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High levels of triglycerides (TG) and triglyceride-rich lipoproteins (TGRLs) confer a residual risk of cardiovascular disease after op-
timal low-density lipoprotein cholesterol (LDL-C)–lowering therapy. Consensus has been made that LDL-C is a non-arguable pri-
mary target for lipid lowering treatment, but the optimization of TGRL for reducing the remnant risk of cardiovascular diseases is 
urged. Omega-3 fatty acids and fibrates are used to reduce TG levels, but many patients still have high TG and TGRL levels com-
bined with low high-density lipoprotein concentration that need to be ideally treated. Lipoprotein lipase (LPL) is a key regulator for 
TGs that hydrolyzes TGs to glycerol and free fatty acids in lipoprotein particles for lipid storage and consumption in peripheral or-
gans. A deeper understanding of human genetics has enabled the identification of proteins regulating the LPL activity, which include 
the apolipoproteins and angiopoietin-like families. Novel therapeutic approach such as antisense oligonucleotides and monoclonal 
antibodies that regulate TGs have been developed in recent decades. In this article, we focus on the biology of LPL and its modula-
tors and review recent clinical application, including genetic studies and clinical trials of novel therapeutics. Optimization of LPL ac-
tivity to lower TG levels could eventually reduce incident atherosclerotic cardiovascular disease in conjunction with successful 
LDL-C reduction.
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INTRODUCTION

Therapies that lower low-density lipoprotein cholesterol (LDL-
C) levels, including statins and proprotein convertase subtilisin/
kexin type 9 (PCSK9) inhibitors, have successfully reduced the 
risk of atherosclerotic cardiovascular disease (ASCVD) and are 
currently incorporated in guidelines for the treatment of dyslip-

idemia [1,2]. Despite this success, recent studies have pointed 
out that high levels of triglycerides (TGs) and triglyceride-rich 
lipoproteins (TGRLs) confer substantial residual risk after opti-
mal LDL-C-lowering therapy [3]. Fibrates and omega-3 fatty 
acids are firstly used or added to treat hypertriglyceridemia in 
patients whose TG level exceeds 500 mg/dL, which showed 
high correlation with pancreatitis and lipemia retinalis [4]. De-
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spite the effectiveness of these drugs in lowering TG levels, 
there have been no other options for patients who do not reach 
target TG levels than those two, which remains a huge clinical 
unmet need. Furthermore, inconsistent findings have been re-
ported regarding whether fibrates, omega-3 fatty acids, or TG 
reduction only can reduce incident ASCVD, with conflicting re-
sults from major trials, but still showed benefits in patients with 
high TG and low high-density lipoprotein cholesterol (HDL-C) 
[5-8]. However, recent studies, including Asians, have support-
ed the possibility that TG reduction itself may contribute to re-
ducing incident ASCVD [9-11].

In the era of human genomics, it has become possible to dis-
cover genetic variants and elucidate their contributions to vari-
ous phenotypes and diseases. By studying people with hypolip-
idemia and severe forms of dyslipidemia, such as familial lipid 
disorders, potential targets for novel lipid lowering therapeutics 
have been identified, including the LDL receptor, PCSK9, lipo-
protein lipase (LPL), the angiopoietin-like (ANGPTL) family, 
and apolipoproteins (APOs). In fact, evolocumab and alirocum-
ab were developed based on the findings that people with 
PCSK9 mutations had low LDL-C levels and were protected 
against ASCVD [12]. With the expansion of new drug develop-
ment technologies such as small interfering RNA (siRNA), anti-
sense oligonucleotides, and monoclonal antibodies, attempts 
have been made to test novel therapeutics for TG reduction as 
well. 

In this review, we describe the key modulators and biology 
underlying the regulation of TGs. LPL is a key regulator of li-
polysis that hydrolyzes TGs to glycerol and free fatty acids 
(FFAs), and ANGPTLs and APOs regulate LPL activity. We de-
scribe recent attempts to develop novel therapeutics that alter 
the function of these TG modulators and clinical trials using 
those new candidate-drugs.

LIPOPROTEIN METABOLISM AND 
HYPERTRIGLYCERIDEMIA

Serum TG level is mostly determined by the % of TG core in 
TGRLs such as chylomicron (CM), very low-density lipopro-
tein (VLDL) and their remnants lipoprotein particles through li-
poprotein catabolism. Thus, the elevation of serum TG in hu-
mans is dependent on the abnormalities in production and clear-
ance of TGRLs by primary genetic causes or by secondary dis-
eases such as diabetes, metabolic syndrome, Cushing syndrome, 
nephrotic syndrome, hypothyroidism, etc. [13,14].

CMs are large sized lipoprotein particles mainly produced 

from dietary fats which are absorbed through intestinal entero-
cytes and CM is conjugated with apolipoprotein B48 (APOB48). 
It can make systemic circulation via lymphatic system and con-
tains large amount of TG core (more than 80% to 90%), which 
represent high serum TG levels from exogenous pathway. The 
hydrolysis of CM are mainly dependent on the activity of LPL, 
which was controlled by apolipoprotein C2/C3 (APOC2/C3), 
APOA5, and ANGPTLs action [13].

VLDL is a representative lipoprotein which contains large % 
of TG core, secreted from the liver in the endogenous pathway 
of lipoproteins metabolism. Sources of TG in VLDL particle 
come from the FFA spillover from peripheral lipolysis, de novo 
lipogenesis, CM remnants, etc. [15]. Apolipoprotein B100 
(APOB100) is a main APO of VLDL and VLDL remnants. Mi-
crosomal TG transfer protein is also important to transfer TG 
from cytosol to endoplasmic reticulum in hepatocyte or in en-
terocytes for VLDL or CM assembly with APOB100 or with 
APOB48 incorporation. Cholesteryl ester TG transfer protein 
(CETP) is activated when the production of TGRLs is abundant 
such as in insulin resistance and the enhanced LPL action gener-
ates more TG hydrolysis of TGRLs, producing more remnants 
particles. It is well known that lesser size TGRL particles than 
CMs can be transported through endothelium and be seated for 
making atherosclerotic plaque [16]. Thus, the optimizing lower-
ing TGRLs is important treatment not only for the hypertriglyc-
eridemia related complications such as severe pancreatitis and 
lipemia retinalis but also the progression of ASCVDs [17].

LIPOPROTEIN LIPASE

Lipases are enzymes that catalyze the hydrolysis of TGs. Lipas-
es exist in different contexts; gastric and pancreatic lipases act 
in an exocrine manner as a component of digestive juices. Hor-
mone-sensitive lipase and adipose TG lipase are located intra-
cellularly and release FFAs and glycerol into the circulation 
from neutral TGs deposition in adipose tissue. In contrast, LPL 
and hepatic lipase are located extracellularly on the endothelial 
cells of blood vessels (Fig. 1). 

LPL is a key and essential enzyme for the catabolism of 
TGRLs. LPL is produced by the parenchymal cells of peripheral 
organs, secreted, and anchored to heparan sulfate proteoglycans 
on the cell surface. Glycosylphosphatidylinositol-anchored high-
density lipoprotein binding protein 1 (GPIHBP1) transports LPL 
from the cell surface to the capillary endothelium [18]. LPL 
transported to the vascular endothelium hydrolyzes TGs from 
CMs and VLDL in the circulation, producing FFAs and glycerol. 
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Insulin induces LPL expression and activity which lead to the 
uptake of FFAs into peripheral organs for energy storage and 
consumption. Therefore, LPL is a key regulator of TG levels 
that is necessary for peripheral organs to store and consume lip-
ids. Familial chylomicronemia syndrome is a rare genetic disor-
der estimated to affect 1 to 2 individuals per million and charac-

terized by hypertriglyceridemia, which is caused by mutations 
in LPL or genes that regulate LPL function which include but 
are not limited to APOC2, APOA5, GPIHBP1, and lipase matu-
ration factor 1 (LMF1) [19,20].

The activity and/or stability of LPL are regulated by various 
proteins, including ANGPTLs and APOs (Fig. 2). Loss-of-func-

Fig. 1. Overview of the role of lipoprotein lipase in triglyceride metabolism. De novo lipogenesis from the liver results in the secretion of tri-
glycerides in the form of very-low-density lipoprotein cholesterol (VLDL). Dietary fat is transported from intestine to circulation as part of 
chylomicrons. The triglycerides in chylomicrons and VLDL are hydrolyzed by lipoprotein lipase (LPL). Chylomicron remnants, intermedi-
ate-density lipoprotein (IDL) cholesterol, and low-density lipoprotein (LDL) cholesterol are produced as byproducts. LPL is produced from 
parenchymal cells, including adipose tissue and muscle. LPL is attached to the cell surface via heparan sulfate proteoglycans (HSPGs). Gly-
cosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1 (GPIHBP1) transports LPL from the cell surface to the vas-
cular endothelium. LPL transported to the vascular endothelium hydrolyzes triacylglycerol (TAG) to diacylglycerol (DAG), DAG to mono-
acylglcerol (MAG), and MAG to glycerol with free fatty acids (FFAs) being released at each step. Parenchymal cells take up FFAs for stor-
age or use FFAs as fuel.
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tion mutations in APOC2 and APOA5 inhibit LPL, resulting in 
severe hypertriglyceridemia [21,22]. In contrast, angiopoietin-
like protein 3 (ANGPTL3), ANGPTL4, ANGPTL8, and 
APOC3 inhibit LPL activity, thereby increasing serum TG lev-
els [23]. The role of each protein in the regulation of LPL activi-
ty and circulating TG levels is further discussed below. 

Based on genetic studies exhibiting altered lipid phenotypes 
in gain- or loss-of-function mutations in the abovementioned 
proteins regulating LPL activity, pharmaceutical companies 
have targeted these proteins to develop novel therapeutics to 
treat hypertriglyceridemia in patients who do not reach the tar-
get goal of TG after using the currently available drugs. The 
clinical evidence regarding modulation of each protein and the 
corresponding therapeutic developments are discussed in this 
review (Table 1).

APOLIPOPROTEIN C3 

APOC3 is a 79-amino-acid-long small glycosylated protein pro-
duced by hepatocytes and enterocytes [24]. APOC3 is a compo-
nent of TGRLs, and it increases TG concentration by directly 
inhibiting LPL activity and by preventing the clearance of 
TGRLs. Genetic studies showed that a heterozygous loss-of-
function mutation of APOC3 was associated with a 40% re-
duced level of plasma TGs and a 40% reduction in incident cor-
onary heart disease [25,26]. APOC3 regulates TG levels via 
both LPL-independent and LPL-dependent pathways, as 
APOC3 reduction using the antisense oligonucleotide (ISIS 
304801) has shown a TG-lowering effect in people defective for 
LPL [27]. These genetic studies have established the potential 
of targeting APOC3 as a therapeutic for lowering TG levels. 

Fig. 2. Novel therapeutics that modulate lipoprotein lipase activity. Apolipoproteins (APOs) and angiopoietin-like proteins (ANGPTLs) 
modulate lipoprotein lipase (LPL) activity: apolipoprotein C2 (APOC2) and APOC5 activate and APOC3, ANGPTL3, ANGPTL4, ANG-
PTL8 inhibit LPL activity. All of them are produced by the liver, while ANGPTL4 and ANGTPL8 are also produced by adipocytes. Volane-
sorsen and olezarsen are antisense oligonucleotides (ASOs) targeting APOC3. Evinacumab is a monoclonal antibody (Ab) inhibiting ANG-
PTL3. Vupanorsen is an ASO targeting ANGPTL3. Peroxisome proliferator-activated receptor alpha (PPARα) activates the transcription of 
LPL and stimulates LPL activity. Pemafibrate is a PPARα agonist. Omega-3 fatty acids activate both PPARα and LPL.
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Table 1. Clinical Outcomes and Developmental Status of Novel Triglyceride-Lowering Medications Modulating Lipoprotein Lipase 

Name Target Characteristics Clinical outcome Trial phase and 
developmental status Adverse events Reference

Volanesorsen APOC3 Antisense  
oligonucleotide

APPROACH 
TG: 77% reduction at 3 months  
(baseline 2,267→590 mg/dL)

Phase 3 Thrombocytopenia,  
injection site reactions

[29]

COMPASS 
TG: 71% reduction at 3 months  
(baseline 1,183→294 mg/dL)

Phase 3 [30]

Olezarsen APOC3 Antisense  
oligonucleotide

TG: up to 77% reduction at 2 weeks after 
a single dose (baseline 235→52 mg/dL) 
TG: up to 73% reduction at 3 months 
(baseline 189→53 mg/dL)

Phase 1/2b Generally well tolerated 
compared to volanesorsen

[32]

TG-rich lipoproteins 51% reduction at  
6 months (baseline 200.3 mg/dL) 
The total LDL particle concentration 
was not changed, but large LDL  
particles increased by 186% and small 
LDL particles decreased by 39%

Phase 2 [33]

Evinacumab ANGPTL3 Monoclonal  
antibody

LDL-C: 47.1% reduction at week 24 
(baseline 259.5→124.8 mg/dL) 
TG: 55.0% reduction at week 24  
(baseline 91 mg/dL)

Phase 3 No significant difference 
compared with placebo

[37]

LDL-C: up to 56% reduction at 16 weeks 
(subcutaneous) (baseline 146.3 mg/dL) 
TG: up to 53% reduction at 16 weeks 
(subcutaneous) (baseline 109.5 mg/dL)

Phase 2 [38]

Vupanorsen ANGPTL3 Antisense  
oligonucleotide

TG: up to 56.8% reduction at 24 weeks 
(baseline 228.4→101.9 mg/dL)

Phase 2b 
Discontinued further  
development from Pfizer. 
Developmental rights  
returned back to Ionis.

Dose-dependent increase 
in hepatic fat fraction up 
to 76%

[41]

Pemafibrate PPARα Small molecule, 
PPARα agonist

TG: ~45% reduction at 24 weeks  
(baseline ~250→~130 mg/dL)

Phase 3 No significant difference 
from placebo and lower 
liver and kidney-related 
adverse events compared 
to fenofibrate

[52]

PROMINENT 
Cardiovascular outcome trial including 
type 2 diabetes patients with TG  
between 200 and 500 mg/dL

Phase 3, discontinued as  
the primary endpoint was 
unlikely to be met. 
Pemafibrate is considered 
for other therapeutic  
applications, including 
nonalcoholic fatty liver 
disease. 

[54]

Icosapent ethyl PPARα Omega-3 fatty 
acid

REDUCE-IT 
ASCVD 25% relative risk reduction 
(17.2% in the icosapent ethyl group vs. 
22.0% in the placebo group) during 4.9 
years of follow-up 
TG: 21.6% reduction during 4.9 years of 
follow-up (baseline 216→170 mg/dL)

Phase 3b, cardiovascular 
outcome trial

No significant difference 
compared with placebo

[65]

APOC3, apolipoprotein C3; APPROACH, A Study of Volanesorsen (Formerly IONIS-APOCIIIRx) in Patients With Familial Chylomicronemia Syndrome; TG, 
triglyceride; COMPASS, A Study of Volanesorsen (Formally ISIS-APOCIIIRx) in Patients With Hypertriglyceridemia; LDL, low-density lipoprotein; ANGPTL3, 
angiopoietin-like protein 3; LDL-C, low-density lipoprotein cholesterol; PPARα, peroxisome proliferator-activated receptor alpha; PROMINENT, Pemafibrate to 
Reduce Cardiovascular Outcomes by Reducing Triglycerides in Patients with Diabetes; REDUCE-IT, A Study of AMR101 to Evaluate Its Ability to Reduce Car-
diovascular Events in High-Risk Patients With Hypertriglyceridemia and on Statin; ASCVD, atherosclerotic cardiovascular disease.
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Drug development and clinical trials
An antisense oligonucleotide, volanesorsen (previously called 
ISIS 304801, ISIS-APOCIIIRx, and IONIS-APOCIIIRx) was 
developed to decrease the level of APOC3 mRNA. Volanesors-
en was well tolerated and efficiently reduced APOC3 and TG 
levels in preclinical and phase 1 studies [28]. In the A Study of 
Volanesorsen (Formerly IONIS-APOCIIIRx) in Patients With 
Familial Chylomicronemia Syndrome (APPROACH) trial 
(NCT02211209), which was a phase 3 trial including 66 pa-
tients with familial chylomicronemia syndrome, volanesorsen 
reduced APOC3 by 84% and TGs by up to 77% at 3 months 
[29]. However, thrombocytopenia and injection site reactions 
were common adverse events observed in 45% and 60% of the 
participants, respectively.

The A Study of Volanesorsen (Formally ISIS-APOCIIIRx) in 
Patients With Hypertriglyceridemia (COMPASS) trial (NCT02-
300233) was another phase 3 trial including 113 patients with 
fasting TG levels ≥500 mg/dL [30]. At 3 months after treat-
ment, TG levels were reduced by 71%, with an absolute reduc-
tion of more than 800 mg/dL. Similar to the APPROACH trial, 
but to a lesser extent, 24% of patients showed injection site re-
actions, one patient exhibited thrombocytopenia, and one pa-
tient exhibited serum sickness. Based on the positive results 
from the APPROACH and COMPASS trials, the European 
Union approved volanesorsen for the treatment of familial chy-
lomicronemia syndrome in May 2019 [31]. 

To overcome the adverse events observed in volanesorsen tri-
als, an N-acetylgalactosamine-conjugated antisense compound, 
olezarsen (IONIS-ApoCIII-LRx, AKCEA-APOCIII-LRx or ISIS 
678354), was developed to facilitate liver uptake. In a phase 1/2 
trial, APOC3 and TG levels decreased by up to 91% and 77%, 
respectively, at 14 days after a single administration [32]. In a 
phase 2 trial, TGRLs reduced by 51%, small LDL particles de-
creased by 39%, and large LDL particles increased by 186% af-
ter 6 months of olezarsen treatment suggesting the favorable 
changes in lipoprotein concentration and particle size remodeling 
[33]. A phase 3 trial of olezarsen treatment for 53 weeks is under-
way and is expected to be completed by 2023 (NCT0456-8434). 

ANGIOPOIETIN-LIKE PROTEIN 3 

Among the eight members of the ANGPTL family, ANGPTL3, 
ANGPTL4, and ANGPTL8 are responsible for TG regulation 
by LPL inhibition [34]. The members of the ANGPTL protein 
family are composed of an N-terminal coiled-coil domain and a 
fibrinogen-like C-terminal domain, although ANGPTL8 lacks a 

C-terminal fibrinogen-like domain. The function of ANGPTL3 
was first identified in KK/San mice that contained a premature 
stop codon in Angptl3 and had lower levels of TGs, non-esteri-
fied fatty acids, and total cholesterol [35]. Overexpression of 
Angptl3 or administration of the ANGPTL3 protein restored the 
features of hypolipidemia. 

Human evidence from a genome-wide association study indi-
cated that TG and LDL-C concentrations are affected by genetic 
variants in ANGPTL3 [23]. Exome sequencing of two patients 
with familial combined hypolipidemia who did not have an 
APOB mutation revealed compound heterozygous nonsense 
mutations of ANGPTL3; these patients exhibited pan-hypolipid-
emic phenotypes, including low TG and LDL-C levels, with a 
clear gene-dose association [36].

Drug development and clinical trials
Evinacumab (Evkeeza, Regeneron Pharmaceuticals, Tarrytown, 
NY, USA) is a human monoclonal antibody inhibiting the ac-
tion of ANGPTL3 that received approval from the U.S. Food 
and Drug Administration (FDA) in 2021 as an add-on treatment 
for patients with homozygous familial hypercholesterolemia 
who are aged 12 years and older. In a phase 3 trial (the Evi-
nacumab Lipid Studies in Patients with Homozygous Familial 
Hypercholesterolemia [ELIPSE HoFH]) including 65 patients 
with homozygous familial hypercholesterolemia whose baseline 
LDL-C level was 259.5 mg/dL, LDL-C, the primary outcome 
of this study, was reduced by 47.1% with an absolute change 
from the baseline of 134.7 mg/dL at week 24 [37]. The mean 
baseline TG concentration was 97 mg/dL and was reduced by 
55.0% at week 24. Adverse events occurred in comparable pro-
portions of patients in the evinacumab and placebo groups (66% 
and 81%, respectively). An interesting finding was that reduc-
tions in LDL-C levels were comparable between those with 
null-null variants and non-null variants of the LDL receptor. 
Null-null LDL receptor variants confer higher cardiovascular 
risk and are less responsive to therapies that depend on LDL re-
ceptor activity.

A phase 2 trial that included subjects with or without hetero-
zygous familial hypercholesterolemia who had relatively milder 
lipid profiles than homozygous patients (baseline LDL-C of 150 
mg/dL and TG of 114.5 mg/dL) consistently showed that evi-
nacumab reduced LDL-C by up to 50% and TG by up to 53% 
[38]. However, the incidence of adverse events and serious ad-
verse events upon evinacumab treatment was up to 80% and 
16%, respectively, suggesting that the safety of long-term treat-
ment should be further validated.
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A mechanistic study using APOB kinetic analyses showed 
that evinacumab increased the fractional catabolic rate of APOB 
for intermediate-density-lipoprotein-cholesterol and LDL-C, 
suggesting that the LDL-C reduction occurred predominantly 
by increasing APOB-containing lipoprotein clearance from the 
circulation [39]. 

Vupanorsen (AKCEA-ANGPTL3-LRx or IONIS-ANGPTL3-
LRx or ISIS 703802) is an N-acetylgalactosamine-conjugated 
antisense oligonucleotide targeting ANGPTL3. In a preclinical 
study, vupanorsen reduced levels of hepatic ANGPTL3 and 
TGs, circulating TG and LDL-C levels, and the progression of 
atherosclerosis [40]. In a phase 1 study including 44 human par-
ticipants with TG levels >150 mg/dL, 6-week treatment of vu-
panorsen reduced TG and LDL up to 63.1% and 32.9%, respec-
tively, without serious adverse events [40]. A phase 2b trial (A 
Dose-Ranging Study With Vupanorsen [TaRgeting ANGPTL3 
with an aNtiSense oLigonucleotide in AdulTs with dyslipid-
emia, TRANSLATE-TIMI 70]) reached the primary endpoint, 
achieving a statistically significant reduction in non-HDL-C up 
to 27.7% at week 24 [41]. Dose-dependent reductions in TG up 
to 56.8% were observed, while the LDL-C reduction was mod-
est (up to 16.0%). However, adverse events including injection 
site reactions, elevations in liver enzymes, and a dose-dependent 
increase in hepatic fat deposition were observed. The magnitude 
of non-HDL-C and TG reduction was not prominent that the 
further development of vupanorsen is currently pending. We 
need to watch for the next movement of this drug. 

PEROXISOME PROLIFERATOR-
ACTIVATED RECEPTOR ALPHA 

Fibrates are agonists of peroxisome proliferator-activated recep-
tor alpha (PPARα) that reduce TG and increase HDL-C levels 
[42]. The pharmacological actions of fibrates via PPARα ago-
nism activate LPL transcription in the liver and induce fatty acid 
uptake and β-oxidation [43,44]. PPARα also inhibits APOC3, 
which may further enhance LPL activity [45]. Transcription of 
APOA1, APOA2, and APOA5 is induced via PPARα binding 
[46]. Fibrates further exert anti-inflammatory and anti-athero-
genic activity by reducing vascular cell adhesion molecule 
(VCAM) and monocyte chemoattractant protein-1 (MCP-1) ex-
pression via PPRE-dependent and independent manners [47,48].

Previous trials of fibrates showed inconsistent results for pre-
venting ASCVDs [10]. After positive results from the Veterans 
Affairs HDL-C Intervention trial (VA-HIT) trial, showing a 
22% reduction in ASCVD with gemfibrozil (1,200 mg/day) in 

the 1990s [8], major fibrate trials, including the Lower Extremi-
ty Arterial Disease Event Reduction (LEADER) [5], Fenofi-
brate Intervention and Event Lowering in Diabetes (FIELD) [6], 
and Action to Control Cardiovascular Risk in Diabetes 
(ACCORD)-Lipid [7] in the 2000s, failed to demonstrate AS-
CVD prevention with fibrates. Meta-analyses and Cochrane re-
views, in contrast, have suggested that fibrates may contribute 
to primary and secondary prevention of incident ASCVD 
[9,49,50]. In particular, patients with high TG and low HDL-C 
levels benefit most from fibrate treatment [7,51].

Drug development and clinical trials
Pemafibrate is a selective PPARα agonist with improved poten-
cy and selectivity compared to fenofibrate. In a phase 3 Japa-
nese trial, the pemafibrate group showed significantly reduced 
fasting TG levels by 45%, with significant decreases in non-
HDL-C and increases in HDL-C levels [52]. In a phase 3 Japa-
nese comparative trial between pemafibrate versus fibrate in pa-
tients with baseline TG levels between 300 and 400 mg/dL, the 
TG-lowering effect of pemafibrate was comparable to that of 
fenofibrate, with a reduction of up to 50% [53]. Liver and kid-
ney-related adverse events were lower in the pemafibrate group. 
The Pemafibrate to Reduce Cardiovascular Outcomes by Re-
ducing Triglycerides in Patients with Diabetes (PROMINENT) 
study was a phase 3 cardiovascular outcome trial including type 
2 diabetes patients with TG levels between 200 and 500 mg/dL, 
but the Kowa Research Institute decided to stop the trial, con-
cluding that the primary endpoint was unlikely to be met with-
out notable safety concerns [54]. Based on their interim analysis 
and the absence of safety issues, pemafibrate is now considered 
for other therapeutic applications, including nonalcoholic fatty 
liver disease. Although pemafibrate failed to prove a preventive 
effect for ASCVDs, it can be considered for patients with TG 
levels >500 mg/dL, and it may be safer than fenofibrate.

OMEGA-3 FATTY ACIDS

Omega-3 fatty acids are polyunsaturated fatty acids containing 
a double bond at the third carbon from the terminal carbon in 
their chemical structure. Examples of omega-3 fatty acids in-
clude α-linolenic acid, which is found in plants, and eicosapen-
taenoic acid (EPA) and docosahexaenoic acid (DHA), which are 
found in fish. Mammals are unable to synthesize omega-3 fatty 
acids; therefore, it is essential to consume them through the diet. 

It has been suggested that omega-3 fatty acids exert TG-low-
ering effects via different mechanisms: (1) inducing LPL ex-
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pression and increasing LPL activity; (2) activating PPARα and 
δ [55]; (3) suppressing hepatic sterol regulatory element-binding 
protein 1c (SREBP1c); and (4) increasing the β-oxidation of 
fatty acids [56]. Six-week supplementation of 6 g of omega-3 
fatty acids resulted in a 54% increase in LPL mRNA expression 
in human adipose tissue and up to a 31% increase in LPL activi-
ty [57]. By increasing LPL activity, omega-3 fatty acid supple-
mentation accelerated CM TG clearance [58]. Omega-3 fatty 
acids were more potent ligands or activators for PPARα than 
saturated fatty acids [59]. The role of PPARα in LPL and TG re-
duction is described in the previous section.

Drug development and clinical trials
Omega-3 fatty acids, including EPA and DHA, were shown to 
reduce TG by 25% to 31% with the administration of 2 to 4 g/day 
in the EpanoVa fOr Lowering Very high triglyceridEs (EVOLVE) 
trial [60]. However, cardiovascular outcome trials with different 
preparations of omega-3 fatty acids have shown inconsistent re-
sults. A Study of Cardiovascular Events in Diabetes (ASCEND) 
and Vitamin D and Omega-3 Trial (VITAL), which adminis-
tered EPA and DHA in the setting of primary prevention, did not 
find a significant reduction in ASCVD events [61,62]. The Out-
comes Study to Assess Statin Residual Risk With Epanova in 
High Cardiovascular Risk Patients With Hypertriglyceridemia 
(STRENGTH) and Omega-3 Fatty acids in Elderly with Myo-
cardial Infarction (OMEMI) trial, which were designed for sec-
ondary prevention, did not show a reduction in ASCVD events 
when a combination of EPA and DHA was administered 
[63,64]. In contrast, the A Study of AMR101 to Evaluate Its 
Ability to Reduce Cardiovascular Events in High-Risk Patients 
With Hypertriglyceridemia and on Statin (REDUCE-IT) trial 
administered 2 g of a icosapent ethyl, highly purified EPA ethyl 
ester, and showed a 25% relative risk reduction (17.2% in the 
icosapent ethyl group vs. 22.0% in the placebo group) in the 
primary composite endpoint of cardiovascular death, non-fatal 
myocardial infarction, non-fatal stroke, coronary revasculariza-
tion, or unstable angina in patients with established ASCVD or 
with diabetes and other risk factors [65]. This study included 
subjects who had been receiving statin therapy and achieved 
LDL-C target levels of LDL-C of 41 to 100 mg/dL. During a 
median duration of follow-up of 4.9 years, mean fasting TG 
levels decreased by 21.6% (from 216 to 170 mg/dL), suggesting 
that high TG levels confer a residual risk of ASCVD after opti-
mal LDL-C lowering therapy, which can be prevented by the 
administration of EPA.

Although the REDUCE-IT study clearly demonstrated the 

cardiovascular benefit of EPA, the conflicting results between 
REDUCE-IT and STRENGTH are in debate based on their 
study design: active oil (EPA vs. EPA plus DHA); comparator 
oil (mineral vs. corn); study population (high vs. moderate car-
diovascular risk). A post hoc analysis of the Copenhagen Gen-
eral Population Study which mimicked the two trials showed 
that the contrasting results between the REDUCE-IT and 
STRENGTH study can partly be explained by a difference in 
the comparator oil [66]. The mineral oil arm (a comparator oil 
in the REDUCE-IT study) showed unfavorable changes in 
LDL-C and C-reactive protein levels resulting in increased AS-
CVD risk compared to the entire cohort, suggesting that the 
protective effect of EPA over EPA plus DHA might have been 
overestimated. This study supports the protective effects against 
ASCVD in both EPA and EPA plus DHA.

In conclusion, omega-3 fatty acids have shown to reduce TG 
level and incident ASCVD, but the biological function for dif-
ferent composition of omega-3 fatty acids should be further 
studied. Adverse events including atrial fibrillation and bleeding 
should be considered when prescribing omega-3 fatty acids [67].

 
CONCLUSIONS

In this review, we focused on novel targets for lowering TG lev-
els based on the modulation of LPL activity. Evinacumab, a 
monoclonal antibody inhibiting ANGPTL3, is approved for use 
in the United States in patients with homozygous familial hy-
percholesterolemia. Volanesorsen inhibits APOC3 and was ap-
proved in Europe for the treatment of familial chylomicronemia 
syndrome, but has yet to be approved by the U.S. FDA due to 
safety issues including thrombocytopenia [68]. Other attempts 
to enhance LPL activity by inhibiting ANGPTL3/8 complex 
with monoclonal Ab, showed dose dependent reduction in TG, 
LDL-C, non-HDL-C in phase 1 trial [69]. We hope more clini-
cal result from on-going studies in near future.

Pemafibrate was found to be effective in lowering TG, with 
fewer side effects than fenofibrates, but its cardiovascular out-
come trial was stopped due to futility issue in ASCVD preven-
tion, but still testing its efficacy in nonalcoholic fatty liver dis-
ease. EPA was found to effectively reduce TG levels as well as 
incident ASCVD, but adverse events, including atrial fibrillation 
and bleeding, should be kept in mind. Beyond the abovemen-
tioned drugs, other therapeutics have been attempted to lower 
LDL-C with different targets which include inclisiran, bempe-
doic acid, lomitapide, mipomersen, etc. [70]. But most studies 
of new lipid lowering treatment were the result on the top of 
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statin therapies and still have very narrow indication for ex-
tremely high risk population such as homozygous familial hy-
percholesterolemia.

For the past 20 years, there have been few convincing novel 
drugs for dyslipidemia, but many new candidate-drugs have 
been developed recently. In the field of hypertriglyceridemia 
treatment, we also had very narrow option in the clinical prac-
tice. Understanding the pathophysiological mechanism of 
TGRLs metabolism and targeting LPL as a key molecule with 
recent therapeutic approach in the treatment of hypertriglyceri-
demia can be a very bright signal to optimize patients with in-
tractable TG levels and with high residual risks for ASCVDs. 
However, it is necessary to understand the mechanisms of ac-
tion, precise metabolic effects, and possible side effects of these 
drugs to use them appropriately in clinical practice.
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