors from infected mosquito saliva,
and macaque genetic factors (2, 3). Although such manipulations
of route and dose of infection distant the model from naturally
occurring dengue, further exploring this disease model may help
understand the impact of dengue infection on a set of particular
cells playing a key role in pathogenesis in a higher animal model.

Another potential factor that may modulate dengue infection
and the course of disease is mosquito’s saliva. There are a number
of studies supporting its modulatory role on the immune response
to dengue virus (132–137) and other arboviruses (138–145). How-
ever, its potential role modulating disease in NHP has not been
examined. Studies comparing the course of infection and immune
response between viruses delivered into the skin by needle and by
mosquito bite should be done. Until then, we could be missing
the role of an important component defining the quality of the
immune response to dengue in nature and overlooking potential
key data from the pre-clinical dengue vaccine trials.

Sequential infections modeling ADE
Early work by Halstead et al. showed that after a secondary DENV
infection in NHPs viremia increases, suggesting that ADE may
increase viral load through cross-reactive Abs (129, 146). However,
because few numbers of animals were included in each experimen-
tal group, only a trend was reported but no significant differences
were established.

A cross-reactive response with the highest Ab titers directed
against the primary infecting serotype (and potential ADE induc-
tion) was showed only when the sequential infection was DENV1–
DENV3 but not when DENV4 was the primary infecting serotype
(87, 88). Aotus nancymae monkeys sequentially infected with
dengue 1 followed by dengue 2, either with an American or an
Asian genotype, did not showed any significant viremia increase,
ruling out ADE mechanism for this particular sequential infec-
tion (87). Recently, it has been showed that primary infection with
serotypes 1, 2, and 4 but not serotype 3 induces long-lasting cross-
reactive neutralizing antibodies in NHP. However, as these anti-
bodies decrease after 120 days of infection, the host may become
susceptible to develop ADE after DENV1, 2, or 4 but not DENV3
infection (86). The passive transfer of anti-DENV monoclonal Ab
1A5 prior to DENV infection resulted in a viremia increased 3-
to 100-fold in RMs after (147). A previous study had shown that
the administration of polyclonal diluted dengue 2 immune cord-
blood serum to few animals resulted in increased viremia after
infection with dengue 2 (148). The data reviewed here confirms
that the role of ADE in NHP infection is still controversial. How-
ever, due to the impact of ADE in dengue pathogenesis (149) and
its implications in the quality of the immune response elicited after
vaccination, NHP should continue to be explored as a potential
contributor to the understanding of the role of ADE in dengue
pathogenesis.

THE FUTURE OF THE NHP MODEL
The value of the NHP model for dengue research has the potential
to be of larger scope than to date.

IN-DEPTH CHARACTERIZATION OF IMMUNITY TO VACCINATION
A better characterization of the immune response to vaccination
may help define better correlates of protection. These include
mapping where NAbs bind, measuring early type-specific anti-
body secreting cells (ASC), Ab avidity, and neutralization in
FcγR-expressing cells. Studies should include genotypic breadth,
contribution of type-specific vs. cross-reactive antibodies, epi-
tope repertoire, ADCC, role of complement, and cellular response,
including multifunctionality of CD8+ T cells. Recent studies have
shown the plasticity of this model allowing the replication of
chimeric virus carrying transplanted EDI–EDII hinges (91), and
at the same time, confirming the value of the model for a better
mapping of the antibodies repertory in vivo (46, 91).

MODELING VACCINATION IN DENGUE ENDEMIC REGIONS
Most dengue vaccines tested in NHP use dengue naïve animals,
and in a few cases animals immune to yellow fever. Since most
vaccines will be used in dengue endemic countries, studying how
vaccines perform in monkeys after passive transfer of dengue Abs
or after previous wild-type dengue virus infection will be of great
value.
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NHP MODEL VALIDATION BY CLINICAL STUDIES
The predictive value of the NHP model for candidate vaccine effi-
cacy is limited by the lack of efficacy data available from studies
of parallel vaccines in humans, lack of standardized protocols and
reagents, and lack of in-depth immunological studies in primates
and humans to infection and vaccination. As phase III clinical
trial data becomes available, and as human challenge is incor-
porated into early clinical testing (150), comparison of results
from ongoing clinical evaluations and NHP studies will lead
to validation and improvement of the NHP model, to become
a better predictor of the human response to vaccination and
become a more robust model, reducing the need to do human
challenges. For this to happen, results must be shared promptly
among vaccine developers and the dengue research community,
to expedite and facilitate the identification of better correlates of
protection.

TESTING MODIFIED MAbs AS THERAPEUTICS
From therapeutic point of view, vaccines have been the dominant
if not the unique approach intended in NHP to fight dengue virus
infection (4–6, 46). However, other therapeutic approaches like the
use of MAbs are almost unexplored. Recently, it has been shown the
effectiveness of using MAbs to control dengue infection in mice,
and in vitro methods have been developed that predict the ability of
modified MAbs to act therapeutically against antibody-enhanced
disease in vivo (151). The potential of these therapeutics tools
in humans and alternatives for improvement have been exten-
sively reviewed (152). However, few studies have been conducted
in NHP. Hahn et al. showed that the infusion of a bivalent mon-
oclonal antibody in NHP was followed by subsequent clearance
of dengue virus from the vascular system (92). Passive i.v. trans-
fer of antibody IgG 5H2∆D protected monkeys against DENV-4
infection and this was confirmed by absence of both viremia and
specific anti-dengue antibodies (93). These studies showed the fea-
sibility of using NHP to test and to develop those new therapeutic
alternatives. Furthermore, over the past 3 years, we have learned
that NAb responses in mice and people target different domains
on DENV particles (EDIII vs. EDI–EDII hinge) (46, 90, 153–156).
Moreover, our group has confirmed that NHP exposed to natural
DENV infections appear to develop neutralizing Abs responses
that are qualitatively similar to the human response (46, 154). For
this reason while mice continue to be a very useful model for
screening, the final functional significance of therapeutic MAbs
should be tested in macaques (90, 154, 155). Although they could
be expensive, therapeutic MAbs would help saving lives if they are
used in the first hours/days after the infection in those patients
where severe manifestations can be anticipated using the WHO
guidelines for dengue case classification (157).

Another alternative therapeutic approach is the use of Toll-
like receptors (TLR) agonist in vaccine formulations or anti-viral
strategies against different pathogens. TLR have been already
assayed for other viruses (158–164). However, so far only one
study addressed the impact of TLR agonists on dengue virus
immune response in vivo in NHPs (121). This work and the
fundamental role of the TLRs in modifying the immune/vaccine
response guarantee further studies on the impact of TLRs in
dengue pathogenesis/vaccine studies.

STANDARDIZING THE USE OF THE NHP MODEL
Based on recommendations compiled in the literature (114,
165, 166) and from discussions with colleagues in the field, the
following guidelines toward standardization are proposed.

Animal selection
• Select healthy animals with a homogenous genetic background

(coefficients of relationship below r < 0.125).
• Most published studies using four to six animals per experi-

mental group have yielded interpretable data. However, in many
cases, increased statistical rigor is needed. The minimum num-
ber of animals per group to have adequate statistical power
should be calculated for each specific objective (167).

Evaluation of immunity
• Until an improved and more predictive in vitro neutralization

assay is developed and validated, the WHO recommended that a
standard plaque-reduction (PRNT) or focus-reduction neutral-
ization assay should be used to evaluate vaccines in NHP, using
optimized protocols and reagents and reference virus strains
representing different serotypes and genotypes.

• Evaluation of CMI is strongly recommended as part of the analy-
sis of vaccine immunogenicity in NHP. Standardized procedures
for collecting, processing, and storing of PBMC should be used.
PBMC should be collected before vaccination to establish a
baseline, and then at various time points after vaccination to
measure effector function, memory, and durability. Stimulat-
ing antigens should be well-characterized and available to the
dengue community.

• Post-challenge NAbs should be measured, to determine whether
the vaccine induces anamnestic responses and sterilizing immu-
nity. This information will be of value once phase III clinical
data is available.

• When possible, each monotypic component of the vaccine
should be tested alone and combined in the TV formulation,
to evaluate serotype interference.

Dengue challenge and protection
• A collection of well-characterized challenge viruses should be

available to all researchers as a publicly funded repository, such
as BEI resources. Researchers with strains that replicate well in
NHP should contribute their strains to this collection.

• Post-challenge viremia should be determined by at least two dif-
ferent methods, one of them being a plaque- or foci-based assay
for infectious virus. Universal techniques should be adopted.

• Challenge should be done at least 6 months after the last immu-
nization, using homotypic wild-type virus strains that have been
well characterized previously and result in sustained and con-
sistent viremia for several days. The doses of challenge virus
to obtained consistent viremia should be pre-determined, and
generally ranges between 104 and 105 PFU.

ETHICS AND HUMANE USE OF NHP
For most candidate human vaccines, including those for dengue
virus, immunogenicity, and if possible protective efficacy of the
candidate formulation, has to be shown in a relevant animal model
before it is tested in humans. There is no in vitro correlate of in vivo
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immunogenicity and protective efficacy for candidate dengue vac-
cine formulations. Therefore, animal models must be used in the
development of dengue vaccines to screen potential candidates
and allow those that show robust immunogenicity to move for-
ward into clinical trials. Most of the work reviewed here included
ethical statements on the humane use of animals.

Authors strongly encourage all researchers working with NHP
to follow the local regulations on the use of NHP for research. Also,
we support the implementation of additional steps to ameliorate
suffering in accordance with the recommendations of the Weather-
all report, “The Use of Non-human Primates in Research.” It is
also advised to have animals under an environmental enrichment
program approved by the local committee.

CONCLUSION
To date, NHP data have been the gatekeeper for vaccines advanc-
ing to clinical trials, based on neutralizing activity in serum and
reduction of post-challenge viremia, which indicates to vaccine
developers and regulatory agencies of the potential for efficacy
in humans. Recent clinical data has become available to compare
vaccine performance in NHP and humans. Such analysis indi-
cates that the replication and immunogenicity of vaccines tested
in NHP has parallels to the human responses to the same vac-
cines, specifically regarding under-attenuation, relative serotype
dominance, and immunogenicity in TV formulations, induction
or not of anamnestic responses upon second vaccine doses and
seroconversion to all four serotypes after a single dose in most
subjects. These results suggest that a more comprehensive study of
the immune responses to infection and vaccination in NHP may
significantly help identify new immune correlates of protection.

Until molecular correlates of heterotypic and multitypic immu-
nity are comprehensively identified, vaccine-induced protection
should be demonstrated in pre-clinical studies, using animals
with less genetic variability, studying the quality of the immune
response, and using a rigorous and standardize dengue challenge.
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