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Abstract

Remote sensing is a promising technique for monitoring the distribution and dynamics of various vector-borne diseases. In
this study, we used the multi-temporal CBERS images, obtained free of charge, to predict the habitats of the snail
Oncomelania hupensis, the sole intermediate host of schistosomiasis japonica, a snail-borne parasitic disease of considerable
public health in China. Areas of suitable snail habitats were identified based on the normalized difference vegetation index
(NDVI) and the normalized difference water index (NDWI), and the predictive model was tested against sites (snails present
or absent) that were surveyed directly for O. hupensis. The model performed well (sensitivity and specificity were 63.64%
and 78.09%, respectively), and with further development, we may provide an accurate, inexpensive tool for the broad-scale
monitoring and control of schistosomiasis, and other similar vector-borne diseases.
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Introduction

Schistosomiasis japonica, a snail-borne parasitic disease of

considerable public health and economic significance [1–4], has

existed in China for over 2000 years [5–9]. The Chinese

government initiated a national control program to combat this

disease soon after the revolution in 1949, resulting in substantial

progress in the following 60+ years [5,6,10]. The numbers were

reduced with more than 90% of the peak estimates between

11.60 and 11.85 million infected people [11,12]. According to

the national schistosomiasis report of 2010, the cases of S.

japonica infection and the people at risk were estimated to be

about 325,824 and 68,536,200, respectively [11]. Despite this

success, there is considerable concern that schistosomiasis might

re-emerge as active transmission has been frequently reported in

areas that previously reached the criteria of transmission

interruption or transmission control [6,12]. There are several

possible reasons for this: Firstly, habitats of Oncomelania hupensis,

the intermediate snail host, are still widely present and this

poses a strong risk for the reemergence of schistosomiasis in

China [13,14]; Secondly, the compliance rate for repeated drug

treatment, the major component of the World Bank Loan

Project (WBLP) strategy for schistosomiasis control, has declined

substantially [15,16]; Thirdly, reduced financial resources for

schistosomiasis control make it hard to maintain the scale of

chemotherapy and environmental modification at their previous

levels [4,7,17]; Finally, the distribution of O.hupensis in China is

restricted to the country’s southern parts, where its distribution

is strongly governed by the temperature at the macro scale

[13,18,19]. In the North, because of the climate change

experienced since the mid 1900s, the temperature is now

several degrees higher, which may eventually result in shifting of

snail habitats northwards [19,20]. Besides, the construction of

the huge hydraulic projects such as the Three Gorges Dam and

the South-to-North Water Transfer Project will also have a

large impact on the local ecology, which will work in union

with the ongoing climate change, possibly resulting in substan-

tial new areas becoming suitable habitats for O.hupensis [21–23].

Hence, it has been suggested that an early warning system

(EWS) should be set up in China to monitor the changes of

distribution of the intermediate host snail habitats [10].

We know that O. hupensis is the sole intermediate host of S.

japonicum in China and its distribution largely governs the

distribution of S. japonicum [13,24,25]. Hence, understanding the

distribution of snail habitats is vital for controlling this disease.

However, identifying snail habitats requires considerable man-
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power and some areas are difficult to access, especially during

flooding [26,27]. Traditionally, direct surveillance of snail

habitats (field investigation) in historically endemic areas and

suspected new areas has been widely used [4,28,29]. However,

this approach requires considerable manpower and is often not

feasible in areas difficult to access [26]. In addition, snails can

be difficult to spot because of small size (less than 1 cm) and

because their color resembles that of the soil [30]. As is well

known, the survival and reproduction of snails are closely

related to environmental factors, water and vegetation being the

most important ones, a fact that makes them possible to be

traced by remote sensing (RS). Geographical information

systems (GIS), backed by RS images, can be used to identify

suspected snail habitats based on the special ecological

characteristic of snail habitats that can be summarized as ‘‘land

in winter – water in summer’’ and ‘‘no grass – no snails’’

[26,27,31–36]. However, most previous schistosomiasis studies

using RS to detect snail habitats only selected two images, one

from the dry season and one from the wet season to (a) first

locate the water regions in each image either using the

(un)supervised classification approach [26] or the tasseled-cap

transformed wetness index [34] and (b) then identify the

differenced water regions through the subtraction algorithm.

After using the normalized difference vegetation index (NDVI)

to derive the regions with vegetation coverage in the dry season,

the potential snail habitats would be found in the overlapping

areas. Although valuable, these studies have several potential

limitations:

1) The selection of the two RS images from the wet and the dry

seasons is always subjective, requiring familiarity with the

local conditions to make the correct choice. Thus, this method

is not appropriate for areas with which researchers are not

well acquainted. In addition, the right dates for the dry and

wet seasons are not easy to determine;

2) The threshold of NDVI for detecting the vegetation coverage

is subjective and different values are used (e.g., 0 [34], 0.1

[37], 0.2 [38]);

3) The approaches to identify the aquatic regions are numerous

and require users to master certain RS techniques;

4) The Enhanced Thematic Mapper (ETM) is the most widely

used source for the prediction of potential snail habitats

[26,27,30,34,35], but their high cost has limited broad usage

of this source for general users, especially for the routine

monitoring with respect to disease control. However, the

China-Brazil earth resources satellite (CBERS), which pro-

vides 20 m resolution images, is completely free of charge for

researchers, providing a good opportunity to explore its value

for the detection of snail habitats instead of costly ETM

images.

The normalized difference water index (NDWI), put forward as

a specific means to extract water information, proved to be an

efficient index for predicting aquatic regions [39]. Since few

studies have reported this application, it was felt to be worthwhile

to discuss the feasibility of applying NDWI (as well as NDVI) in

the process of identifying snail habitats. We explored the use of

20 m multi-temporal CBERS images to identify potential snail

habitats with the simultaneous application of NDWI and NDVI as

it would solve the above-mentioned issues. Some ideas, found

useful for detecting and monitoring snail habitats, are provided

together with the results with the expectation to shed some light on

future effective monitoring of snail habitats.

Materials and Methods

Study Area
Anxiang County (Figure 1), situated in the northwest of

Dongting Lake in Hunan province, is a typical S. japonicum

endemic area in the lake and marshland regions of China. It

covers an area of approximately 1,087 km2, comprises 263 villages

and has an at-risk population of about 429,000 people. Four major

river systems (Lishui, Songzi, Hudu, and Ouchi) and the humid

subtropical monsoonal climate, with an average annual temper-

ature about 16.4uC and average rainfall of about 1,130 mm,

provide an ideal environment for O. hupensis.

Base Map
Digitized polygon maps of Anxiang County and the major

rivers at a scale of 1:250,000 were obtained from local government

as base for related data/results for visual interpretation.

RS Satellite Images
RS allows the observation of objects, surfaces or phenomenon

from a long distance without actual physical contact [40,41]. Since

it is a technology with strong governmental investment supporting

users from many different areas, it is a service that has become

relatively inexpensive. It is also a rapid way of acquiring up-to-date

information with a wide regional coverage. Indeed, it is the only

practical approach to rapidly gather information about areas

where it is not possible to carry out ground surveys (inaccessible

regions like flooded areas, mountainous areas and foreign areas).

RS also makes it feasible to construct base maps in the absence of

detailed land surveys, enabling the continuous acquisition of data

over time as well as space [40,41]. Therefore, RS provides an ideal

tool for mapping, predicting and monitoring disease trends,

including the dynamics of vectors and intermediate hosts. CBERS

is a joint program developed by China and Brazil since 1988,

successfully launching its CBERS-2 satellite on 21 October 2003.

This satellite has five spectral bands with 20 m spatial resolution

and a 120 km swath width on the ground. In addition to the

panchromatic band 5 (0.51–0.73 mm), bands 1–4 absorbs blue

(0.45–0.52 mm), green (0.52–0.59 mm), red (0.63–0.69 mm) and

near infrared (0.77–0.89 mm) light, respectively. This is similar to

what the Landsat ETM instrument provides; hence they were

comparable in the visible (bands 1–3) and the near infrared bands

(band 4) (see previous reports for detailed information [42]).

CBERS images and measurements are freely available for

academic users in China. Because of the similarities between the

Landsat ETM bands and those of CBERS, many previous ideas of

studying vector-borne diseases using ETM images can be adapted

and used with CBERS images without difficulty. To date,

however, no studies have reported such applications.

In this study, six bimonthly consecutive CBERS images with a

spatial resolution of 20 m, covering Anxiang County, were

obtained free of charge from the CBERS website (http://www.

cresda.com/n16/index.html ). They were taken on 20 December

2003, 10 February 2004, 2 April 2004, 19 June 2004, 10 August

2004, and 27 October 2004, respectively.

Data Preprocessing
The image of 20 December 2003 was selected as reference layer

and over 20 clearly distinguishable and known coordinate

locations (e.g., road crossings, intersection points of rivers) were

designated as ground control points (GCPs). The other five images

were georeferenced to this layer using the selected GCPs.

Polynomial transformation for geometric modeling and bilinear

interpolation for the resampling were used. The final root mean

Identification of Snail Habitats
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square (RMS) errors in the process of georeferencing images were

set at less than 0.5 pixels.

Identification of Snail Habitats
NDWI was derived from six CBERS images in order to identify

the water regions using similar principles as those used for NDVI.

It is calculated as [39]:

NDWI~(Green{NIR)=(GreenzNIR) ð1Þ

where, Green represents the band that encompasses the reflected

green light and NIR indicates the band that reflected the near-

infrared radiation, corresponding to CBERS Band 2 and Band 4,

respectively. NDWI maximizes the reflectance of water features by

using green light wavelengths instead of the near-infrared

radiation, thus minimizing the low reflectance of NIR by water

features, while taking advantage of the high reflectance of NIR by

terrestrial vegetation and soil features, making it is a good index

for identifying aquatic areas. Just as NDVI, the range of NDWI is

(21, 1) with water surfaces resulting in relatively strong positive

values, while other surface features are lower or negative. To

determine the appropriate threshold for NDWI measurement, we

first selected 50 points in regions characterized by water features

and extracted their NDWI values in each image. Based on the

distribution of the NDWI and the perspective of small probability

event, the lower limit of 95% confidence interval was calculated as

the threshold of NDWI to differentiate the water regions

(.threshold) from other features. Then, the extracted aquatic

regions in each image were converted to polygons and the surface

areas of these water polygons were calculated accordingly. The

images with the maximum and minimum area of aquatic regions

were used to represent the wet season and the dry season,

respectively. The differences in these images with respect to water

were obtained through the subtraction algorithm to represent the

areas that could be characterized as ‘‘land in winter – water in

summer’’.

Following this, NDVI was calculated for each image using the

formula:

NDVI~(NIR{RED)=(NIRzRED) ð2Þ

where, RED stands for the spectral reflectance measurements

acquired in the visible red region and NIR is the near infrared (as

used in the NDWI formula). NDVI is a widely used index to

identify the regions with vegetation coverage. Fifty snail habitats

were obtained from historical records and then the NDVI values

in the dry season were extracted for these 50 snail habitats. The

lower limit of the 95% confidence interval was used as threshold to

obtain the areas with vegetation coverage, i.e. the ‘‘no grass– no

snails’’ areas (.threshold).

To discriminate the vegetation types suitable for snail survival

from other unfavorable vegetation types, the idea of the patterns of

vegetation growth was used. For the time-series images, the

standard deviation (SD) of NDVI values in each grid was

computed to represent the variance of vegetation. Then, the

NDVI’s SD values in the 50 true snail habitats were extracted and

the lower limit of the 95% confidence interval for the 50 SDs was

calculated as the threshold to select the regions where the pattern

Figure 1. A map illustrating the location of Anxiang County and the positions of the major river systems. The polygon in gray is Hunan
Province; the red and the blue parts in the polygon are the positions of Anxiang County and Dongting Lake, respectively. The enlarged map in the
right-bottom corner shows the positions of the major river systems in blue in Anxiang County.
doi:10.1371/journal.pone.0069447.g001

Identification of Snail Habitats
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of vegetation growth was appropriate for snail survival (.thresh-

old).

Finally, the three regions termed ‘‘land in winter – water in

summer’’, ‘‘no grass – no snails’’ and ‘‘appropriate pattern of

vegetation growth’’, respectively, were overlaid. The overlapping

areas obtained were taken to indicate the potential snail habitats in

Anxiang County.

The flowchart for the above data processing and analysis is

displayed in Figure 2. All these steps were accomplished in

ERDAS IMAGINE 9.2 (Leica Geosystems Geospatial Imaging,

LLC, Norcross, GA, USA) and ArcGIS 10 software (Environ-

mental Systems Research Institute (ESRI),Inc., Redlands, CA,

USA).

Model Validation
We randomly selected 200 points in Anxiang County to

evaluate the results of localized snail habitats. From the historical

records and field investigations of snail habitats in local regions, we

determined whether each selected point was located in the snail

habitats and then compared the result with those extracted from

the model to judge whether they were correctly classified. The

sensitivity and specificity of the suggested approach were

calculated.

Results

NDWI values from water regions are summarized in Table 1.

Except for 2 April 2004, the minimum NDWI values in the

CBERS images are all positive with corresponding NDWI

thresholds are higher than 0.1.

Figure 3 depicts the extracted water regions from six CBERS

images. The aquatic areas totaled 36.07 km2 on 20 December

2003, 41.23 km2 on 10 February 2004, 52.04 km2 on 2 April

Figure 2. Schematic flowchart for identifying the snail habitats in Anxiang County, displaying the general process for detecting
snail habitats by combining three results of ‘‘land in winter - water in summer’’, ‘‘no snails - no grass’’, and ‘‘pattern of vegetation
growth (suitable for snail survival)’’. (WR means water region).
doi:10.1371/journal.pone.0069447.g002

Table 1. Summaries of NDWI values in water points in six
images.

Date Min Q1 Mean Q3 Max Std Threshold

20 December 2003 0.24 0.30 0.32 0.35 0.41 0.04 0.26

10 February 2004 0.24 0.28 0.31 0.33 0.41 0.04 0.24

2 April 2004 20.02 0.05 0.07 0.10 0.13 0.04 0.00*

19 June 2004 0.05 0.17 0.19 0.22 0.29 0.05 0.11

10 August 2004 0.13 0.16 0.18 0.19 0.25 0.03 0.13

27 October 2004 0.21 0.23 0.26 0.28 0.31 0.03 0.21

*the exact value is 0.0044; Q1 and Q3 represent the first and third quartiles,
respectively.
doi:10.1371/journal.pone.0069447.t001
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2004, 39.67 km2 on 19 June 2004, 33.11 km2 on 10 August 2004,

and 32.38 km2 on 27 October 2004. Thus, the image from 2 April

2004 was chosen to represent the wet season and 27 October 2004

to represent the dry season. The difference between the water

regions extracted from the wet and the dry seasons represents the

regions of ‘‘land in winter – water in summer’’ displayed in

Figure 4 (A).

The NDVI values from true snail habitats are shown in Figure 5

(left); their mean and SD are 0.27 and 0.11, respectively. The

threshold used to detect the regions with vegetation coverage was

0.09, and the vegetation regions indicating the ‘‘no snails – no

grass’’ are displayed in Figure 4 B.

The threshold for identifying the pattern of vegetation growth

suitable for snail survival is 0.06 (Figure 5 right) and the recognized

regions depicted in Figure 4 C.

Figure 6 displays the localizations of the snail habitats obtained

by overlaying the three feature layers (Figure 4), most of which

were found to be distributed along the river systems. The

Figure 3. Distribution of water regions in different seasons extracted by the index of NDWI. The areas of aquatic regions from the images
on 2 April 2004 and 27 October 2004 were the maximum and the minimum, respectively.
doi:10.1371/journal.pone.0069447.g003
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sensitivity and specificity of the suggested approach were 63.64%

(14/22) and 78.09% (139/178), respectively.

Discussion

Based on CBERS images, this study used two environmental

features (namely water and vegetation) to identify the snail

habitats, which have previously proved useful.

NDWI has been used to identify aquatic regions [39]. However,

the NDWI thresholds for extracting these regions are different for

images from different seasons, suggesting that the methods used in

previous studies to choose this value subjectively were not rational.

An objective approach, resorting to statistical index, should be a

feasible way to avoid this issue. The NDWI threshold on 2 April

2004 is negative because the provided CBRES images did not

perform the radiance transformation. This was not an error, but it

supports the idea that it is right to decide the threshold objectively

in practical applications for identifying the aquatic regions. The

grid values in RS images provided are not always standard data

and most of the users are not RS experts, so choosing a threshold

subjectively may well lead to biased or even incorrect results.

Besides, previous studies suggest that the choice of the two images

representing the wet and the dry season, respectively, were also

subjective. For example, Guo et al. used April and August for this

purpose in their Poyang Lake study [26], while Li et al chose

December and June [43]. Applying NDWI to the time-series RS

Figure 4. Distributions of extracted regions based on different methods. (A)The regions of ‘‘land in winter - water in summer’’ obtained by
subtraction of water season and dry season; (B) the regions of ‘‘no snails - no grass’’, i.e. the regions with vegetation coverage; and (C) the vegetation
regions suitable for snail survival discriminated by the variance of vegetation growth.
doi:10.1371/journal.pone.0069447.g004

Figure 5. Distributions of NDVI values of the true snail habitats in the dry season and the variance of the true snail habitats in
different seasons.
doi:10.1371/journal.pone.0069447.g005
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images provides an objective way to select the images for the wet

and the dry season just as done in this study. Also, compared to

previously used classification methods, NDWI is easier to use and

has the same advantages as NDVI. For these reasons, it is very

probable that NDWI will become an index as popular as NDVI

for the identification of snail habitats in the field of schistosomiasis

research and control.

NDVI has been widely used for the prediction of potential snail

habitats through quantifying regions of green vegetation

[26,27,35], but the threshold used by different research groups

were different [34]. The NDVI threshold in this study, determined

to be 0.09, is slightly lower than previous reports. The applied RS

images are different and the spatial resolutions are also slightly

different, possibly accounting for this minor difference. Besides,

previous studies determined those values subjectively, while the

threshold may vary in RS images from different seasons because

the quality of RS images can be affected by various factors such as

cloud shadows [40,41]. Therefore, as discussed above, the

objective approach of using a statistical index to decide the NDVI

threshold is recommended.

In this paper, we did not only rely on the NDVI but used also a

new index representing the pattern of vegetation growth to further

discriminate the vegetation types suitable for snail survival from

those that are not. The calculated threshold is 0.06, which prompts

the notion that the vegetation in the regions of snail habitats does

undergo changes. This is intuitively correct because the vegetation

has its own growth cycle: sprouting, growing, maturing, and then

wilting. In the field surveys, we do find the phenomenon that snail-

supporting vegetation (e.g., Carex) shows larger variances than

unsuitable vegetation (e.g., weeds) [13]. This is the first report of

using this threshold to facilitate the identification of snail habitats

and more studies from different regions are needed to gain

experience. We strongly recommend that other researchers

Figure 6. Distributions of snail habitats and the validation points. The regions depicted as green are the snail habitats identified by our
approach. The small circles in gray indicate the environments without snails and the stars in gray represents the habitats with live snail.
doi:10.1371/journal.pone.0069447.g006
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explore this approach in future studies aimed at identifying snail

habitats or similar studies.

The identified snail habitats are mainly distributed along rivers,

suggesting that the presence of water is important, which is in

accordance with previously published reports [7,27]. According to

our evaluation, we found that the sensitivity and specificity of our

approach were 63.64% and 78.09%, respectively. That is lower

compared to that reported previously, which may have overstated

the results of model assessment. Some assessments were performed

only in areas predicted to be snail habitats, but not in regions

predicted to be free from snails [26,27], while other evaluations

did not adhere to the rule of randomization, that is, their snail and

non-snail habitat sites were not randomly sampled [30,34,44].

Besides the high cost of RS images, overstated accuracy of RS-

based model prediction may be one of the reasons that RS

techniques have not become as effective a tool for schistosomiasis

monitoring as it could be. The free availability of CBERS images,

however, makes it possible that this will become the routine tool

for monitoring the distribution and dynamics of snail habitats.

More research into improving the model’s accuracy is, however,

needed.

Finally, we should point out that although the presence of

vegetation and water is an important and necessary condition for

snails and snail habitats, many other factors are also needed.

Auxiliary thematic data dealing with soil, altitude, hydrological

conditions, for example, would improve the sensitivity and

specificity when monitoring snail habitats or predicting their

presence. Further study on how to effectively integrate these

features needs consideration [30,44]. Besides, just as previous

(un)supervised classification, our approach also produces a result of

‘‘truth’’ (conditions satisfied) or ‘‘false’’ (conditions not satisfied) for

each grid in the RS images. This may be too arbitrary. Some new

approach, e.g. as fuzzy classification can produce a dataset, which

no longer results in either ‘‘Yes’’ or ‘‘No’’, but rather as a fuzzy

continuous set of values ranging from 0 (False) to 1 (True) in an

ambiguous manner [30,45,46]. This kind of result should be more

meaningful and could be another interesting research direction in

the future.

In conclusion, we applied the two environmental features of

water and vegetation extracted from the multi-temporal CBERS

images to identify snail habitats. NDWI was first applied to locate

the water regions and the pattern of vegetation growth to

differentiate the vegetation suitable for snails from that unsuitable

for snail survival was then explored through joint application with

NDVI. The model, based on CBERS images available free of

charge, holds promise for the future monitoring of snail habitats

and predicting of the distribution and dynamics of snails in

schistosome-affected regions that lack accurate surveillance

capabilities. This approach is gaining credence in the face of

local ecological transformation caused by various factors such as

the potential of climate change and the construction of hydraulic

projects. Indeed, it could prove to be one of the most important

tools for the ongoing national schistosomiasis control program.

However, more research to improve the model’s accuracy is

urgently needed.
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