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ABSTRACT

Due to dramatic advances in DNA technology, quan-
titative measures of annotation data can now be
obtained in continuous coordinates across the
entire genome, allowing various heterogeneous
‘genomic landscapes’ to emerge. Although much
effort has been devoted to comparing DNA se-
quences, not much attention has been given to
comparing these large quantities of data compre-
hensively. In this article, we introduce a method
for rapidly detecting local regions that show high
correlations between genomic landscapes. We
overcame the size problem for genome-wide
data by converting the data into series of symbols
and then carrying out sequence alignment. We
also decomposed the oscillation of the landscape
data into different frequency bands before
analysis, since the real genomic landscape is a
mixture of embedded and confounded biological
processes working at different scales in the cell
nucleus. To verify the usefulness and generality of
our method, we applied our approach to well
investigated landscapes from the human genome,
including several histone modifications.
Furthermore, by applying our method to over 20
genomic landscapes in human and 12 in mouse,
we found that DNA replication timing and the
density of Alu insertions are highly correlated
genome-wide in both species, even though the Alu
elements have amplified independently in the two
genomes. To our knowledge, this is the first
method to align genomic landscapes at multiple
scales according to their shape.

INTRODUCTION

A genomic landscape is a collection of real-valued
observations made at sequential positions along the
chromosome (Figure 1, top). Much effort has been
devoted over the past few years in the quest to understand
the fundamental principles of the genome. As a result, we
are now faced with an abundance of genomic data that we
never dreamed of having several decades ago (1,2). For
instance, the number of genome annotation tracks in the
UCSC genome browser (3) has increased exponentially
over the past few years and now tracks for human
genome 19 (hg19) alone exceed 150, with around 1000
data tables (4). The types of data include histone
modifications, SNPs, structural variation sites, CpG
methylation, splicing sites, non-coding RNA and many
more (1).
Although new data continue to arrive at a prodigious

rate and thorough investigation of each measurement is
done individually, not much work has been done to
provide an overview and bring together the different
views of the landscapes. The next important step is to
determine how these genomic landscapes are associated
with each other, both globally and locally, and to start
piecing together the puzzle in order to grasp the whole
picture of the genome system. Then we can start to
answer biological questions such as ‘How are epigenetic
landscapes related to other genomic features?’ and ‘What
features do DNA replication correlate with?’ Our goal in
this research is to develop a method for comparing
genomic landscapes according to their shapes and extract-
ing regions that show high correlations.
There are two difficulties to be overcome in analyzing

genomic landscapes. One is the amount of genome-wide
data that is a challenge for comprehensive analysis. The
other is the often neglected concept that a genomic land-
scape is a synthesis of dynamic biological processes
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operating at various spatial scales in the cell nucleus. Vast
numbers of different players are involved in genome regu-
lation, and they all work to orchestrate a particular cell
function. It is known that some players have long-range
effects and some have a only short-range effects. At the
same time, the entire chromatin is packed into high-order
structures (5). Due to this hierarchical nature of the
genome, the shape of the entire landscape has a nested
structure in which small oscillations are nested within
larger ones. For example, the top graph in Figure 1 is a
genomic landscape representing the density of Alu
elements across a stretch of human chromosome 18. Alu
has received considerable attention since the early years of
genome analysis and is known to be distributed
non-randomly at various scales along the human
genome (6). Several biological processes at different
scales, such as GC content, gene density and proximity
to CpG islands (7–9), are thought to act in combination,
making it hard to disentangle them. For this reason,
when studying a particular problem, we should decide at
what scale to conduct the investigation; otherwise, un-
less there is a dominant process working at one scale, de-
tecting a useful correlation is difficult, since other
processes at different scales could interfere with the
‘‘true correlations’’. This concept of scale is well estab-
lished in landscape ecology (10), and we believe that
scale should also be considered when analyzing genomic
landscapes.
To overcome these two problems (data amount and

multiple scales), we have developed a new method that
reduces landscape topologies to series of symbols and
carries out sequence alignment at multiple resolutions.
To our knowledge, this is the first method to align
genomic landscapes at multiple scales according to their
shape.

MATERIALS AND METHODS

The overview and the guidelines of the proposed method
can be found in the ‘Results’ section and only the details
of the procedure are mentioned in this section.

Preparation of genomic landscape data

All the histone modification data were obtained from the
ENCODE Broad Histone track of the UCSC Genome
Browser. DNase I restriction data were obtained from
the ENCODE Duke/UNC/UT Open Chromatin track.
All the data used were from human ES cells (H1-hESC).
Coordinate data for annotated repetitive elements, GC
content, RefSeq Gene and conservation score (PhyloP)
were obtained from the UCSC Genome Database. The
repeat data were created by using RepeatMasker at the
–s sensitivity setting for each chromosome. We used
genome-wide replication timing profiles generated by
using a high-density whole-genome oligonucleotide micro-
array (NimbleGen HD2; 2.1 million probes, one probe per
1.1 kb) (11). This produces a ‘replication timing ratio’
[=Log2(Early/Late)] for every 1 kb. DNA methylation
data for human and chimpanzee were obtained from
Gene Expression Omnibus (accession number
GSE30340) that uses bisulfite sequencing (12). For all
the data, build hg18 was used and we constructed
equally spaced data sets at the nominal scale using a
sliding window without any overlaps.

Wavelet transformation

A wavelet transformation is a signal processing technique
that decomposes a signal into different frequency
subbands. It takes an inner product of the wavelet
function with the signal f(p) that depends on two

Figure 1. Example of genomic landscape data (a collection of real-valued observations made at sequential positions along the chromosome). The
landscape can be considered as a mixture of various biological processes working at different scales. (A) Density of Alu elements in human
chromosome 18. The distribution is non-random and fluctuates over different ranges. (B) Distribution of Alu elements in different frequency
bands (scales). In this figure, the original landscape data are decomposed into several scales by wavelet transformation.
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indices, namely, a (scale) and b (position). The wavelet
function is defined by

�a;bðpÞ ¼
1ffiffiffi
a
p �

p� b

a

� �
ð1Þ

where � is called the mother wavelet.

Selecting the mother wavelet
In wavelet transformation, we used a difference of
Gaussians (DOG) as the mother wavelet. This is a
real-valued function that captures both the positive and
negative oscillations of the signal as separate peaks in
wavelet power (13), whereas other mother wavelets are
complex and combine both positive and negative peaks
into a single broad peak, which would result in the loss
of information about the shape of the original landscape.
The details of wavelet transformation of genomic data are
thoroughly described by Thurman et al. (13) and in the
supplementary file of the original ENCODE paper (2).

Selecting scales
In the cell nucleus, the DNA helix is folded hierarchically
into several layers of higher-order structures and many
players are involved in orchestrating cell function.
Recent studies have shown that regulation takes place at
various scales. For instance, some functions are regulated
at the nucleosome level, others are regulated at the
chromosome loop level and some are regulated at even
the chromosome level (5,14,15). Therefore, we conducted
our investigations at a wide range of scales, from as large
as 1Mbp to the relatively confined 0.1Mbp scale. In
general, when comparing two samples from genomic land-
scapes, most users do not have prior knowledge of which
scales to focus on. Therefore, to investigate the correlation
comprehensively, it is recommended to use a wide range of
scales. Unlike the comparison of DNA sequences, our
method can be applied within 3–4 min for a single scale,
using genome-wide data of entire human genome (see
‘Processing Time’ in the ‘Results’ section). For this
reason, it is feasible to search a couple of dozen scales in
one run. Furthermore, if users have the prior knowledge
of the data and would like to focus on a specific scale, the
scale can be specified in the setting file in the pipeline
directory.

Symbolization

Converting angles to symbols
Using the distribution of angles of the adjacent piecewise
aggregate approximation (PAA) coefficients, we
determined the breakpoints that divided the distribution
into N regions, where N is the number of symbols used.
The breakpoints were determined so that the regions all
have the same probability. As a result, the probability of
every symbol is approximately the same.

Number of symbols used
If the number of symbols used is small, the transformed
sequence will be less complex allowing more biologically
meaningless subsequences to be aligned to each other. On
the other hand, if many symbols are used, the possibility

of getting alignments will be much lower, increasing the
chance of missing pairs with potential correlations.

Number of data points per symbol
The width of a frame for PAA data reduction is directly
associated with the number of data points per symbol. If
the frame is set too wide, it will overrepresent the land-
scape data by including several peaks in one frame, losing
information about the precise topology. If the frame is set
too narrow, many symbols will be needed to represent a
single peak that will result in sequences of redundant
symbols. This will again lead to meaningless alignments.
Because the complexity of the signal is roughly related to
the wavelet scale, we allow the number of data points per
symbol to be adjusted according to the wavelet scale.

Internal parameter settings
The pipeline was made to automatically run with several
combinations of parameters and integrate the results in
post-procedure so that the users are left with only the
‘scale’ parameter. The pipeline has three types of param-
eters: (i) Scale of the wavelet (ii) number of symbols used
and (iii) number of data points per symbol. (i) is given by
the user and fixed in the pipeline. For (ii) and (iii), three
values are assigned and results from all nine combinations
are integrated in a post-procedure. For (ii), 5, 7 and 9
symbols are internally used and for (iii) 0.75, 1.0 and
1.25 times the scale (e.g. 0.75*scale). All of the nine
results are merged by discarding the regions that are
included in larger alignments.

Sequence alignment

Score matrix and gap penalty
The score for an alignment is calculated as the sum of
character match scores with penalties for gaps. In this
study, the gap open penalty and gap extension penalty
were set to be 25 and 2, respectively.
A set of N symbols (obtained as described in the

previous subsection) is mapped to the set of integers
{1, 2, 3, . . . ,N}, with adjacent symbols being mapped to
adjacent integers. Scores S(ai, aj) for ai, aj2 {1, . . . ,N}
are set so the same angles will have a high score,
adjacent angles will have a moderate positive score and
the rest will have negative scores that decrease as the angle
differences increase:

Sð�i;�jÞ¼

3 if �i¼ �j
1 if �i��j

�� ��¼ 1
�2 if �i��j

�� ��¼ 2
0 if matched with masked symbol
�5 �i��j
�� ���2 otherwise

8>>>><
>>>>:

It is sometimes helpful to mask parts of the sequence, for
example, when the sequence has low-complexity regions
or stretches with no measurement of genomic landscapes
(e.g. centromere regions). We set the score to 0 when
masked characters are aligned, because masked characters
should not affect the obtained alignment. The score
should be negative on average to prevent random se-
quences from being aligned (16). (We have also prepared
a score matrix to detect waves with opposing oscillations.
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The score matrix for negative correlations is also set so the
angles that differ the most will have the highest scores and
gradually decrease as the angles become more acute.)

E-value calculation
The lastex application, included in the LAST software
(16,17), calculates the likelihood of getting chance align-
ments (18) (the ‘E-value’) for a given score matrix and gap
penalty. By employing an E-value threshold, we can filter
out alignment pairs having low significance. In our
analysis we set the E-value to 0.1.

RESULTS

Overview of the method

The general idea of our approach is to align genomic land-
scape data (collections of real-valued observations made
at sequential positions along a chromosome) based on
their topology. This will allow us to detect regions with
similar shapes, which can lead to finding functionally
interrelated regions. Our approach has five phases:
(i) wavelet transformation, (ii) data reduction, (iii) sym-
bolic representation, (iv) local alignment and (v) filtering
(Figure 2). In this section, we will look at each step in
detail.

Wavelet transformation
The initial step of the procedure is to transform the land-
scape data into series of wavelet coefficients (Figure 2B).
As explained in the introduction, genomic landscape data
is usually the result of embedded and confounded biolo-
gical processes working at different scales in the cell
nucleus. Therefore, there could be a case where the data
set is uncorrelated at short genomic ranges, but is strongly
correlated at larger ranges (i.e. at longer wavelengths). To
calculate the true correlation, we need to determine the
correlation at relevant scales. Our solution to the
problem is to utilize wavelet transformation to extract
scale-specific information from independent and depend-
ent variables and then detect scale-specific associations
within the transformed data. Wavelet transformation
(19) is a well-established mathematical procedure that is
also used in bioinformatics (20) (see the ‘Materials and
Methods’ section for details). Our work to apply wavelet
transformation to genomic data was greatly inspired by
the work of Thurman et al. (13), which was also used in
the ENCODE project (2).

Data reduction
The bottleneck preventing the efficient search for similar
regions in any genome-wide data set is the amount of data.
We overcome this problem by using the data reduction
technique called PAA, which is now widely used for
time-series data (21). The data are divided into equally
sized segments and the mean value of the data points
falling within every segment is calculated (Figure 2C).
The vector obtained from this process is a reduced repre-
sentation of the original data, which enables handling
large data sets such as genomic landscapes.

Symbolic representation
After we have reduced the original landscape data to a
smaller number of data points, we convert the PAA coef-
ficients into symbols. As we wish to detect those regions
that have different amplitudes but similar shapes, we cal-
culate the angle with respect to the adjacent PAA coeffi-
cient (see Figure 2D), and then convert angles to symbols
(see the ‘Materials and Methods’ section for details).

This symbolic representation is inspired by a method
called symbolic aggregate approximation (SAX), which
is a procedure for converting time-series data into a
series of symbols (22) and has been shown to be applicable
to many analyses in data mining fields (http://www.cs.ucr
.edu/�eamonn/SAX.htm). As a genomic landscape can
also be considered a continuous data set along a certain
interval (in this case, positions on a chromosome), we used
SAX to transform the wavelet coefficients into a series of
symbols.

Alignment of genomic landscapes
Treating a genomic landscape as a sequence of symbols
allows us to incorporate alignment techniques that have
been extensively studied in bioinformatics. We used the
LAST alignment program, which finds similar regions
between sequences (17). We chose LAST from other
similar tools (e.g. BLAST, BLAT, BLASTZ) because (i)
it allows a series of user-defined symbols and a score
matrix to be set, (ii) it copes more efficiently with
repetition-rich sequences (by employing variable length
seeds) and (iii) it calculates whether the alignment is sig-
nificant (by comparing the score with random sequences)
and can be bounded by E-value (18). Sequence alignment
returns local pairs of subsequences with high scores that
are significant. Gaps are inserted between the symbols so
that the score is maximized. Inserting gaps overcomes the
problem of position distortion that prevents the detection
of an accurate correlation between the local landscapes.
We explain how to construct a score matrix in the
‘Materials and Methods’ section.

Filtering
To ensure the pairs are highly correlated, we took the
original wavelet coefficients of the subsequences and
calculated the Pearson correlation within each pair.
Every data point with a gap (i.e. a data point that is
aligned with a gap) was removed before the correlations
were computed. The remaining pairs from this stage will
be the final output of our procedure and represent a set of
similar regions in genomic landscapes with high correl-
ation coefficients. It is also possible to filter by the
length of the alignment at this stage. Given an input of
raw genomic landscape pairs, the above procedure returns
aligned landscapes with high correlation coefficients.
Examples are shown in Figure 3. The figures indicate
that the landscapes are precisely aligned and that the
overall topologies are highly similar.

Assessment of proposed method

Overall assessment of the method is difficult as we have no
pairs of data sets that are guaranteed to have or not to
have a correlation. Therefore, in an attempt to estimate
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the performance, we used well-accepted pairs of data sets
with known associations and checked whether the results
of our procedure are consistent with previous findings.

Assessment using known ‘correlated’ landscapes
Di-methylated histone H3 at lysine 4 (H3K4me2) is
known to be enriched at regions that have an active chro-
matin state, and acetylated histone H3 at lysine 9
(H3K9ac) is known to reduce the tightness of the chroma-
tin state by changing the charge of the histone, resulting in
an open chromatin region. These two histone modifica-
tions associated with active and open chromatin are
known to be correlated (23,24). We tested whether the
proposed method could correctly identify these
similarities. Figure 3 shows part of the results produced.
The overall topologies of the landscapes are precisely
aligned with each other, showing very high correlation

coefficients (r=0.94 in Figure 3A). We also succeeded
in aligning landscapes with different amplitudes but
similar topologies (Figure 3B). Furthermore, we show
that gaps can be inserted to cope with position distortion
(Figure 3C). As a result, our method clearly showed that
the landscapes of H3K4me2 and H3K9ac are positively
correlated with each other genome-wide (Figure 1), which
is consistent with the previous findings. This trend
continued over all the scales examined (see column (a) in
Table 1 and Figure 4) where the lines across diag-
onal show landscapes with a correlation coefficient
higher than 0.7 at the exact position. Figure 3D is
an example showing that H3K4me2 and H3K9ac exhibit
a correlation even at smaller scales where the topology
is more variable. The correlation between different
histone landmarks has also been examined by Thurman
et al. (25).

A

B

C

D

E

Figure 2. Overview of the proposed method to convert genomic landscape data into a series of symbols. (A) Raw data: an equally spaced landscape
data set at the nominal scale (which is considered as a combination of multiple scales). (B) Wavelet transformation: the raw signal is transformed into
a series of wavelet coefficients at a fixed wavelet scale. (C) Data reduction: PAA is used to lower the dimension of the data. (D) Extracting shape
data: the angle to the adjacent PAA coefficient is calculated to retrieve the ‘shape’ of the landscape. (E) The process is then followed by assigning
symbols according to the angles to obtain a set of sequences as an output. After converting the landscape data into sequences of symbols, sequence
alignment is carried out to detect similar regions, which are reconverted into wavelet coefficients to select those waves with high correlation
coefficients.
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Landscapes from independent experiments
To investigate further the robustness of our method, we
compared the landscapes from two independent experi-
mental environments; data from active chromatin
(H3K4me2) and chromatin accessibility (DNase I) were
used. As chromatin is loosened during transcription,
these two features are known to correlate with each
other (2). Our method successfully detected a
genome-wide correlation between these data (see column
(b) in Table 1).

Assessment using known ‘uncorrelated’ landscapes
Next, we applied our method to well-known
‘uncorrelated’ landscape data. It has long been known
that LINE-1 (L1) retrotransposons constitute one of the
most successful families of retroelements in mammals and
are abundant in gene-poor regions of the genome (26). We
calculated the correlation between L1 and gene content to

A

B

C

D

Figure 3. Examples of aligned genomic landscapes for H3K4me2 (blue line) and H3K9ac (green line). (A) H3K4me2 and H3K9ac are aligned
precisely and have a high correlation coefficient (r=0.94027). (B) Data are symbolized by using the angles between the data points, enabling
alignment of landscapes with different absolute values but the same shape. (C) Our method is robust to position distortion because it can insert gaps
to maximize the alignment score. (D) An example of alignment between highly variable (small scale) landscape data.

Table 1. Diagonal coverage (%) as quantitative measurement of dot

plots

Scale
[Mbp]

(a) H3K4me2/
H3K9ac

(b) H3K4me2/
DNase I

(c) Gene Density/
LINE-1

1 98.98 96.28 5.10
0.50 99.36 95.39 2.71
0.25 99.61 90.82 2.02
0.10 99.25 86.08 0.00

Quantitative results of comparisons for (a) H3K4me2 (active) versus
H3K9ac (open), (b) H3K4me2 versus DNase I and (c) gene density
versus LINE-1 (L1) at multiple resolutions (scales). The column
‘Scale’ gives the scale of the wavelet transformation and the columns
(a), (b) and (c) indicate the coverage of correlated regions in the
diagonal area. The H3K4me2/H3K9ac and H3K4me2/DNase I pairs
show high (within pair) similarity across the genome whereas the gene
density/L1 pair barely shows any correlation. The values in the table
are expressed as the mean for all chromosomes.
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verify that our method does not mistakenly detect
uncorrelated regions. Four different scales from coarse
to fine were used. As opposed to the results from the
H3K4me2/H3K9ac analysis, the pair did not show
genome-wide correlation and showed no correlation at
the exact position (see column (c) in Table 1 and
Supplementary Figure S1). This result was consistent
with what was expected from previous studies (7,26–29).

Processing time
The general aim of this work is to provide a genome-wide
similarity search that will enable users to effectively
explore the wealth of today’s genomic landscape data.
Therefore, processing time is an important factor. By
utilizing a compact data representation and a well-studied
sequence analysis technique, we have developed a method
for comparing genomic landscapes at ultrahigh speed. For
the H3K4me2/H3K9ac analysis at a single scale (with
fixed parameters), the genome-wide intrachromosome
similarity search is completed within 3–4 min and takes
only about 15 min at four scales (Table 2). For more con-
servative run, with nine combinations of parameters
merged (see ‘Materials and Methods’ section), it will
take approximately 6–8 times more. This short processing
time will allow systematic and comprehensive compari-
sons of many genomic landscapes and could be
incorporated into the post-processing done immediately
after downloading the data from a database such as the
UCSC genome browser.

Pipeline
Our pipeline is designed so various genomic features can
be compared consecutively without any modification of
the data. Users will only need to specify the data
file and the path to it in the setting file. The information
on which scale to investigate can also be fixed in this
file, but unless the users have a prior knowledge about
the scale, it is recommended to run the program at
wide range of scales. Furthermore, our program
supports parallel processing to speed up the calculations.
The software implementation of our method is named
‘GeLATo’ which is an abbreviation for Genomic
Landscape Alignment Tool.

Application to human genomic landscapes

The above benchmarks demonstrate that the method is
capable of finding regions with similar landscape
topologies, indicating that we can apply the method to
other existing data. We conducted a comprehensive
study of various human genomic landscapes and
investigated the interrelations between the samples. A
total of 13 samples available from the public database
were selected, namely, ‘gene density’, ‘GC content’,
‘CTCF binding sites’, ‘conservation score (PhyloP)’, ‘Alu
elements’, ‘LINE-1’, ‘replication timing (ES cell)’, ‘repli-
cation timing (NPC)’, ‘H3K4me2’, ‘H3K27me3’,
‘H3K9ac’, ‘DNase I’ and ‘DNA methylation (sperm)’.
We then carried out all-to-all comparison for those land-
scapes at four separate scales, from fine to coarse, for a
total of 312 comparisons using genome-wide data. To
eliminate the effect of the parameter settings, such as
number of symbols and data points used to represent a
single symbol, we have internally merged all the results
from different parameters. To interpret the results we
used the diagonal coverage to assess the degree of correl-
ation between two landscapes (Table 3 and
Supplementary Table S2).
Overall, correlation matrix values show higher correl-

ation at a coarser scale, and the coverage gradually de-
creases as the scales become finer. For gene density,
H3K4me2, which is an active chromatin landmark,

Figure 4. Dot plot representation of two genomic landscapes, namely, H3K4me2 and H3K9ac, at multiple scales. H3K4me2 and H3K9ac show high
coverage across the diagonals, indicating that they are exactly aligned. Note that all the aligned regions (indicated by red lines) in the figure have high
correlations (greater than 0.7). See also Table 1 for quantitative results.

Table 2. Processing time (in seconds) of each step at four scales

Scale [Mbp] 1 0.5 0.25 0.1 Total

Wavelet transformation 63.52 65.05 63.78 65.60 257.96
Symbol representation 22.97 25.07 25.21 26.86 100.12
Sequence alignment 57.85 55.33 54.48 63.73 231.38
Filtering 63.79 64.88 83.19 104.94 316.80
Total 208.14 210.34 226.66 261.13 906.26

The processing time was measured for intrachromosome comparison of
histone modification data, H3K4me2 and H3K9ac, for chromosomes
1-22 and X. The number of symbols and the number of data points per
symbol were set to 7 and 0.75 times the scale, respectively. We used a
computer with a 2.67 GHz Intel Xeon Processor X5550, 24 GB of
RAM and a Linux operating system.
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shows high correlation of >90% with the diagonal
coverage. The distribution of Alu elements and gene
density also shows high coverage (93.80%), which indi-
cates high similarity between them. This is consistent
with the report that Alu elements are enriched in
gene-rich regions (7). Furthermore, in order to check the
reliability and significance of the diagonal coverage values,
we calculated all the landscape pairs with one of the two
samples in the reversed direction. If the diagonal coverage
is due to a false positive, it is likely to also show up in pairs
with opposite directions as they have the same complexity
and composition of symbols. As a result, all pairs showed
significantly low diagonal coverage at every scale studied,
which indicates that diagonal coverage values are not
caused by random effects (see Supplementary Table S3).

Genome-wide pattern of replication timing and the density
of Alu elements are highly correlated
Replication timing is the temporal order of DNA replica-
tion at all coordinates in the genome (11,30,31). High
(low) values indicate that the DNA segment is copied
early (late) in interphase. On the other hand, Alu is the
most abundant transposable element in human,
comprising 11% of the total genomic DNA, and this
element propagates by transposition to other regions
within the genome. Alu elements are known to be
distributed non-randomly along the human genome and
have been proposed to be major players in shaping
primate genomes (7,32).
We have found a striking similarity between these two

intuitively unrelated landscapes (Figure 5). The degree of
similarity are almost the same among chromosomes,
showing nearly a 100% match (see Supplementary
Figure S2). In average, the diagonal coverage at exact
position in replication timing exceeded both of well
acknowledged genomic features, GC contents and gene
density, that has been known to show correlation with
distribution of Alu elements from the early age of
genome analysis (7) (see Table 3). Although Alu is one
of the non-autonomous retrotransposons that require
functional proteins encoded by long interspersed
elements (LINEs) to mediate their retrotransposition
(33), L1 does not show this similarity (see Table 3).

Replication timing of embryonic stem cells shows a high
degree of correlation with Alu density at a wide range of
scales
It is known that the replication timing program changes
during development (11). Interestingly, Figure 6 clearly
shows that Alu density more strongly correlates with rep-
lication timing in embryonic stem (ES) cells than in neural
precursor cells (NPCs): the coverage percentage along the
diagonal of a dot plot is higher for ES cells at every scale
examined. We suspect that this is because only mutations
in germline cells are passed onto the next generation. In
addition, to understand how the scale size affects the
degree of diagonal coverage for these pairs, the diagonal
coverage was calculated at 15 different scales (Figure 7),
along with GC content and gene density. As shown in
Figure 7, replication timing (in ES cells) shows the
highest coverage for a wide range of scales among the
three samples. The most distinctive feature is that unlike
GC content and gene density where the coverage grad-
ually decreases as the scale becomes smaller, the
coverage for replication timing is high and stationary
until 0.25–0.3 Mbp, where it shows a sudden drop.
Considering that false-negative coverage is kept within
5–6% (see Supplementary Figure S6), the result is most
likely related to an attribute of replication timing. The
observation that the diagonal coverage becomes relatively
low at a small scale agrees with the report that DNA rep-
lication is regulated at the level of large chromosomal
domains, 0.5–5 Mb in size (34).

Degree of similarity coverage changes with repeat types
We further investigated the relationship between replica-
tion timing and the distribution patterns of various repeat
elements in the human genome, including repeats from
SINE and LINE (Table 4). The results show that only
Alu elements have a high degree of diagonal coverage
against replication timing, almost no coverage against
L1 and L2 in the LINE family and very low coverage
against MIR from the SINE family. The most interesting
finding was that Alu subfamilies of different genetic age
showed different degrees of coverage: the oldest, AluJ
(active 65–40 million years ago, mya), had the highest

Table 3. Comprehensive study of 13 genomic landscapes in human genome (scale: 1Mbp)

Gene GC CTCF Cons. Alu LINE RT-ESC RT-NPC H3K4me2 H3K27me3 H3K9ac DNaseI DNAmeth.

Gene – 48.39 68.42 4.59 93.80 5.10 83.45 65.28 91.00 14.35 77.86 82.09 5.19
GC 48.39 – 55.16 39.53 75.87 10.87 50.92 50.42 96.64 51.57 90.34 93.96 50.85
CTCF 68.42 55.16 – 0.00 39.46 0.00 46.52 40.23 77.29 36.61 50.69 87.43 0.67
Cons. 4.59 39.53 0.00 – 5.82 16.85 6.03 9.30 19.93 11.51 18.98 15.62 65.69
Alu 93.80 75.87 39.46 5.82 – 7.29 96.19 68.31 92.60 32.81 86.19 91.09 9.90
LINE 5.10 10.87 0.00 16.85 7.29 – 0.84 0.00 8.76 4.82 8.58 8.32 16.09
RT-ESC 83.45 50.92 46.52 6.03 96.19 0.84 – 93.78 94.85 22.00 84.65 81.18 4.73
RT-NPC 65.28 50.42 40.23 9.30 68.31 0.00 93.78 – 76.73 12.48 69.08 60.22 4.85
H3K4me2 91.00 96.64 77.29 19.93 92.60 8.76 94.85 76.73 – 81.80 98.98 96.28 17.69
H3K27me3 14.35 51.57 36.61 11.51 32.81 4.82 22.00 12.48 81.80 – 72.27 64.16 5.84
H3K9ac 77.86 90.34 50.69 18.98 86.19 8.58 84.65 69.08 98.98 72.27 – 85.38 21.28
DNaseI 82.09 93.96 87.43 15.62 91.09 8.32 81.18 60.22 96.28 64.16 85.38 – 17.69
DNAmeth. 5.19 50.85 0.67 65.69 9.90 16.09 4.73 4.85 17.69 5.84 21.28 17.69 –

The values listed in each column show the diagonal coverage, which is used as a measure of how well two landscapes are aligned at the exact
position. DNAmeth.: DNA methylation; Cons.: Conservation. See Supplementary Table S2 for other scales.
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coverage, followed by AluS (45–25 mya) and the least
similar in the youngest Alu, AluY (30 mya to present)
(7,35). Furthermore, the coverage was especially high for
replication timing in ES cells and iPS cells but not as high
in NPCs and lymphoblastoid cells.

Relation of repeat elements and replication timing in mouse
genome
Next, to check whether correlation can also be found in
other species, we conducted a comprehensive study using
various repeats and replication timing data in the mouse
genome. Although copies of Alu elements in human and
mouse have amplified and duplicated independently in the
two genomes (7,36), we found high diagonal coverage
between Alu and replication timing in the mouse
genome, similarly (see Supplementary Table S5). In
contrast to SINE repeats in human where only one
dominant type of repeat (Alu element) succeeded in its
expansion, the SINE family in mouse have several types
of repeats (e.g. Alu, B2 and B4) (7). To test whether the
correlation is specific to Alu elements, we furthermore
carried out alignments of other repeat elements. As a
result, B2 and B4 from the SINE family also showed
high diagonal coverage against replication timing (see
Supplementary Table S5) and the trends in coverage ac-
cording to scale were highly similar (see Figure 7 and
Supplementary Figure S7). In both human and mouse,
MIR showed almost no correlation.

Finding correlated regions at different positions

So far we have shown that the pipeline is useful for de-
tecting those pairs that show high correlation at exact

A

B

Figure 5. Example of alignment results for the density of Alu elements and replication timing in ES cells (ESC). (A) Example of an aligned landscape
at the 0.5 Mbp wavelet scale on human chromosome 4. (B) Dot plot representation of the two at the 1 Mbp scale on chromosome 16.

Figure 6. Averaged diagonal coverage of the dot plot over all chromo-
somes: Alu density versus replication timing (RT) for ES cells (black
bar) and Alu density versus RT for NPCs (gray bar). ES cells show a
higher diagonal coverage in the dot plot than NPCs at all scales
examined.

Nucleic Acids Research, 2012, Vol. 40, No. 14 6443

http://nar.oxfordjournals.org/cgi/content/full/gks354/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks354/DC1
http://nar.oxfordjournals.org/cgi/content/full/gks354/DC1


positions for data on various landscapes. To exhibit
the strength of the proposed method where similar land-
scape topologies in different positions can also be
retrieved, we explored this case by using artificial data
created with the H3K4me2 landscape in human chromo-
some 1. Although the data are relatively simple, we
verified that this approach can align all the regions of
the shuffled data (see Supplementary Figure S4) and
can detect all the embedded motifs (see Supplementary
Figure S5).

Comparative genomic landscape
To further demonstrate, using real data, that our frame-
work can also compare landscapes from different species,
alignment of DNA methylation landscapes in human and

chimpanzee was carried out. The major difference in
human and chimpanzee is that human chromosome 2 is
derived from two smaller chromosomes from chimpanzee
(chromosome 2A and 2B) and they have fused to create
chromosome 2 (37). Therefore, in the chimpanzee genome,
the coordinates are different from those in human. We
have confirmed that the landscape of DNA methylation
is conserved between the human and chimpanzee genomes
by using genome-wide data on DNA methylation
measured in sperm. This is consistent with the results of
the original work (12) (Figure 8).

Taken together, we show that our pipeline can be
applied to detect pairs of correlated regions at different
genomic positions.

Figure 7. Transition of the diagonal coverage between density of Alu elements and three different landscapes (RT, replication timing; GC, GC
content; Gene, gene density) over 15 different scales.

Table 4. Correlations between replication timing and density of various repeat elements (scale: 1Mbp)

RT SINE LINE

ESC ESC2 iPS NPC Lympho. Alu AluJ AluS AluY MIR L1 L2

RT ESC – 99.00 98.88 93.78 81.04 96.19 95.99 92.62 53.90 9.42 0.00 5.86
ESC2 99.00 – 98.48 96.36 87.11 91.18 96.02 91.79 58.82 7.26 0.00 5.45
iPS 98.88 98.48 – 90.64 75.32 94.66 93.97 93.40 59.54 7.91 0.00 4.63
NPC 93.78 96.36 90.64 – 70.29 68.31 69.88 66.91 14.90 12.52 0.00 10.06
Lympho 81.04 87.11 75.32 70.29 – 71.13 74.82 71.27 32.09 7.97 0.91 3.72

SINE Alu 96.19 91.18 94.66 68.31 71.13 – 98.76 98.97 96.34 19.86 5.90 19.23
AluJ 95.99 96.02 93.97 69.88 74.82 98.76 – 98.43 89.23 20.22 2.40 20.62
AluS 92.62 91.79 93.40 66.91 71.27 98.97 98.43 – 96.10 21.44 5.90 11.57
AluY 53.90 58.82 59.54 14.90 32.09 96.34 89.23 96.10 – 3.81 7.28 6.93
MIR 9.42 7.26 7.91 12.52 7.97 19.86 20.22 21.44 3.81 – 1.30 96.47

LINE L1 0.00 0.00 0.00 0.00 0.91 5.90 2.40 5.90 7.28 1.30 – 3.41
L2 5.86 5.45 4.63 10.06 3.72 19.23 20.62 11.57 6.93 96.47 3.41 –

RT, replication timing; Lympho, Lymphoblastoid. See Supplementary Table S4 for other scales.
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DISCUSSION

We developed a method that can compare different types
of landscapes and obtain pairs of local regions that have
similar topologies. We demonstrated that this approach is
effective for the purpose of comparing landscape
topologies (Figure 3) and offers several advantages: fast
processing speed (Table 2), the ability to handle
genome-wide data sets and an architecture that allows
seamless comparison of multiple samples (Table 3).

Our challenge was to incorporate the concept of scale
from the field of landscape ecology into the analysis of
genomic landscapes as genomes are regulated at different
scales, from macroscopic to mesoscopic to microscopic.
For instance, levels of regulation include nucleosomes,
chromatin loops, matrix attachment regions (38), nuclear
lamina and chromosome territories (5,14,39–41).

There are many cases in genomic landscapes where
DNA sequences are the same but the DNA is modified
(e.g. histone modification, DNA methylation, nucleosome
positioning and other chip-sequencing data in different
cell line or tissues). This will provide a rough determin-
ation of which existing landscape data are associated with
the new data (Table 3) that cannot be accomplished
through the alignment of DNA sequences. For genomic
landscape data, one could use the developed platform to
compare genomic landscapes across species (‘comparative
genomic landscapes’) and to study how a particular land-
scape has evolved over time (Figure 8).

In the future, it will also be interesting to search for
‘landscape motifs’ where the corresponding DNA se-
quences are not similar but their landscape topologies
are. Although we have checked that all the artificially
embedded motifs appear on corresponding regions of
the dot plot (see Supplementary Figure S5) and some
examples are detected as self-similar regions (see
Supplementary Figure S3), the pipeline needs to be

extended so that it can group all the similar regions and
obtain distinctive shapes for real biological data, as cur-
rently, the retrieval of similar regions is limited to pairs.
We, therefore, intend to extend our approach to multiple
alignment. The idea is to compute the local alignments for
every pair of sequences as described in this article, then
cluster such alignments into blocks of approximately
globally alignable subsequences, determine block
boundaries and, finally, multiply align these blocks (42).

Comparison with existing methods

Dynamic time warping (DTW) (43) is another technique
that has long been used to compare time-series data.
(DTW is similar to the Smith–Waterman algorithm (44)
in sequence alignment.) However, a straightforward im-
plementation of DTW has a time and space complexity
of O(n2) (where n is the length of the data), which is un-
suitable for our case because new genome-wide data are
constantly flowing in at a prodigious rate. We need to
have an efficient approach that copes with the high
dimensionality of genome data. Our approach succeeded
in accomplishing this by converting the landscape data
into symbols and using well-known sequence alignment
techniques.
As explained earlier, there are only a few works that

focus on the interrelations of genomic landscapes. The
pioneers in analyzing continuous functional genomic
data are Thurman et al. (2,13,45). A distinction between
their approach and ours is that our approach ‘aligns’
genomic landscapes by conducting extensive searches for
similar topologies over all coordinates. This can be used to
search for motifs or to compare different species and is not
limited to a fixed position. In addition, gaps can be
inserted to cope with position distortion, a procedure
that could be adjusted to suit experimental conditions.

A

B

Figure 8. Alignment of DNA methylation landscapes between human and chimpanzee. Human chromosome 2 is a product of fusion of ancestral
chimpanzee chromosomes 2A and 2B. Although the positions and chromosomes are different, the results show that the landscapes of DNA
methylation in both chimpanzee chromosomes 2A (A) and 2B (B) are precisely aligned with human chromosome 2. This finding is consistent
with early studies.
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Correlation between replication timing and distribution of
Alu elements: possible scenarios

The landscape of the replication timing showed high cor-
relation to the landscape of Alu density over the entire
human genome (Table 3). The common feature among
the two landscapes is that they are both associated with
the structure of chromatin. For Alu elements, they occupy
�11% of the human genome and have had a substantial
impact on shaping our genome over the years of evolution
(7,28,29,46). On the other hand, recent studies have also
revealed that replication timing is related to the 3D organ-
ization of chromosomes in the cell nucleus and that a
transition in the timing is facilitated by chromatin
change (11,28,30) at the level of large chromosomal
domains, 0.5–5Mbp in size (34). The correlation
between the two is high and stationary up to the
0.25–0.3Mbp scale, where it shows a sudden drop, in
human (Figure 7) and mouse (see Supplementary
Figure S7), pointing to the possibility that chromatin
structure is associated with the correlation between
the two. Here, we discuss two possible scenarios that
could explain why the two landscapes show high
similarity.
The first scenario is straightforward and considers

‘structure-biased insertions’; Alu elements transpose to
those regions with early replication timing. Since replica-
tion timing and Hi-C data are closely correlated (11), this,
in other words, indicates that insertions are made at highly
accessible regions of chromatin structure. As free diffusion
is known to be the main mode of transport in living cells
(47), including diffusive movement of proteins, lipids and
nucleic acids (5), Alu elements are also likely to diffuse in
the cell nucleus. Thus, there is a greater chance of Alu
elements inserting at open chromatin region leading to
close similarity between landscapes of replication timing
and Alu elements. The high diagonal coverage between
Alu elements and DNase I, which is often used as a
measure of chromatin accessibility, also supports this
view (Table 3). Although this hypothesis seems to
account for the correlation well, the scenario cannot
explain the results of a detailed study that uses different
subfamilies of Alu elements (Table 4). According to the
result, recently transposed AluY does not show coverage
as high as the older AluS and AluJ. Because replication
timing reflects the current structure of the nucleus,
younger Alu would reflect that structure to a greater
extent than would the older insertions.
The second scenario addresses this point, and considers

‘structure-biased selection’ of Alu elements. Although it is
well known that Alu elements are observed in GC-rich
regions, originally, both Alu and LINE-1 (L1) elements
integrate into similar AT-rich regions as Alu uses the
reverse transcriptase from L1. In contrast to L1, Alu
elements seem to shift toward GC-rich DNA over time
(29,48). Our hypothesis considers that the selection differ-
ence after Alu insertion events is influenced by the chro-
matin structure, thus leading to the similarity between the
landscapes of Alu elements and replication timing. The
connection between chromatin structure and mutation
rates has previously been studied; it is the lowest in open

regions and the highest in a closed chromatin structure
(49) that supports our view. This is explained by the
increasing DNA methylation level that reflects a
negative correlation between timing and gene expression
(50), which is directly linked to the status of chromatin
loops. This is consistent with the observation that
mutation rate is markedly increased in later-replicating
regions of the human genome (51), which is also found
in other species (52). Moreover, in the study of insertion
distribution, the evolutionarily young Alu (AluY) inser-
tions were found to be distributed relatively evenly in
both the chimpanzee and human chromosomes (53).
This supports the hypothesis that the selection, after the
insertion, shapes the current observed distribution, sug-
gesting that recently transposed AluY is still in the
process of being eliminated by selection.

It is still an open question as to why this is limited to
Alu (or to active SINE elements in mouse) and not L1
(Table 4), which uses the same mechanisms as transpose.
There are numerous studies that have focused on factors
that distinguish L1 from Alu elements (27,54,55). One
interesting study by Kroutter et al. (56), shows that Alu
RNAs can retrotranspose rapidly, whereas L1 RNAs take
almost 24 h longer, which is caused by the way cells
manage pol III and pol II (mRNA) transcripts affecting
the timing of a transcript going through the retrotran-
sposition pathway.

CONCLUSION

We have developed an ultrafast method for comparing
genome-wide data on genomic landscapes. To our know-
ledge, this is the first method to align the landscapes ac-
cording to their topology at multiple resolutions. Our
approach is robust to position distortion and copes with
the high dimensionality of genomic data. The information
discovered through our approach should facilitate further
exploration of genomic landscapes and how they affect
each other within a living cell nucleus. Our pipeline
GeLATo is freely available from http://www.cb.k.u-
tokyo.ac.jp/asailab/gelato.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1–5 and Supplementary Figures
1–7.
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