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Abstract
North Atlantic right whales (Eubalaena glacialis Müller 1776) present an interesting 
problem for abundance and trend estimation in marine wildlife conservation. They are 
long lived, individually identifiable, highly mobile, and one of the rarest of cetaceans. 
Individuals are annually resighted at different rates, primarily due to varying stay dura-
tions among several principal habitats within a large geographic range. To date, char-
acterizations of abundance have been produced that use simple accounting procedures 
with differing assumptions about mortality. To better characterize changing abun-
dance of North Atlantic right whales between 1990 and 2015, we adapted a state–
space formulation with Jolly-Seber assumptions about population entry (birth and 
immigration) to individual resighting histories and fit it using empirical Bayes method-
ology. This hierarchical model included accommodation for the effect of the substan-
tial individual capture heterogeneity. Estimates from this approach were only slightly 
higher than published accounting procedures, except for the most recent years (when 
recapture rates had declined substantially). North Atlantic right whales’ abundance 
increased at about 2.8% per annum from median point estimates of 270 individuals in 
1990 to 483 in 2010, and then declined to 2015, when the final estimate was 458 in-
dividuals (95% credible intervals 444–471). The probability that the population’s tra-
jectory post-2010 was a decline was estimated at 99.99%. Of special concern was the 
finding that reduced survival rates of adult females relative to adult males have pro-
duced diverging abundance trends between sexes. Despite constraints in recent years, 
both biological (whales’ distribution changing) and logistical (fewer resources available 
to collect individual photo-identifications), it is still possible to detect this relatively 
recent, small change in the population’s trajectory. This is thanks to the massive data-
set of individual North Atlantic right whale identifications accrued over the past three 
decades. Photo-identification data provide biological information that allows more in-
formed inference on the status of this species.
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1  | INTRODUCTION

Although measures of abundance are often deemed critical to develop-
ment of wildlife conservation strategies, detecting trends in the abun-
dance of populations of marine wildlife is a long-recognized problem 
(Gerrodette, 1987). Broad-scale surveys of oceanic species are espe-
cially problematic in this regard (Taylor, Martinez, Gerrodette, Barlow, 
& Hrovat, 2007), but even trends in the abundance of delphinids in-
habiting small home ranges in inshore coastal waters can be difficult 
to determine (Parra, Corkeron, & Marsh, 2006; Wilson, Hammond, & 
Thompson, 1999). An exception to this general rule has been North 
Atlantic right whales (Eubalaena glacialis Müller 1776, Figure 1), for 
which an annual count, based on a near complete photographic cen-
sus of the population, has been available for at least the past 25 years. 
During the period 1990–2011, this number had increased on average 
2.8% per year to a minimum population count of 476 in 2011 (Waring, 
Josephson, Maze-Foley, & Rosel, 2016).

How has it been possible to conduct a near complete census of a 
free-ranging whale species? First, right whales are individually identi-
fiable at an early age due to their unique callosity patterns (Hamilton, 
Knowlton, & Marx, 2007). North Atlantic right whales are designated 
as an endangered species under U.S. law, and most of the population 
spends a substantial amount of time in U.S. waters. They are subject to 
human-caused mortality due to commercial fishing and shipping (van 
der Hoop et al., 2013; Knowlton et al., 2015, Conn & Silber 2013). 
Nonprofit science organizations, university researchers, and U.S. gov-
ernment agencies (state and federal) have pooled substantial boat and 
aerial survey efforts, to photographically identify individual whales, 
collect genetic samples, document calving and mortality events, as-
sess health status, and collect evidence of entanglement in fishing 
gear through the North Atlantic Right Whale Consortium (Hamilton 
et al., 2007; Knowlton, Hamilton, Marx, Pettis, & Kraus, 2012; Rolland 
et al., 2016; Frasier, McLeod, Gillet, Brown, & White, 2007, http://
www.narwc.org/). The resulting accumulation of individual resighting 

records forms the basis of an annual assessment of population status 
of North Atlantic right whales conducted by the U.S. National Marine 
Fisheries Service (NMFS). Because of their small population size, legal 
status, and efforts to mitigate human-caused mortality, development 
of a regular, accurate evaluation of right whale abundance is essential 
to inform attempts to mitigate anthropogenic impacts.

North Atlantic right whales pose an interesting challenge for abun-
dance estimation. Individuals can range from Florida to the Gulf of 
St. Lawrence and beyond, occasionally as far as northern Norway 
(Jacobsen, Marx, & Øien, 2004). Over the course of a year, there is no-
where among their favored habitats where all right whales are present 
at one time (Brillant, Vanderlaan, Rangeley, & Taggart, 2015; Brown, 
Kraus, Slay, & Garrison, 2007). However, their regular seasonal use of 
well-known habitats in inshore waters has made the field effort and 
regular documentation possible. In particular, substantial aerial sur-
vey effort, specifically for the photo-identification of North Atlantic 
right whales, has occurred in their southern (Florida, Georgia) calving 
grounds during the winter calving season (Keller, Garrison, Baumstark, 
Ward-Geiger, & Hines, 2012) and through the Gulf of Maine almost 
year-round (Roberts et al., 2016). There is no equivalent field program 
dedicated to any other whale species internationally.

The ability to identify individual whales at an early age due to their 
unique callosity patterns, coupled with annual surveys, albeit with 
variable effort, of most whale habitats for more than 30 years, has 
generated an extensive individual sightings database of most animals 
in the western North Atlantic right whale population. Previous studies 
have used these records to characterize the demographics of North 
Atlantic right whales. From those studies, it is apparent that, at a min-
imum, a priori consideration must be given to potential differences in 
survival rates and recapture probabilities among life stages, as these 
will affect the success of resighting individuals (Brown et al., 2001; 
Caswell, Fujiwara, & Brault, 1999; Fujiwara & Caswell, 2001). In this 
case, when sighting effort is effective and high, a trend in abundance 
is evident from a simple accounting procedure (Waring et al., 2016). 
During periods when sighting effort declines and is less effective, re-
sulting in a decline in the probability of resighting individual animals, 
statistical approaches to estimate demographic parameters must be 
cognizant of these sources of heterogeneity.

However, since 2011, there have been changes in the distribu-
tion of North Atlantic right whales. For example, North Atlantic right 
whales have occurred in only very low numbers in the Bay of Fundy 
since 2011 (SDK, unpubl. data). The processes driving this change are 
unclear. One result of the changes in both whales’ distribution, and in 
survey effort, has been that the likelihood of detecting each individual 
North Atlantic right whale each year has declined (Waring et al., 2016), 
thereby reducing the reliability of the previous, census-based estimate 
of their abundance.

The open population models developed by Jolly (1965) and Seber 
(1965) were an important step in estimating abundance parameters 
from the periodic recapture of marked individuals because they al-
lowed both recruitment and loss to occur between periods of recap-
ture. If one can, on multiple occasions, randomly sample members of 
the study population and track the capture histories of all individuals 

F IGURE  1 Overhead view of a feeding North Atlantic right whale, 
Eubalaena glacialis. Image collected under U.S. Marine Mammal 
Protection Act research permit number 17355. Photograph credit: 
National Oceanic and Atmospheric Administration/Northeast 
Fisheries Science Center/Christin Khan

http://www.narwc.org/
http://www.narwc.org/
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caught at least once, then these data provide the opportunity to esti-
mate both abundance and survival rates. Using open Jolly-Seber mark–
resight/recapture (MRR) models to estimate abundance is uncommon 
in ecology, because the resultant estimates of N are prone to bias re-
sulting from capture heterogeneity (for example, see Nichols, Hines, & 
Pollock, 1984). Recent developments of open MRR models allowed for 
increased structural complexity of the models (see Williams, Nichols, 
& Conroy, 2002 for a review) to better match the complexity of bi-
ological and sampling processes they attempt to characterize. Most 
recent developments in MRR modeling, using Bayesian approaches to 
inference, have attempted to accommodate multiple sources of pro-
cess and sampling noise and thereby reduce bias (Clark, Ferraz, Oguge, 
Hays, & DiCostanzo, 2005; Link & Barker, 2005).

Declines in abundance are an accepted indicator of concern for 
threatened and endangered species (IUCN 2012). When trends in ab-
solute abundance can be developed on a regular and timely schedule, 
a robust picture of a species’ status may emerge, and when combined 
with other demographic measures may lead to the better targeting of 
conservation strategies. We developed a Bayesian implementation of 
an open population MRR model to produce estimates of abundance 
and survival rates of North Atlantic right whales. We use these, to-
gether with observed annual calving rates, to assess the status of this 
population. With these results, we then assess the value of the past, 
and ongoing, photo-identification survey effort for North Atlantic right 
whales for assessing trends in abundance of this species.

2  | METHODS

We used information developed from the catalog of sightings re-
cords of photographically identifiable right whales (Hamilton et al., 
2007) to estimate annual abundance and class-specific survival 
rates for western North Atlantic right whales during 1990–2015. 
Resighting histories of known individuals were used to estimate 
survival rates and abundance in a Bayesian, state–space formula-
tion estimated using markov chain monte carlo (MCMC) simula-
tion. Animals enter the study when a credible suite of photographs 
are taken that allow near error free recognition (Frasier, Hamilton, 
Brown, Kraus, & White, 2009). While others have used catalog data 
collected since 1980 to characterize right whale survival (Fujiwara 
& Caswell, 2001, Robbins, Knowlton & Landry,2015), we were con-
cerned that during the early development of the catalog (1980–89), 
there were retrospective recaptures hidden within the histories of 
individuals. A retrospective recapture occurs when adequate identi-
fying features are fully photographed in one year allow a researcher 
to identify a previously captured but inadequately photographed 
animal from archived images and thereby increase the known life 
span within the capture history. The presence of retrospective 
recaptures would inflate survival rates, because animals poorly 
photographed that die before they are seen again cannot be ret-
rospectively recaptured. In addition, prior to 1990, surveys of the 
calving area were limited, which greatly reduced the likelihood of 
capturing some individuals. To avoid the influence of retrospective 

recaptures and the effect of reduced early survey effort in the calv-
ing area, we limited the estimation of parameters to the period 
1990–2015. However, information about animals identified prior to 
1990 was used to inform initial values and the known states and age 
covariates during the study period.

2.1 | The data

We acquired data on 61,178 sightings of cataloged individual 
North Atlantic right whales extracted on 25 October 2016 from a 
database curated by the New England Aquarium (NEAq, Boston, 
Massachusetts, USA). Identifications of individual whales were pro-
vided by NEAq personnel and based primarily on photo-identification 
using natural markings (Hamilton et al., 2007; Kraus et al., 1986) and 
supplemented with genetic markers (Frasier et al., 2007). We con-
sidered the survey year to be 1 December-30 November because 
late fall (October and November) represents a period of very few 
sightings over the study period and because December marks the 
beginning of the right whale calving season. That is, the “1990” 
year starts on 1 December 1989 and ends on 30 November 1990. 
Capture histories were built by compressing sighting records of in-
dividual whales during a year (often multiple sightings of the same 
individual in multiple geographic areas throughout the year) into a 
single binary observation (seen or not seen). Thus, the occurrence of 
each whale during the 26 annual sample periods during 1990–2015 
constituted a capture history, and together these histories became 
the principal data used to estimate abundance and survival.

Capture histories were used to develop a state matrix. For each 
whale, any capture interval for which it was known to be alive was 
coded as stateit = 2, where the subscript i refers to the individual 
whale, and t refers to the year. Any period during and after which 
a whale was discovered dead was coded as stateit = 3. Any period 
prior to the birth year of a known-age whale was coded as not yet 
entered (stateit = 1). All other values in the state matrix were coded 
as unknown (NA). Known states were frequently informed by infor-
mation gained prior to 1990 if an animal was known to be alive prior 
to the first time it was seen during 1990–2015. (Example, an animal 
seen in 1989 but not seen again until 1992 was given states of 2 
for 1990 and 1991 as well as any year up to the last year that it was 
seen). If an animal was of unknown age when first seen after 1990, 
states in the data matrix prior to the year first seen were treated as 
unknown (NA). In addition to the primary data, the known states 
were informed by a sighting records posted online (http://rwcatalog.
neaq.org) after 25 October 2016 for evidence of sightings after 30 
November 2015.

To further inform the modeling process, we also used other infor-
mation associated with the resighting of individual whales, including 
known birth and death years, sex, and age. To accommodate the pos-
sible effect of differential survival among the youngest age groups, 
we categorized animals to one of 6 age classes, 0, 1, 2, 3, 4, and 5+ 
(animals 5 and older). For purposes of estimating age-related survival, 
animals of unknown age at entry were treated as though they were 
age 5+.

http://rwcatalog.neaq.org
http://rwcatalog.neaq.org
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2.2 | Analysis

To estimate abundance and survival of North Atlantic right whales, 
we followed Kéry and Schaub’s (2011) and Royle and Dorazio’s 
(2012) outlines of a multistate formulation for the estimation of a J-S 
model of MRR data in a Bayesian framework. Expanding upon that 
approach, we separated the likelihoods associated with state transi-
tion or biological process from that of the observation process. The 
biological states modeled were as follows: (i) not yet entered into 
the population, (ii) alive, and (iii) dead. The two observed states were 
seen or not seen. To account for the possibility that an animal might 
enter the population and yet never be seen, which is a necessary 
parameter for the derivation of abundance estimates, we augmented 
the capture histories (Royle & Dorazio, 2012). Data augmentation, 
as used in a Bayesian capture–recapture framework, is a modeling 
process to address the occurrence of unobserved individuals in a 
population of interest. Royle and Dorazio (2012) describe data aug-
mentation of capture–recapture data in detail. In this instance, we 
allowed that as many 200 additional individual whales may have en-
tered the population but were never captured during our study pe-
riod. The number actually estimated to have entered but were never 
seen results from estimating the probability of entry which is one of 
the model parameters.

The open population mark–recapture model of Seber (1965) 
made assumptions of capture and survival probability homogeneity 
among individuals, which is often extended to groups in more com-
plex models (Williams et al., 2002). Most long-lived mammals show 
variation in survival rates according to sex and age (Caughley, 1966). 
In addition, Cormack-Jolly-Seber (CJS) models fit to earlier subsets 
of North Atlantic right whale catalog data suggested that knowledge 
of sex and age/stage should be used to reduce capture and survival 
heterogeneity (Caswell et al., 1999; Fujiwara & Caswell, 2001; RMP 
unpublished data). Finally, abundant evidence exists demonstrat-
ing that (i) effort and success of resighting whales have varied over 
time (Hamilton et al., 2007), (ii) estimated survival of whales has 
varied with time (Fujiwara & Caswell, 2001), and (iii) individual cap-
ture probabilities are heterogeneous due to differential use among 
habitats by individual whales and by different demographic groups, 
(Brown et al., 2001).

To accommodate heterogeneity in capture and survival rates, 
we incorporated linear relationships (Lebreton, Burnham, Clobert, 
& Anderson, 1992) to the logit of survival and capture probabilities. 
Survival probability was modeled as: 

where ϕi,t is survival of probability of the ith individual for the tth inter-
val, β1 is the intercept whose value in the logit is the mean of calf sur-
vival, β2 is the added effect of being a female > 4 years old on survival, 
sexi is a data value of 1 for female, 0 for male, and NA for unknown, 
Adulti,t is a data value of 1 if the ith animal is classed as age >4 in the 
tth interval, β3 is the linear effect of age, Agei,t is a data value ranging 
from 0 to 5 for the ith individual at time interval t, εt is the random 
effect of year on survival.

Similarly, we modeled capture probability as: 

where α1 was the intercept and hence the effect of being a female 
on capture probability, α2 was the added effect of being a male on 
capture probability, Timet was the added effect of the year t (a factor) 
on average capture probability with Timet = 0 for t = 1990, ζi was the 
random effect of the ith individual on capture probability.

For estimation, we assigned vague priors on all linear terms in the 
logit except the random coefficients εt and ζi, as uniform (−10, 10). 
Random coefficients εt and ζi were given normal (0, δ) and normal (0, 
σ) priors, respectively. Standard deviation terms δ and σ were given 
vague priors of uniform (0.001, 10). The probability of entry into the 
population, γt, was allowed to vary among time intervals, and each γt 
was assigned a uniform (0, 1) prior. Transitions among states (not yet 
entered, alive, or dead) were modeled as a discrete categorical ran-
dom variable dependent on the prior state according to the following 
probabilities (common table which shows the current state in the first 
column and the probabilities to transition to the other states in the 
following columns):

Not entered Alive Dead

Not entered 1 − γt γt 0

Alive 0 ϕi,t 1 − ϕi,t

Dead 0 0 1

The observed data (seen or not seen) were considered dependent 
on the animal’s state and were modeled as Bernoulli (p[s]) according 
to the following:

State Seen Not Seen

Not entered 0 1

Alive pi,t 1 − pi,t

Dead 0 1

Finally, missing data on the sex of individual whales were mod-
eled as Bernoulli (ρ), where ρ was given a somewhat informative beta 
(5, 5). Using the above structure, data were modeled using program 
JAGS (Version 4.2) MCMC simulator (Plummer, 2003) accessed via 
R statistical program (R Development Core Team 2012) and package 
run.jags (Version 2.0.2-8, Denwood, 2016). When dealing with model 
parameters in all simulation exercises, we provided random starting 
values from within the range of the prior for that parameter. We pro-
vided initial values for unknown states (state.initit) which were state.
initit = 1 prior to the first year seen and state.initit = 3 after the last 
year seen. Unknown sexes were assigned a Bernoulli (0.5) random ini-
tial value. We used an adaptation + burn in phase of 5,000 iterations 
and sample size of 20,000 iterations for estimation. JAGS code for the 
primary model is provided in a Supporting Information. In all cases, to 
determine when the algorithms had converged, we used three chains 
and computed the Gelman–Rubin convergence statistic, which we re-
quired to be <1.1 for all model parameters (Gelman & Rubuin, 1992). 

Logit(ϕi,t)=β1+β2 ∗ (sexi)∗Adulti,t+β3 ∗Agei,t+εt

Logit(pi,t)=α1 ∗ (sexi)+α2 ∗ (1−sexi)+Timet+ζi
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For starting values in the known states as data instance, missing values 
for all known data quantities were submitted, including a value of 3 for 
all instances after the last year seen when not known to be dead, and 
a value of 1 for all animals in the augmentation set of capture histories. 
Covariates concomitant with capture histories in the data augmenta-
tion set were unknown for sex and age = 5 and adult = 1 adult for age 
class.

As further support for our model choice and lack of sensitivity to 
assigning latent ages to the 5+ class, we conducted a simulation study 
which is described in the Supporting Information.

2.3 | Minimum number alive

Because right whales are long lived and because this population is sur-
veyed so heavily, a relatively straight forward accounting procedure 
has been used to characterize their abundance. As an accounting ex-
ercise separate from the statistical model described above, minimum 
number alive (MNA) was calculated as the count of all animals known 
to be alive in a year, because they were either seen in that year or seen 
in the years before and after that year. MNA will be less than or equal 
to the actual population size, because it misses animals alive but not 
yet cataloged and animals still alive after the last year in which they 
were seen. However, the combination of high annual capture rates and 
high survival among right whales should make this bias small but tend-
ing to increase toward the end of the study period. As a comparative 
measure, we calculated MNA for each year in 1990–2015 and plot-
ted those values together with posterior medians from the Bayesian 
hierarchical model.

2.4 | Fecundity

Maintained along with the sightings histories of individuals are annual 
calf production data (Kraus, Pace, & Frasier, 2007). The detection of a 
calf occurs through photo-identification of an adult female being ac-
companied by a calf in the wintering area. The area is heavily surveyed 
and the rate of entry of animals of unknown age entries of individuals 
into the photo-identification catalog indicates that calves have been 
rarely missed since 1990. We calculated an annual per capita produc-
tivity index (API) as: 

We plotted these values over time to look for patterns that, to-
gether with estimates of survival, may help explain any trends in 
population size or crude growth rate. We calculated an annual crude 
population growth measure as: 

where the values for Nt were taken as the median values among the 
MCMC chains. Using the idea of growth constructed thusly, a post hoc 
evaluation of periodic growth between period t and period t−k and 
associated uncertainty could be calculated as attributes of the pos-
terior distribution of the calculated Nt/Nt−k for each MCMC iteration.

3  | RESULTS

This analysis included capture histories from 658 whales, including 
280 females, 328 males, and 50 animals of unknown sex. Of the 658 
individual whales seen during the study period, 247 were first seen 
prior to 1990. Of the remaining 411 whales, 101 were at least 1 but 
otherwise were of unknown age, and treated as though they were 5+ 
for purposes of survival estimation. The primary multistate Bayesian 
MRR model employed here had excellent convergence statistics as 
judged by the computed Gelman-Rubin convergence statistics (All 
parameter estimates and associated MCMC attributes are available 
in the Supporting Information) and posterior distributions for all lin-
ear (in the logit space) parameters associated with time. Sex and age 
covariates contributed significantly (i.e., were distinct from zero) to 
estimates of survival and capture probability.

Estimated abundance mimicked MNA values quite closely until 
the last few years of the study period, when as expected, estimated 
abundance did not drop precipitously as did MNA (Figure 2). In ad-
dition, lower bounds of 95% highly credible intervals were usually at 
or above MNA, a value previously used by NMFS to judge the status 
of the right whale population (Waring et al., 2016). Estimated popula-
tion size showed relatively consistent slow growth during 1990–2010, 
with two small inflections prior to 2010. There was a likely one single-
year decline in median abundance during 1993, and a brief period 
(1997–2000) of no growth shortly thereafter. Our analysis estimated 
a 99.99% probability that the 2015 abundance represents a decline 
since 2010 (Figure 2, inset).

Estimated survival rates from the model showed relatively 
minor random fluctuations in survival among years (Figure 3). The 
means of the estimated mean survival rates (Column 4 in Supporting 
Information I) and mean of their estimated SD (Column 5 in Supporting 
Information I) were as follows: for males, 0.985 ± 0.0038; for females, 
0.968 + 0.0073; and for calves 0.955 ± 0.0127.

Reduced survival of 5+ females compared to 5+ males has resulted in 
diverging trajectories in male and female abundance (Figure 4). In 1990, 
there were an estimated 142 males (95% credible intervals 143–152) 
and 123 (116–128) females (Figure 4, also see Supporting Information 
I), or 1.15 males per female. By 2015, model estimates indicate that the 
species comprised 272 (261–282) males and 186 (174–195) females, or 
1.46 males per female. Figure 4 also shows that the previous inflections 
in the trend in the abundance of North Atlantic right whales were due to 
decreases in female abundance, not male abundance.

In contrast to small amounts of variability apparent in estimated 
survival rates, estimated mean capture probability was modest early, 
rose to about 90% until 2011, and dropped off to between 65% and 
80% during 2012–2015 (Figure 5).

Calf production, when viewed as a per capita output, varied con-
siderably during the study period (Figure 6) averaging 4.4% and rang-
ing from 0.3% to 9.5%. Three periods of very low per capita production 
(1993–95, 1998–2000, and 2012–2015) coincided with no or nega-
tive growth (Figure 6b) during 1992–93, 1997–2000, and 2011–2015 
which is evident when abundance estimates are viewed as a time 
series (Figure 1).

API = (number of calves detected)∕

(estimated population size for each time period)

Growtht = Nt∕Nt−1
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4  | DISCUSSION

4.1 | How many North Atlantic right whales?

Although there is a substantial literature on the biology of North 
Atlantic right whales (Kraus & Rolland, 2007), this is the first published 
estimate of their abundance that has been derived using a statistical 
model. The point estimate of abundance of North Atlantic right whales 
increased at approximately 2.8% per year over the first 21 years of 
the time series, from 270 in 1990 to 482 in 2010, after which this 
increase has leveled out, and declined to 458 (95% credible intervals 
[444, 471]) in 2015. Of particular concern is the divergent trends in 
the abundance of male and female North Atlantic right whales. In 
both 2010 and 2011, there were estimated to be 200 (combined 95% 
credible intervals 193–206) females in the species, declining to 186 
(174–195) in 2015. Males declined from a peak of 283 (277–288) in 
2010, to 272 in 2015 (261–282).

Examining the credibility intervals for all estimates from during 
2010–2015 makes it difficult to determine whether the apparent de-
cline is real. However, examination of the posterior values of growth 
from 2010 to 2015 (N2015/N2010) strongly suggests a decline (Figure 2, 
inset). The probability that growth < 1 (i.e., a decline) from 2010 to 
2015 was 99.99%. Median growth from 2010 to 2015 was 0.950 
(95% credible interval: 0.925, 0.971), suggesting a decline in abun-
dance of 5% overall, or just under 1% per year over that period. Broken 
down by gender, males declined just under 4%, and females declined 
approximately 7%.

Prior to our work, two series of estimates, both based on enu-
merating known individuals, have been available. One, the MNA de-
scribed above, has been used to inform NMFS stock assessments 
(Waring et al. 2016) and was structured to meet a specific legal 

requirement under the U.S. Marine Mammal Protection Act (MMPA) 
for all marine mammal stocks under U.S. jurisdiction. Because all 
whales are not detected each year, the last few values in a time 
series suffer from the increasing probability of assuming a whale 
is dead when it is still alive, a condition which worsens as annual 
capture probabilities decline.

A second estimate is produced each year by the North Atlantic 
Right Whale Consortium (http://www.narwc.org/) from an approach 
developed by the New England Aquarium (Kraus, Hamilton, Kenney, 
Knowlton, & Slay, 2001; Kraus et al. 2016). It differs from the MNA 
above in that an identified individual whale is assumed to be alive until 
seen dead or not observed for six years after the last year seen. The 
Consortium is explicit that this is not a true population estimate (e.g., 
NARWC 2015), although it tends to be treated as one. By assuming a 
mortality schedule for undetected whales at the end of the time series, 
the consortium approach buffers the declining probability of detecting 
a whale that is still alive toward the end of the time series but has 
the potential of positive bias in estimated abundance if the assumed 
mortality schedule does not match the true mortality schedule. While 
the effect of declining capture success would produce MNA values 
likely construed as a decline in abundance, the Consortium approach 
has the potential to lag in its detection of a true decline at the end of 
a time series.

Changes in habitat use patterns among North Atlantic right 
whales in recent years coupled with reduced resources for survey-
ing the more distant areas of their known range mean that resighting 
rates of individual whales have been declining in the past few years 
(Figure 5). Given these data issues, and the well-known problems with 
bias at the end of a time series of MNA estimates (Pocock, Frantz, 
Cowan, White, & Searle, 2004), we developed this statistical frame-
work for estimating North Atlantic right whales’ abundance. The new 

F IGURE  2 Abundance of North Atlantic right whales 1990–2015 as estimated from mark–resight data as calculated from two procedures. 
Black diamonds are counts of the minimum number of individuals seen alive (MNA) that year plus those seen before and after that year. Circles 
with error bars are posterior medians and associated 95% credible intervals from a Bayesian mark–recapture model allowing random fluctuation 
among years, age effects and adult female effects on survival, as well as sex and time effects and random effects of individual catchability on 
capture probabilities together with their 95% critical regions. Inset shows the posterior distribution of estimated growth of the North Atlantic 
right whale population between 2015 and 2010 measured as a ratio (N2015/N2010) of abundance estimates from Bayesian implementation of J-S 
model. Almost all (99.99%) of the estimates of growth are below 1.0, indicating a population decline

(a)
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abundance estimates track the MNA closely through most of the time 
series, and the new point estimates always lie above the MNA (as is 
mathematically appropriate). Most significantly, the structure of our 
model provides confidence that the observed lack of increase in North 
Atlantic right whales’ abundance since 2011 is not due to reduced 
detection of whales in recent years, rather it reflects a true change 
in trend.

4.2 | Survival and reproductive rates

Between 1990 and 2015, annual survival rates of male North Atlantic 
right whales over four years of age fluctuated little, at around 0.98. 
Annual survival rates for females 5+ were lower, at around 0.97, 

leading to the current situation where there are substantially more 
males than females in the population (Figure 4). Assuming a linear (in 
the logit space) change in survival from 0 to the 5+ class contributed 
significantly to reducing deviance. The resulting coefficient had a pos-
terior median of 0.296 (95% h.c.r = [0.187, 0.404]), which due to the 
direct relationship between coefficient and odds ratios (Hosmer & 
Lemeshow, 1989), can be interpreted as the odds for survival increas-
ing at about 30%/year of age for the first 5 years of life, but likely 
biased somewhat low due to pooling animals of unknown age into the 
5+ class. This relationship produced estimated survival rates of calves 
that ranged from 0.894 to 0.922, with animals ages 1–4 having es-
timated survival rates intermediate between calves and 5+ year old 
males.

F IGURE  3 Estimated survival rates 
and associated 95% credible intervals 
of three classes of North Atlantic right 
whales 1990–2015 based on a Bayesian 
implementation of J-S model allowing 
random fluctuation among years and using 
known states as data
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F IGURE  4 Median abundance and 
associated 95% credible intervals by sex 
of North Atlantic right whales 1990–2015 
based on a Bayesian MRR model allowing 
random fluctuation among years for 
survival rates, treating capture rates as 
fixed effects over time, and using both 
observed and known states as data
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Estimated calf survival is likely biased high for two reasons. First, 
constraining heterogeneity in survival among age classes to a linear (in 
the logit space) relationship might have proved limiting, but more im-
portantly, most known-age animals enter the catalog (i.e., develop cal-
losity patterns that make them identifiable) at about 6 months. Thus, 
survival estimates for that class represent about ½ a year. Ecologically, 
the viability of younger right whale age classes (1–4), although quite 
high, indicates that experience matters in this long-lived whale spe-
cies living in an anthropogenically perturbed environment. These esti-
mated survival rates are not directly comparable to previous estimates 
(Caswell et al., 1999; Fujiwara & Caswell, 2001) as the models were 
constructed very differently and cover different time periods. While 
these estimated survival rates for animals 5+ appear higher than pre-
vious estimates, we believe this is due to known mortality information 
used in these models and not used in Cormack–Jolly–Seber formu-
lations similar to that used by Caswell et al. (1999) or the multistage 
model of Fujiwara and Caswell (2001).

Annual per capita calving rates averaged only 4.4% and showed 
substantial annual variability. These rates are low and variable when 
compared with calving rates of congeneric Southern right whales, 
E. australis, (Best, Brandão, & Butterworth, 2001; Carroll et al., 2013), 
for which the API would be roughly 8%, assuming total mortality of 2% 
and the observed population growth rate of 6%. Periods of poor calv-
ing in the mid and late 1990s and 2012–2015 are evident (Figure 6a). 
Assuming the same population size as in 2015, the API in 2016 and 
2017 has also likely been less than needed for replacement of dying 
whales (Figure 6a), which suggests that abundance will continue to de-
cline through 2017. Calf production in North Atlantic right whales has 
been linked to right whale health (Rolland et al., 2016), oceanographic 
processes (Meyer-Gutbrod, Greene, Sullivan, & Pershing, 2015), and 
the stressors from an urbanized ocean (e.g., ocean noise, disease, pol-
lution, or repetitive interactions with fishing gear, including the effects 
of drag from entanglement (van der Hoop et al., 2016; van der Hoop, 
Corkeron, & Moore, 2017). However, while some or all of these factors 

may be contributing to reduce calving rates, the causal mechanisms 
remain unknown.

Other information on the health status of individual right whales 
informs our understanding of survival and reproduction. As recently 
reviewed (Kraus et al. 2016), there is a suite of indicators that pro-
vide supporting evidence that some anthropogenic threats to North 
Atlantic right whales are not diminishing and may be getting worse. 
These indicators include declining overall body condition (Rolland 
et al., 2016); very high and apparently increasing rates of entangle-
ment in fishing gear (Knowlton et al., 2012); fishing gear that has be-
come heavier and so likely more injurious to whales (Knowlton et al., 
2016); and evidence that previous management interventions have 
not measurably reduced entanglement or entanglement-related mor-
tality (Pace, Cole, & Henry, 2015). Additionally, recent research has 
revealed the substantial energy drain on individual whales from drag 
of ongoing entanglements, which likely results in reduced health and 
fitness (van der Hoop et al., 2015, 2017). As rates of entanglement 
in fishing gear appear to be increasing in occurrence and severity 
(Knowlton et al., 2012, 2016), it is likely that impacts on morbidity are 
increasing as well. There are also indications that noise from shipping 
increases the levels of stress hormones in North Atlantic right whales 
(Rolland et al., 2012), and modeling suggests that their communication 
space has been reduced substantially by anthropogenic noise (Hatch, 
Clark, Van Parijs, Frankel, & Ponirakis, 2012).

4.3 | Data collection, trend 
detection, and conservation biology of small 
populations of marine wildlife

A comprehensive time series of photographic identifications of indi-
vidual animals provides a suite of information beyond determining 
which animals are alive, where they go, and which females calve each 
year. In the case of North Atlantic right whales, photo-identifications 
have been used to determine individuals’ health status (Pettis et al., 

F IGURE  5 Estimated recapture 
probability and associated 95% credible 
intervals of North Atlantic right whales 
1990–2015 based on a Bayesian MRR 
model allowing random fluctuation among 
years for survival rates, treating capture 
rates as fixed effects over time, and using 
both observed and known states as data
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2004) and scarring patterns (Knowlton et al., 2012) providing input 
into the indicators described in the previous section. Other samples, 
(e.g., skin and blubber biopsy, feces) collected ancillary to photo-
identification sampling from vessels, further inform our understand-
ing of North Atlantic right whales’ biology and conservation status 
(Corkeron, Rolland, Hunt, & Kraus, 2017; Frasier et al., 2007). Through 
this, photo-identification-based monitoring provides a more compre-
hensive suite of data on a species’ status than do other forms of abun-
dance estimation, such as distance sampling-based surveys (either 
vessel or aerial, e.g., Hammond et al., 2013).

Thanks to the substantial field efforts made by, and collaborations 
between, multiple organizations over decades, here we show that we 
can detect relatively subtle annual changes in the abundance of North 

Atlantic right whales. Importantly, we demonstrate the capacity to 
detect multiple inflections in a time series that trended upwards for 
over two decades but is now flat or possibly declining. Also, we are 
able to make inference on changes in the abundance of North Atlantic 
right whales at a time when our capacity to find whales in the field 
has been reduced, due to both the movement patterns of the whales 
and the support available to collect field data. In our chosen modeling 
framework for these data, we can also inform management that, with 
regard to overall survival, little has changed in 25 years. And for as 
yet unknown reasons, recruitment (calf production) is not maintaining 
pace with mortality.

Problems associated with detecting trends in the abundance 
of marine wildlife populations (Gerrodette, 1987; Taylor, Wade, De 

F IGURE  6 Annual productivity index (a) 
for North Atlantic right whales calculated 
as the number of detected calves/(median 
of posterior distribution of Estimated 
population size) and (b) crude growth 
(Nt+1/Nt) rate based on model medians. 
Note that the last two points in plot (a) 
assume the 2015 population size for the 
calculation of API
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Master, & Barlow, 2000) spurred the development of the Potential 
Biological Removal (PBR) metric as a trigger for management response 
to anthropogenic mortality of marine mammals (Wade, 1998). The ini-
tial work demonstrating the implausibility of detecting a population 
trend for most small populations of marine mammals (and hence the 
need to develop the PBR approach) was developed in a null hypoth-
esis significance testing paradigm (Gerrodette, 1987). By relying on a 
Bayesian approach, we can provide management with a probabilistic 
statement about the likelihood that the population has declined as op-
posed to rejecting (or not) a null hypothesis of no decline. In this rare 
instance, we provide a robust depiction of a species’ status. However, 
the general problem—that uncertainty around abundance estimates 
will pose problems for detecting trends in small populations—remains. 
In this case at least, decision makers decide their comfort level with 
regard to odds of a decline. A further complication is that, while the 
reduced capacity to identify population trends in other marine mam-
mal populations has been skirted with the PBR approach, the time re-
quired to develop and implement mitigation and management actions 
can take years. For example, the recent designation of Critical Habitat 
for North Atlantic right whales took over 6 years from when NMFS 
was first petitioned to act (National Marine Fisheries Service 2015) 
to designation. Given US legislative requirements, management pro-
cesses of this sort are inherently slow. Therefore, it is even more im-
portant when monitoring very small populations, to be able to detect 
a change in abundance quickly—whether a decline or an increase—in 
order to further assess the efficacy of current management actions or 
develop new ones.

5  | CONCLUSION

With an estimated abundance of less than 500 individuals, North Atlantic 
right whales remain one of the most endangered cetaceans (Reilly et al. 
2009). Unlike several other baleen whale populations, their population 
has not been rebounding well in recent decades (Thomas, Reeves, & 
Brownell, 2016), and our analysis raises concern that the slow recov-
ery has stopped or even reversed. In the two decades since the PBR 
approach has been in place, enumerated anthropogenic mortalities of 
North Atlantic right whales have always exceeded PBR (van der Hoop 
et al., 2013), despite substantial resources directed at addressing this 
problem (McDonald, Lewison, & Read, 2016; Pace et al., 2015). The pur-
pose of PBR as a limit reference point was to instigate action to mitigate 
the impact of fishery-caused mortality on marine mammal populations 
or species. For North Atlantic right whales, our analysis of their current 
trend in abundance, coupled with other indicators (Kraus et al. 2016) 
demonstrates the need for enhanced efforts to address anthropogenic 
activities causing morbidity and mortality and to maintain the monitoring 
program that has made this trend analysis possible.
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