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Poor efficacy of some anthelmintics and rising concerns about the widespread drug resistance have high-
lighted the need for new drug discovery. The parasitic nematode Haemonchus contortus is an important
model organism widely used for studies of drug resistance and drug screening with the current gold stan-
dard being the motility assay. We applied a deep learning approach Mask R-CNN for analysing motility
videos containing varying rates of motile worms and compared it to other commonly used algorithms
with different levels of complexity, namely the Wiggle Index and the Wide Field-of-View Nematode
Tracking Platform. Mask R-CNN consistently outperformed the other algorithms in terms of the detection
of worms as well as the precision of motility forecasts, having a mean absolute percentage error of 7.6%
and a mean absolute error of 5.6% for the detection and motility forecasts, respectively. Using Mask R-
CNN for motility assays confirmed the common problem with algorithms that use non-maximum sup-
pression in detecting overlapping objects, which negatively impacts the overall precision. The use of
intersect over union as a measure of the classification of motile / non-motile instances had an overall
accuracy of 89%, indicating that it is a viable alternative to previously used methods based on movement
characteristics, such as body bends. In comparison to the existing methods evaluated here, Mask R-CNN
performed better and we anticipate that this method will broaden the number of possible approaches to
video analysis of worm motility.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Parasitic nematode infections present a substantial problem to
human and veterinary medicine. Anthelmintics are often used as
a weapon of choice to control or eliminate parasitic worms. With
increasing reports of drug resistance, there is an ongoing effort to
develop new anthelmintics [1,2]. In view of this, drug screening
and drug testing methods are clearly necessary. A number of
important human and animal nematodes were already studied in
large chemical library-scale screenings [3,4], although nearly all
of the studies were aimed at well-established non-parasitic
Caenorhabditis elegans because of the scientific interest and medi-
cal applications as potential human disease models [5–9].

Nowadays, in vitro assays can measure the effects of compounds
on development, growth, behaviour, and motility. Several
approaches have been pursued in attempts to deliver robust, auto-
mated assays on the nematode phenotype [10–14]. The current
gold standard for measuring drug effectiveness is in vitro assess-
ment of worm motility, as measured via microscopy. The auto-
mated phenotyping from short video recordings offers a useful
assay for high-throughput whole-organism phenotypic screening
and avoids manual scoring. In assays with parasitic worms under
experimental conditions, several challenges need to be overcome
to enhance the performance of motility measurements. These chal-
lenges are associated with the different worm lengths, their ten-
dency to clump, and also the range of diverse, complex
movement patterns different from that seen in C. elegans.

Focusing on veterinary importance, the parasitic nematode Hae-
monchus contortus, known as the barber’s pole worm, is a model
organism often used for drug screening and studying drug
resistance; due to its economic importance, known genome and
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transcriptome [15,16]. H. contortus infects predominantly small
ruminants. It has a direct life cycle that starts with eggs being shed
onto a pasture in the faeces of the infected animals. The cycle con-
tinues through three free-living larval stages to the parasitic fourth
larval stage and lastly adults, which reside in the abomasumwhere
they feed on blood. The ability to maintain H. contortus infection in
a natural host animal and produce different larval stages in vitro
provides experimental advantage. The infective third-stage larvae
(L3s) can be stored, and researchers commonly use L3s or in vitro
fourth larval stage for motility studies. Many automated or semi-
automated approaches to measure motility have already been
described such as via electrical impedance [17] or infrared light
beam-interference [7]. Nevertheless, in our study of analysing the
video recordings in H. contortus larvae to assess the motility, we
have compared various (representative) algorithms with different
levels of complexity in terms of model preparation as well as com-
putational cost. We were interested to assess if the additional com-
plexity of the methods leads to a sufficient increase in precision,
that would justify the time-performance trade-off of these
methods.

The first one mentioned is an algorithm which calculates a
motility index value based on measuring the standard deviation
of the pixel’s light intensity averaged for a number of frames
[18]. This Wiggle Index (WI) does not allow for the detection of
the phenotype of individual worms; still, this assay led to many
‘‘hit compounds” in screening of a large variety of compound
libraries [19,20]. The second approach called Wide Field-of-View
Nematode Tracking Platform (WF-NTP) is built on the use of the
Gaussian adaptive threshold of the image frames to identify worms
and was applied in model free-living nematode C. elegans [21]. It
was initially developed for drug screening purposes; nevertheless,
it has also found applications in other studies such as detailed
genetic or behavioural studies. Nonetheless, WF-NTP has a major
limitation for images with overlapping objects as these objects
get discarded by the algorithm based on an upper pixel size thresh-
old per object, resulting in underestimation of the the total number
of detected objects in an image [21]. In our study, we customized
the associated WF-NTP software written in Python and compared
it to the last approach which involves the application of deep
learning.

The advent of machine learning has revolutionized the survey-
ing and classifying of biological data including image recognition,
enabling the automation of many tasks. The most important aspect
of large-scale computerization is the possibility to automate
in vitro assays and scale them, allowing researchers to avoid
tedious repetitive tasks and focus on activities where they can
use their knowledge to provide added value, leaving the analysis
and interpretation of the data as the only rate-limiting step. In
the field of computer vision, deep learning algorithms with a con-
Fig. 1. Mask R-CNN training and detection process (a) annotated images used for training
proposal network (solid boxes) and the refined regions (dashed boxes), (c)Mask R-CNN p
stage larva) with an associated confidence level and the mask of the object (coloured co
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volutional neural network (CNN) architecture have made rapid
advancements on a variety of image classification tasks in cell cul-
tures [22], and the model organism C. elegans [23,24], even para-
sitic nematode in plants [25], yet none of them have been
applied to parasitic gastro-intestinal nematodes of livestock,
including H. contortus. Object-detection-based deep learning meth-
ods have also been adapted for instance segmentation. Here we
used a state-of-the-art region-based CNN called Mask R-CNN
[26], which can be trained based on a set of annotated images
(Fig. 1a) to detect the objects of interest, in our case the larval
stages of H. contortus. In the first step, the algorithm uses a regional
proposal network (RPN), i.e., a binary classifier that identifies rect-
angular subsets of the image that are of interest for the given task
and are called regions of interest (ROI). In our case that would be
parts of the image that potentially contain worms. These ROIs
are then refined to cover the whole object (Fig. 1b) and filtered
using non-maximum suppression (NMS). NMS is a process of
removing highly overlapping ROIs, to avoid detecting the same
object multiple times before passing the filtered ROIs as proposals
for classification. The classifier performs a refinement of the ROI
and outputs a final rectangle surrounding the detected object
called a bounding box, the class of the predicted instance along
with the detection confidence and the object mask, which are the
pixels that make up the object (Fig. 1c).

The aim of the study was to train a Mask R-CNN model for
image recognition of different life cycle stages of H. contortus and
evaluate the application of this deep learning algorithm to the field
of drug discovery of anthelmintics. Thereby, we compared the
Mask R-CNN detections and motility predictions to the WI and
WF-NTP methods. Additionally for the motility, we tested a metric
called intersection over union (IoU) instead of body bends from
WF-NTP readout. IoU is used regularly in image recognition to
quantify the extent of overlap between two objects, the intersec-
tion of the objects is divided by the union of the objects, which
results in a numerical value between 0 and 1 (see Graphical
abstract). Furthermore, we discussed the possible application of
automated Mask R-CNN in other assays related to the veterinary
practice.

2. Materials and methods

2.1. Procurement of L3s of H. Contortus

Six-month-old sheep were orally infected with 8,000 infective
L3s of MHco3 strain (Inbred Susceptible Edinburgh, ISE) [27]. Four
weeks post-infection faecal samples were collected. L3s were pro-
duced from eggs by incubating faeces in a plastic box covered with
foil at 27 �C for 7 days. Then, the faeces were rinsed twice in tap
water which was poured into 1,000 mL conical measuring cups,
the algorithm, (b) regions of interest (ROI) detected in the first step by the regional
redictions containing the object boundaries, predicted object classes (i.e., L3 – third-
ntour).
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in which the larvae sank to the bottom. To remove dirt or dead
individuals, the pellet of larvae was pipetted out and filtered
through a 20 lm sieve submerged in water (27 �C). Clean L3s at
a concentration of approximately 4,000 L3 per mL were stored in
culture flasks in water at 10 �C for several months.

During the storage, some larvae naturally die. Prior to the
experiment, we filtered larvae through a 20 lm sieve (for 12 h),
this time collecting both live larvae from the bottom of the sieve
and dead individuals remaining on the sieve.

All experimental procedures were examined and approved by
the Ethics Committee of the Ministry of Education, Youth and
Sports (Protocol MSMT-25908/2014–9).

2.2. Video processing and manual counting

Videos from a microscope camera were recorded for a duration
of 10 s with a framerate of 20 frames per second (fps) with a pixel
quality of 2560 by 2160 (see Supplementary Video). The videos
(.avi with MJPEG compression, � 0.45 GB) were acquired using
NIS-Elements Imaging Software (version 4.20) using a Nikon
Eclipse Ti microscope (4x magnification) with the camera (Andor
Zyla 5.5 sCMOS, 12bit: 2560 � 2160 pixels). The videos were
recorded for different ratios of live and dead larvae (100:0,
75:25, 50:50, 25:75, 0:100; denoted as motility group 100, 75,
50, 25 and 0, respectively) in 9 replicates and they contained on
average 60 worms. The live larvae were kept at 37 �C to maintain
their motility.

The video recordings were processed so that each worm was
labelled with a numeric identifier. A trained human with prior
experience of manual motility assays evaluation assessed each
worm from each video and information about motility and the
dead phenotype was recorded. The discrepancies were dealt with
as follows (i) a dead worm which was moving due to the interfer-
ence of a motile worm was counted as motile; (ii) a live coiled non-
motile worm was counted as non-motile; (iii) the worms which
were not labelled by an algorithm were given an identifier manu-
ally; (iv) worms were excluded from the counts when they
appeared in less than 20 frames; (v) dead phenotype was recorded
when overt microscopical pathologies, such as the presence of
large vacuoles in the tegument and straight phenotype, were
observed.

This manual counting was taken as the referential method for
comparison of accuracy among the three models.

2.3. Wiggle Index analysis

We used an ImageJ implementation of the WI for the analysis
[28]. We did not apply any scaling of the videos, the Gaussian
image blur was set to 2, the number of frames to be averaged
was set to 50 and the motility output was based on the standard
deviation. Since the values from theWI are relative, we used motil-
ity group 100 as the control group to be able to convert these rel-
ative values to percentages. We calculated the mean value for
motility group 100 and divided all values by the mean to obtain
normalized motility values.

2.4. WF-NTP analysis

WF-NTP presents an automated evaluation of motility in C. ele-
gans. For its successful implementation, we adopted the method
for the H. contortus motility assay. The algorithm was based on
three steps; in the first instance all worms in each frame were
detected, in the second step, these detections were linked based
on a neighbourhood search, and in the final step, each worm was
classified as motile or non-motile based on bends per second and
the speed of the worm. However, as these parasites differ in their
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sizes as well as their movement, some modifications to the original
configuration and algorithm were necessary. These modifications
belonged predominantly to two categories, the first was a recali-
bration of the available input parameters of the WF-NTP method.
This included aspects such as the image size, the size of the worms
that we want to detect and other configurations (see Data avail-
ability). The other modifications were changes in the evaluation
of the conditions for worm motility and a limit on the minimum
number of frames that a worm needed to be detected in for it to
be included in the evaluation.

The original method relied on bends per second and the speed
of individual worms to classify them as either motile or non-
motile [21]. When a worm was below a certain threshold of bends
per second and below a certain speed threshold, it was classified as
non-motile. In our settings, the speed threshold was obtained from
the motility group 0. From the initial test for the motility group 50,
the result was that out of 169 worms classified as motile, 23%
exceeded the speed threshold, but no bends were recorded. This
failure to measure bends per second for motile worms, was most
likely caused by the more complex movement of H. contortus. This
led us to replace the original approach with an evaluation metric
IoU that is regularly used in image recognition [29]. The use of
IoU allowed us to use the capabilities of WF-NTP in terms of the
detection and tracking of individual worm instances in an image
and then apply the IoU metric to determine the worm motility.
The calculation of IoU was done for the same worm instance in
neighbouring frames to detect changes on a frame-by-frame basis.
Afterwards, the mean was calculated and worms above a certain
IoU threshold were labelled as non-motile. To ensure that the com-
parison of WF-NTP and Mask R-CNN was aimed at the quality of
the detection of individual worm instances rather than the
approach to determine the motility, we used the same tracking
for detections across frames and the same IoU conditions for both
methods.

Another modification made to the original method was the
introduction of a threshold for the minimum number of frames
that a worm needed to be detected in, in order to be included in
the analysis. The reason for this restriction was that as the individ-
ual worms move, they have a tendency to change shape or overlap
with other worms, therefore in terms of the detection the individ-
ual worm can be lost for a certain number of frames and reappear
later; however, this can lead to counting some instances multiple
times. To limit these potential duplicates (Supplementary Fig S1)
as much as possible and not bias the total number of worms
detected in the video, we selected the highest number of worms
detected in a given video across all frames and added a buffer of
10% in order to account for situations where some worms were
not detected, for example due to their overlaps. This maximum
number then served as a limit for selecting the number of worms
to be evaluated as motile or non-motile. The instances were
selected based on the number of frames in a decreasing order,
therefore ensuring that we had data from enough frames to classify
the worm correctly. Again, this restriction was applied to detec-
tions from Mask R-CNN to enable a comparison under the same
conditions.

2.5. Mask R-CNN analysis

For Mask R-CNN we used the Matterport implementation
(https://github.com/matterport/Mask_RCNN) of the algorithm,
including a trained model using a backbone architecture of Res-
net101. The pre-trained model weights were obtained from train-
ing the model on the MS COCO dataset [30]. The process of using a
pre-trained model is called Transfer Learning, which is an approach
where the knowledge gained from solving one problem is applied
to a related problem. The motivation for selecting a pre-trained

https://github.com/matterport/Mask_RCNN
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model is that in general deep neural networks require a lot of
annotated data for training and using an existing model and re-
training the top layer of the network allows us to have a smaller
dataset while maintaining good performance. We manually anno-
tated a total of 95 images and divided them into training (69) and
validation (26) using the VGG (Visual Geometry Group) Image
Annotator [31], these images contained three categories of objects;
eggs, first-stage larvae (L1), and L3, to fully utilise the capabilities
of Mask R-CNN which is able to do instance segmentation and clas-
sification. The total number of annotated objects was around
10,400 divided into training (6,800 objects) and validation (3,600
objects). Then we ran the training on a GPU instance until the loss
function showed no signs of improvement. To avoid overfitting, we
used data augmentation and applied one or multiple of the follow-
ing augmentations: flipping, contrast normalization, additive gaus-
sian noise, multiplying the pixels by a number within a given
interval to make the whole image lighter or darker. The final model
had a mean average precision at 0.5 IoU of 64.1% on the validation
set.

The trained model was then used on the individual frames of
the video to detect the instances of parasites and we calculated
the centroid of the detected object in terms of the position on
the x and y axis using the scikit-image regionProps functionality
[32]. These detected instances were then linked together using
the trackpy library [33], which detected the trajectories of objects
based on certain conditions. In our case we restricted the distance
that the centroid could move a maximum of 100 pixels in each
dimension. As a result of detecting the trajectories, we were able
to identify the same parasite instance across multiple frames and
assign it with a unique identifier. In cases where the tracking did
not meet the above conditions, a new identifier was assigned,
and therefore a single worm could be detected multiple times,
which occurred for complex cases with extensive movements
and a high number of overlaps. Subsequently, we calculated the
IoU and the threshold for the number of parasites to select for
the evaluation as described in the WF-NTP section. We observed
a decreasing mean percentage error (MPE) with an increase in
the length of the video, and therefore we decided on using the full
length of the videos for the motility assay (Supplementary Fig S2).

2.6. Error metrics

For the evaluation of the performance of the individual algo-
rithms, we used standard metrics for the quantification of the fore-
cast precision. These metrics work with the error term, which is
defined as the difference between the actual and the forecasted
value. In our case, the actual value was obtained by manually pro-
cessing the videos. Two aspects were measured; the first one was
the bias of the forecasts to determine if the algorithm is systemat-
ically over or under-estimating, for that purpose, we used mean
error (ME) or mean percentage error (MPE), which both work with
the mean of the error term. The second aspect was the size of the
error term irrespective of the error term being positive or negative
to compare the overall performance of the algorithms. For that
purpose, we used mean absolute error (MAE) or mean absolute
percentage error (MAPE), which both work with the mean absolute
value of the error term.

2.7. Monte Carlo drug screening simulation

To assess the impact of the differences in detection accuracy
we ran a Monte Carlo drug screening simulation [34] for all
three algorithms. To remove the effect of individual motility
groups we worked with the differences between the predicted
motility rates and the manually obtained motility rates. Using
these differences we were able to obtain the correlations
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between the algorithms as well as the means and standard devi-
ations. A multivariate normal distribution was used as the data
generation process for the simulation to ensure that the correla-
tion among the algorithms was taken into account. The SciPy
package (version 1.3.3) implementation of the multivariate nor-
mal distribution was used.

For the simulation, we generated 1 million random motility
rates from a continuous uniform distribution within the range of
zero to one. Similarly, we generated 1 million observations of the
multivariate normal distribution. These observations were the
detection errors of each of the algorithms. By adding this error to
the randomly generated motility rate, which served as our true
observation, we received simulated motility predictions from the
three algorithms. A ‘‘hit” in our simulation was defined as having
a motility rate lower than 50%.
3. Results

3.1. Detection of motility

The observed typical cases for detection scenarios in the motil-
ity videos were depicted in Fig. 2, where the results of Mask R-CNN
were used for illustrating these examples. The most common situ-
ation, which did not pose a problem to the algorithms, were worms
with few or no overlaps (Fig. 2a). Other common occurrences were
collisions between worms that caused a non-motile worm to be
moved and therefore being perceived by the algorithms as motile
(Fig. 2b). Lastly, the most challenging scenarios contained a high
number of worms with significant overlaps with mostly motile
worms, which resulted in problematic detections and negatively
impacted the ability to track worms across multiple frames
(Fig. 2c).
3.2. Motility forecast errors

In the manual video processing, we observed the motility and
the live rate. To measure the performance of the algorithms, we
used the motility rate rather than the live rate even though the
stillness alone does not denote a dead worm. The reason for this
choice was that the algorithms detect movement and are not able
to differentiate if the movement was caused by the object itself or
by an interaction with another object. The general manual motility
rate was always higher than the manual live rate (Supplementary
Table S1). We measured the performance of the individual algo-
rithms by evaluating the errors, defined as the differences between
the manual processing of the file and the respective algorithm. Out
of the three methods, Mask R-CNN had the lowest MAE with a
value of 5.6%, followed by WF-NTP (8.76%) and the WI (14.2%). In
terms of the bias of the predictions, the WI had the lowest ME of
�0.71%, therefore slightly overestimating the motility rate on aver-
age, while both WF-NTP and Mask R-CNN underestimated the
motility rate with values of 6.52% and 1.95%, respectively (Table 1).

Shown in Fig. 3, the WI had an increasing volatility with an
increase in the ratio of alive worms in the group. Mask R-CNN
overestimated the motility rate for the motility group 0; while four
videos had a zero motility rate, showing that the overestimation is
not systematic, two videos had a motility rate error below 3.6%,
and the remaining three videos had high motility rates without
any apparent reason. WF-NTP and Mask R-CNN had a tendency
to systematically underestimate for the motility group 100
(Fig. 3). The mean and standard deviation of motility rates per
motility group and algorithm is shown also in Supplementary
Table S2 and the same statistics are reported as differences
between the manual count and the respective algorithm in Supple-
mentary Table S3.



Fig. 2. Sample frames of common detection scenarios in motility videos. The blue outlines are the masks detected by Mask R-CNN. Each detected worm has an associated
identification number displayed in white based on the tracking across the frames. (a) common scenario with low or no overlaps of individual worms, (b) example of a motile
worm (id 32) colliding with a non-motile worm (id 26) causing the later to be perceived as motile, (c) complex detection scenario with a high number of worms with
significant overlaps. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Motility error metrics for algorithms.

Algorithm MAE, % ME, %

Wiggle Index 14.2 �0.71
WF-NTP 8.76 6.52
Mask R-CNN 5.61 1.95

The differences between the manual processing and the respective algorithm were
expressed as the mean absolute error (MAE) and mean error (ME).

Fig. 3. Motility rates comparisons for individual motility groups per algorithm. The
number of the motility group indicates the percentage of live larvae. The motility
rate is visualized as box plots.
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3.3. Instance detection performance

The motility rates are an indicator of the degree of correctly
classified worms as motile or non-motile based on IoU. However,
they do not provide the information of the number of detected
worm instances in the image. In order to ensure that the motility
rates were estimated reliably and not only based on a small subset
of detected worms, the detection performance was validated. To
achieve this, we compared Mask R-CNN and WF-NTP for the total
worm count (WI was excluded as the algorithm does not detect
individual instances of worms, therefore this information was not
available). The precision was measured based upon the error term
between the manual counts and the respective algorithm. In terms
of the size of the error, the MAPE was used and we observed that
the error was significantly lower (p-value less than 0.0001, Wil-
coxon signed-rank test) for Mask R-CNN (7.6%) than for WF-NTP
(40.23%). Both algorithms had a tendency to underestimate the
number of worms on average, therefore not detecting all the worm
instances in a video, mainly due to the challenges of detecting
overlapping or clustered worms. This was confirmed by the MPE
with values of 5.61% for Mask R-CNN and 40.23% for WF-NTP
(Table 2). The reported MAPE and MPE for WF-NTP had the same
Table 2
Worm count error metrics for algorithms.

Algorithm / Metric MAPE, % MPE, %

WF-NTP 40.23 40.23
Mask R-CNN 7.6 5.61

The differences between the manual counts and the respective algorithm were
expressed as the mean absolute percentage error (MAPE) and mean percentage
error (MPE).
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value because all the detections underestimated the total number
of worms. WF-NTP underestimated the worm count for all motility
groups, while Mask R-CNN had similar box plots in comparison to
the manual counts apart from underestimating the motility group
0, as shown in Fig. 4. The mean error and standard deviation of the
differences between the manual count and the respective motility
algorithm is shown in Supplementary Table S4.

3.4. Mask R-CNN detection and classification precision

The precision of detecting worm instances in a video was on
average 98.6%. This was calculated based on all the tracked worms
across all the motility groups without setting a minimum number
of frames for which a worm needed to be tracked. The detections
were manually validated and the detection was considered correct
despite only a part of the worm being detected in some frames. The
Fig. 4. Worm count comparisons for individual motility groups per algorithm. The
number of the motility group indicates the percentage of live larvae. The number of
worms is visualized as box plots.

Fig. 5. The distribution for different intersection over union (IoU). Both (a) a histogram o
and (b) a histogram of IoU and the associated probability per class (motile / non-motile
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majority of cases where the detection was incorrect was due to
debris that had a similar size and shape as a worm. For the
detected worms across all the motility groups, there was an overall
accuracy of 89% to correctly label them as either motile or non-
motile based on their mean IoU values. In Fig. 5, the distribution
for different IoU values obtained from all the worms across all
the motility groups clearly showed that most of misclassified cases
were located around the 0.8 threshold, while the classification
accuracy increased for values further away from the threshold.
The precision and recall values (Table 3) confirm that the prevalent
case was the misclassification of motile worms as non-motile.

The errors defined as differences between Mask R-CNN and the
manually evaluated motility rates were tested for normality using
the D’Agostino-Pearson test as well as Shapiro-Wilk test. In both
cases we could not reject the null hypothesis that the data is from
a normal distribution with p-values 0.85 and 0.35, respectively
(Table 4).

3.5. Monte Carlo drug screening simulation

The Monte Carlo simulation was based on the results from the
motility forecasts and the obtained forecast errors. While WF-
NTP and Mask R-CNN had a positive correlation of forecast errors
(0.65), the forecast errors for WI were not correlated with the other
algorithms (Table 5).

Mask R-CNN achieved the highest accuracy in the simulation
with a value of 94% followed by WF-NTP 90% and the WI 85% (full
classification performance in Supplementary Table S5). The simu-
lation estimated that an improved detection performance of
f IoU and the associated number of worms per bin classified into motile / non-motile
) show that the majority of misclassified cases were located around the 0.8 IoU.

Table 3
Classification performance metrics.

Classification Precision, % Recall, %

Motile 94 88
Non-Motile 84 92

Precision and recall metrics for classification performance.



Table 4
Normality tests for the motility rate error terms between Mask R-CNN and the
manual processing.

Normality test Statistic p-value

D’Agostino-Pearson 0.32 0.85
Shapiro-Wilk 0.97 0.35

For both normality tests we cannot reject the null hypothesis that the data is from a
normal distribution.

Table 5
Correlation matrix for the prediction errors of the individual algorithms.

Wiggle Index WF-NTP Mask R-CNN

Wiggle Index 1 �0.04 0.08
WF-NTP �0.04 1 0.65
Mask R-CNN 0.08 0.65 1

M. Žofka, L. Thuy Nguyen, E. Mašátová et al. Computational and Structural Biotechnology Journal 20 (2022) 2372–2380
3.15% (MAE) between Mask R-CNN and WF-NTP led to a 3.5%
improvement of drug screening accuracy, while an improvement
of 8.59% (difference of MAE between Mask R-CNN and WI) led to
a 9% improvement of drug screening accuracy.
4. Discussion

The motility phenotype is often used for drug screening and
drug testing of anthelmintics. In our study, we deployed and com-
pared three algorithms to measure motility in the parasitic nema-
tode H. contortus. Apart from evaluating motility for both WF-NTP
and Mask R-CNN, we were also interested in the detection preci-
sion of worms by these algorithms. The reason for that was the fact
that for both algorithms, the detection was the first step followed
by the tracking across the frames and the classification into motile
and non-motile. Therefore, accurate detection was the pre-
requisite for reliable motility quantification.

The results showed that the performance increased with an
increased complexity of algorithm. The WI, despite requiring min-
imal configuration and being the fastest algorithm, had some lim-
itations in comparison to the other methods; it was by design not
able to detect individual instances of worms and a control group
with only motile worms needed to be created in order to be able
to translate the WI into a percentage for the motility rate for each
video, otherwise it was hard to interpret the numerical value of the
WI. Because of these limitations and the lack of precision, it would
be advisable to use WI only for initial studies to quickly test exper-
imental results.

For WF-NTP, overlapping parasites had the highest negative
impact on the detection ability, as the algorithm filters out objects
that are above or below a certain pixel size. This resulted in detect-
ing overlapping worms as a single object and these objects were
then excluded based on the size threshold. As a consequence, the
total number of detected instances in an image was significantly
lower than the actual number obtained by manually processing
the videos. Although WF-NTP struggled with detecting all
instances, the classification of motile / non-motile performed well
once an instance was detected.

Mask R-CNN had the lowest MAE. However, similarly to WF-
NTP, it struggled with overlapping objects, primarily due to the fact
that the algorithm uses NMS. As a result, some instances were not
detected, although in contrast to WF-NTP, the worm clusters were
not discarded as a whole. The problem of detecting overlapping
objects is currently an area of active research in object detection,
particularly for biological data. For instance, Böhm et al. [35] are
working on algorithms that can handle overlapping objects and
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have had success with applying their algorithm to C. elegans. Motile
worms had a higher chance of being detected, because they had
higher variability across the frames due to their movement. In
terms of precision, the algorithm was slightly biased towards
underestimating the motility rate; however, the errors were nor-
mally distributed enabling us to increase the number of acquired
videos in order to get to a desired level of confidence and therefore
successfully replace manual processing.

The results confirmed that IoU could be used as a metric for
determining the motility of larvae, although some modifications
might be required in order to deal with slow-moving worms, such
as including the total distance travelled during the video to com-
plement the frame-by-frame information. Furthermore, the IoU
threshold should be considered a parameter to be optimized as it
can vary based on the age of the larvae, the temperature of the
environment and other factors. The downside of using Mask R-
CNN is that it requires a quite big amount of annotated data (pro-
vided in the Data availability), which is time consuming to create
and the training runs for 1–2 days on a GPU instance (an Amazon
Web Services p2.xlarge compute instance with 1 GPU, 4 vCPUs and
61 GB RAM was used).

The drug screening simulation showed that the improved
detection performance resulted in increased accuracy for drug
screening of roughly the same magnitude as the MAE improve-
ment, illustrating that the improvement is not negligible for prac-
tical purposes even though some of the forecast errors of the
algorithms were correlated. For applications with multiple obser-
vations for a given category / group, the impact would be most
likely lower, because with an increase in the number of observa-
tions per category / group, the sample mean of the forecast errors
would converge to the expected value of the forecast errors. In this
situation, the bias of the estimate measured in our case by ME
would then have a higher impact than the variance which would
make WF-NTP, with the highest bias, the least accurate algorithm.

In general, for quick low-precision experiments, such as pri-
mary screening of large compound libraries, the best option is
to use the WI as it can be used out-of-the-box with slight modi-
fications to a few parameters. If the detection of individual
instances is desired, Mask R-CNN is the best choice, although it
is more time-intensive to prepare the data and train the model.
Moreover, the ability to precisely detect larvae in an image then
allows the researchers to perform multiple types of analyses that
involve microscopy of the parasites and are not only limited to
motility assays, but also include other common in vitro assays
for the diagnosis of drug resistance, e.g. larval development tests
and egg hatch tests [36]. In the aspect of potentially repurposing
the algorithms for other assays, Mask R-CNN is the most flexible
of the models, because it is able to detect multiple classes of
objects. On contrary, WF-NTP decides solely on the size of the
objects, making a distinction between classes of similar sizes
impossible.
5. Conclusions

Our study confirmed that the state-of-the-art machine learning
algorithm Mask R-CNN was able to outperform less computation-
ally complex algorithms that are based on pixel intensity or Gaus-
sian threshold. The algorithm performed better in the detection of
individual worm instances as well as the subsequent motility clas-
sification. This was consistent with how the algorithm is designed
as the tracking and motility classification depend on the detection
accuracy. For the motility classification, we used IoU as a new met-
ric, that successfully replaced previous ones based on locomotion
specific to the studied organisms. Whilst IoU is very flexible, as it
only requires a single parameter, it would need further extension
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to be able to deal with cases of heterogeneous groups of viable
worms that have a high variance in their speed of movement.

The gain in precision of Mask R-CNN came at the cost of requir-
ing an extensive annotated dataset as well as computational
resources for training the model. Therefore, the time-precision
trade-off needs to be evaluated by the researchers on a case-by-
case basis, unless the study allows reapplying an already existing
trained model. The output of the present study provides an anno-
tated dataset containing various developmental stages of H. contor-
tus that can be utilised by researchers for future machine learning
applications.
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