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Using advanced analysis 
of multifocal visual‑evoked 
potentials to evaluate the risk 
of clinical progression in patients 
with radiologically isolated 
syndrome
J. M. Miguel1, M. Roldán2, C. Pérez‑Rico2,3, M. Ortiz4, L. Boquete1 & R. Blanco3,5*

This study aimed to assess the role of multifocal visual-evoked potentials (mfVEPs) as a guiding factor 
for clinical conversion of radiologically isolated syndrome (RIS). We longitudinally followed a cohort 
of 15 patients diagnosed with RIS. All subjects underwent thorough ophthalmological, neurological 
and imaging examinations. The mfVEP signals were analysed to obtain features in the time domain 
(SNRmin: amplitude, Latmax: monocular latency) and in the continuous wavelet transform (CWT) 
domain (bmax: instant in which the CWT function maximum appears, Nmax: number of CWT function 
maximums). The best features were used as inputs to a RUSBoost boosting-based sampling algorithm 
to improve the mfVEP diagnostic performance. Five of the 15 patients developed an objective clinical 
symptom consistent with an inflammatory demyelinating central nervous system syndrome during 
follow-up (mean time: 13.40 months). The (SNRmin) variable decreased significantly in the group that 
converted (2.74 ± 0.92 vs. 4.07 ± 0.95, p = 0.01). Similarly, the (bmax) feature increased significantly in 
RIS patients who converted (169.44 ± 24.81 vs. 139.03 ± 11.95 (ms), p = 0.02). The area under the curve 
analysis produced SNRmin and bmax values of 0.92 and 0.88, respectively. These results provide a set of 
new mfVEP features that can be potentially useful for predicting prognosis in RIS patients.

The afferent visual system is affected very frequently and at a very early stage in demyelinating processes. Conse-
quently, study of it may lead to broader and deeper understanding of these neurological pathologies1,2. Diagnosis 
and evaluation over time of the largely subclinical nature of defects of the afferent visual pathway in demyelinating 
processes require the use of innovative structural and functional diagnostic technologies such as latest-generation 
optical coherence tomography (OCT) and multifocal visual-evoked potentials (mfVEPs), respectively3.

The increasing use of magnetic resonance imaging (MRI) to evaluate clinical pictures such as migraine, dizzi-
ness or vertigo has led to the emergence of a new clinical entity—radiologically isolated syndrome (RIS)—within 
demyelinating processes’ clinical spectrum4. This syndrome is characterized by the detection in MRI of lesions 
in the white matter of the central nervous system (CNS) that, due to their size, location and morphology, are 
highly suggestive of demyelinating plaques exhibiting dissemination in space (DIS) in subjects presenting with 
normal neurological examination results and no history of signs or symptoms of multiple sclerosis (MS)4. The 
recently published MAGNIMS consensus recommendations5 propose using the same DIS criterion, as set out 
in the latest review of the McDonald criteria6, to diagnose RIS and MS.

Since RIS was first described there has been great interest in establishing the risk of the syndrome evolv-
ing into MS in these subjects. According to various studies, some patients diagnosed with RIS will eventually 
progress to MS, suggesting that this syndrome may represent a preclinical stage of MS, at least in some cases7,8. 
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Recent studies suggest that patients with RIS, clinically isolated syndrome (CIS) and relapsing–remitting multiple 
sclerosis (RRMS) all share non-motor clinical characteristics9,10 and suffer quantitative brain tissue damage11, 
indicating that RIS evinces MS in its early, preclinical form.

The clinical evolution of patients who meet the diagnostic criteria for RIS is uncertain12. It is therefore 
important to differentiate between those subjects at high risk of suffering demyelinating clinical events and being 
diagnosed with CIS, RRMS or primary progressive multiple sclerosis (PPMS) and those with static lesions or 
lesions due to other aetiologies. A subject with RIS can remain asymptomatic and present a stable MRI, develop 
new lesions in follow-up MRIs while remaining asymptomatic, or present a first clinical event typical of MS, i.e. 
CIS or even PPMS or RRMS.

Clinical management of RIS patients, who meet DIS criteria in MRI scans but show no symptoms, remains a 
major challenge in clinical practice as there is a lack of scientific evidence relating to this pathology13,14.

To the best of our knowledge, no studies have been conducted into the role of mfVEPs in RIS patients and 
evaluation of the risk of conversion of RIS to CIS/MS. MfVEPs objectively evaluate visual function and the integ-
rity of the optical pathway15 and have been used to study various optic nerve and ganglion cell diseases16. In this 
technique, the visual stimulus is usually subdivided into a number of sectors (typically 60). Each of these sectors 
is independently stimulated using specialized software. The electrical activity evoked in the visual cortex by each 
stimulus is recorded in electroencephalograms (EEGs). From a single, continuous EEG signal, a mathematical 
algorithm extracts the evoked response generated by each sector17,18.

Traditional analysis of mfVEP recordings is based on the study of the recordings’ amplitudes and latencies16,18. 
However, it has been demonstrated that in some cases diagnosis using mfVEP signals can be improved 
using advanced signal filtering and extraction algorithms, such as the wavelet transform19, empirical mode 
decomposition20, and singular spectrum analysis21, among other alternatives.

The goal of our study was to assess the role of multifocal visual-evoked potentials as a guiding factor for RIS 
subject conversion to CIS/MS.

Material and methods
Fifteen asymptomatic subjects (13 females, 2 males; mean age 38.9 years; range 19.7–50.0 years) were enrolled in 
the study. All fulfilled the recently identified criteria for RIS which imply that none of the subjects had previously 
experienced remitting clinical symptoms consistent with neurological dysfunction of the CNS12. All subjects were 
consecutively contacted by the same neurologist. At baseline, we recorded their detailed historical and current 
clinical data and key episodes in the course of their RIS. Comprehensive neurological and ophthalmological 
examinations and structural neuro-imaging of the brain and spinal cord were performed.

All subjects were examined using an identical MRI protocol. Brain MRI scans were obtained in a single session 
using a Philips Gyroscan operating at 1.5 T (Philips Medical Systems, Best, The Netherlands). All participants 
presented asymptomatic T2-hyperintense brain lesions greater than 3 mm in diameter fulfilling the Barkhof 
criteria22. None of them had experienced neurological symptoms suggestive of clinical manifestation of MS.

The study protocol was approved by the University Hospital Principe de Asturias Review Board and adhered 
to the tenets of the Declaration of Helsinki, and all participants provided their informed consent. Data were kept 
in accordance with Spanish Law 15/1999 on data protection to protect patient confidentially.

Multifocal visual‑evoked potential recordings.  As previously described20,23, mfVEP signals were 
recorded monocularly with VERIS software 5.9 (Electro-Diagnostic Imaging, Inc., Redwood City, CA). The 
visual stimulus was a scaled dartboard with a diameter of 44.5 degrees, containing 60 sectors, each with 16 alter-
nating checks. The luminance for the white and black checks was 200 and < 3 cd/m2, respectively. The checks in 
each sector were reversed in contrast using a pseudorandom sequence at a frame rate of 75 Hz. The signals were 
amplified at a gain of 105 at a bandwidth between 3 and 100 Hz. The sampling frequency was 1200 Hz, obtaining 
600 samples in each recording (length 500 ms). The signals were digital-passband-filtered (1–35 Hz) using the 
fast Fourier transform. Three channels were obtained for each sector from the differences between the active 
electrodes and the reference electrode, along with three additional derived channels. Each channel was divided 
into two different intervals: the signal window (45–150 ms), which contains the evoked potential response, and 
the noise window (325–430 ms), which essentially contains noise21.

Multifocal VEP response analysis and classification.  Analysis of the mfVEP recordings was per-
formed in the time domain (amplitude and latency) and the continuous wavelet transform (CWT) domain 
(variables bmax and Nmax).

The amplitude of the mfVEP recording was quantified as the signal-to-noise ratio (SNR), calculated as18:

where RMS(X45–150 ms) was the root mean square (RMS) amplitude of the waveform in the signal window. The 
mean RMS(X325–430 ms) was the average RMS amplitude of all 60 waveforms in the noise windows. In each of the 
sectors, only the best channel (i.e. the one with the highest SNR) was analysed21.

For each study subject eye the following time domain features were obtained from the mfVEP signals: (1) 
SNR (dimensionless: V/V): which corresponds to the mean value in all sectors of an eye with the amplitude 
of the signals (Eq. 1) and; (2) mean monocular latency value (ms) of all sectors of each eye. In each sector, 
monocular latency was obtained by finding the instant of maximum correlation with the normative database17.

The CWT of a time signal, x(t), is defined as24:

(1)SNR
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V
/

V
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where Ψ*(t) is the complex conjugate of wavelet function Ψ(t) (real Daubechies 7 wavelet: db7); a (dimensionless) 
is the dilation parameter of the wavelet; and b (ms) is the translation parameter (a,b ∈ R; a ≠ 0). As the CWT can 
describe time and frequency components of a signal in detail, it is possible to obtain new mfVEP signal descrip-
tors that could constitute electrophysiological biomarkers.

For each sector, the best channel was selected and the CWT modulus was obtained: |T(a,b)|. The following 
features were calculated: Translation bmax (ms) at which the absolute maximum value (max|T(a,b)|) appears and 
Number of local maxima (Nmax) (dimensionless) in |T(a,b)| that exceed (max|T(a,b)|)/3. The mean value of these 
variables was then obtained in the 60 sectors of each eye.

For each patient, the following variables extracted from the time analysis and CWT were considered: (1) 
SNRmin: SNR value of that patient’s eye with least amplitude; (2) Latmax: monocular latency of the eye that presents 
the greatest delay in the evoked response; (3) Translation (bmax) of the eye that presents the highest value in the 
wavelet domain; (4) Number of local maxima (Nmax) of the eye that presents the highest value in the wavelet 
domain. The variables that best identified the patients who converted clinically were selected.

RUSBoost25 is a hybrid data sampling/boosting algorithm designed to improve the performance of models 
trained on skewed data. The boosting process assigns greater weights to misclassified examples, which are usually 
the minority class examples. RUSBoost is especially effective at classifying imbalanced data, as in our case, in 
which the relationship between patients who convert (RIS_conv) and those who do not (RIS_non_conv) is 1/3.

Statistical analysis.  Statistical analyses were performed using IBM SPSS Statistics 25 software (SPSS Inc. 
Chicago, Illinois, USA).Intergroup comparison was performed with the Fisher exact test for categorical variables 
and with the t-test or Wilcoxon test for quantitative variables. All tests were 2-tailed and p < 0.05 was considered 
statistically significant. Survival analysis was used to assess time-dependent variables using Kaplan–Meier esti-
mates. The area under the receiver operating characteristic curve (AUC) was employed to assess the discrimina-
tion capability for each of the features proposed in this study. The classification process was summarized in a 
confusion matrix with sensitivity, specificity and ROC (receiver operating characteristic) analysis parameters.

Results
All subjects with RIS presented normal neurological examination results and conventional MRI scans, and the 
Barkhof criteria were confirmed in all patients. Table 1 summarizes the baseline demographic and the clinical 
and radiological characteristics of the RIS study cohort, including the reason for the first MRI scan. The study 
cohort principally comprised women (13/15). Mean age was 38.9 years, range 19.7–50 years. A positive family 
history of MS was not observed in any member of the study group. All subjects had expanded disability status 
scale scores of 0.0 on the initial baseline examination. Reasons for the initial MRI brain scan identifying CNS 
anomalies suggestive of demyelinating disease were migraine (33.3%), vertigo (20%), tinnitus (13.3%), anosmia 
(6.6%) and paraesthesia (6.6%). None of these complaints were related to a demyelinating event. None of our RIS 
subjects had undergone any approved disease-modifying therapies before the development of their first clinical 
event. At baseline, 14 subjects (93.3%) had > 9 T2-hyperintense MRI lesions, 14 (93.3%) had periventricular 
lesions, 10 (66,6%) had juxtacortical lesions and 1 (6.6%) had infratentorial lesions. Gadolinium-positive lesions 
and spinal cord lesions were present in 5 (33.3%) and 2 (13.3%) subjects, respectively.

During the study follow-up period (mean time: 13.40 months; range: 9–19 months), five (5/15; 33.3%) RIS 
subjects presented radiological and clinical conversion to the following conditions: 3 (60%) presented RRMS; 1 
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Table 1.   Summary of RIS subjects’ baseline characteristics (n = 15). Data in mean ± standard deviation and 
percentages. RIS radiologically isolated syndrome, MRI magnetic resonance imaging.

Age (mean, SD) 38.9 ± 9.2

Female, n (%) 13 (86.6)

Medical background

Migraine 5 (33.3)

Vertigo 3 (20)

Tinnitus 2 (13.3)

Anosmia 1 (66)

Paraesthesia 1 (66)

MRI lesions, n (%)

 ≥ 9T2-hyperintense MR imaging lesions, n (%) 14 (93.3)

Periventricular lesions, n (%) 14 (93.3)

Infratentorial lesions, n (%) 1 (6.6)

Juxtacortical lesions, n (%) 10 (66.6)

Spinal cord lesions, n (%) 2 (13.3)

Gd + lesions, n (%) 5 (33.3)
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(20%) presented PPMS and 1 (20%) presented CIS syndrome. Survival analysis (Fig. 1) was used to assess time-
dependent variables and the endpoint was the time from the first MRI to CIS/MS. The 12-month first acute or 
progressive clinical event rate in the RIS group was 26.6% (4/15). In all patients experiencing clinical episodes, 
symptoms proved to be consistent with a demyelinating event.

Subjects who progressed clinically (RIS_conv) (5/15, 33.3%) were significantly younger than those who did 
not convert (RIS_non_conv): 30.89 ± 7.97 versus 42.96 ± 7.06, p = 0.01. No significant differences in high- and 
low-contrast BCVA (logmar) were found between the eyes of both groups (0.0 ± 0.03 vs. 0.0 ± 0.01; p = 0.56). In 
addition, no significant differences were observed in the total number of white matter lesions in the baseline MRI 
scan between the two groups (19.2 ± 4.69 vs. 18.2 ± 8.01, p = 0.66) or in the number of spinal and gadolinium-
enhanced lesions (p > 0.25) or other MRI lesions (p > 0.28) between the two groups.

Figure 2 shows the mfVEP recordings (array of 60 signals from the best channel) taken from an RIS_non_conv 
subject (a) and an RIS_conv patient (b). In both cases, it shows in detail an mfVEP signal for a given sector 
(Fig. 2c,d) and its respective |T(a,b)| functions (Fig. 2e,f). In this particular example, the amplitudes of the 
RIS_non_conv subject’s mfVEP signals are greater than those of the RIS_conv patient.

Table 2 shows the results obtained with the two analysis variables selected in the mfVEP signals’ time domain: 
SNRmin, Latmax, and the two variables (bmax and Nmax) obtained from the CWT analysis to try to identify those 
RIS subjects at greatest risk of progression. Thus, we observed that the (SNRmin) variable decreased significantly 
among RIS_conv subjects (2.74 ± 0.92 vs. 4.07 ± 0.95, p = 0.010). However, for the Latmax variable (0.22 ± 3.62 vs. 
0.55 ± 1.50 ms) we did not observe significant differences between the two groups (p = 0.62). At the same time, 
the (bmax) variable increased significantly in the RIS_conv group (169.44 ± 24.81 vs. 139.03 ± 11.95 (ms), p = 0.02), 
and we did not observe significant differences in the Nmax variable between the two groups (35.05 ± 15.19 vs. 
24.80 ± 9.93; p = 0.086).

We then evaluated the diagnostic accuracy of these mfVEP signal variables using ROC curve analysis. Thus, 
the SNRmin and bmax variables obtained AUC values of 0.92 and 0.88, respectively, while the Latmax and Nmax 
values were lower (0.58 and 0.78, respectively). On average, the two variables obtained in the CWT domain 
together provide greater diagnostic accuracy (AUC​MEAN = 0.83) than the two standard amplitude and latency 
variables (AUC​MEAN = 0.75). Figure 3 shows the boxplots of the four features studied.

After testing all the possible combinations, the best results in the classifier were achieved by using as inputs 
the two variables with the greatest discriminant capacity: SNRmin and bmax. The RUSBoosted Trees classifier was 
implemented in the Matlab Classification Learner Application (MathWorks, Natick, MA) with cross-validation 
folds = 15 folds. Cross-validation26 protects against overfitting by partitioning the dataset into folds and estimat-
ing accuracy on each fold. The results of classification using this system on our database are perfect, obtaining 
sensitivity = specificity = AUC​CLASSIFIER = 1. Figure 4 shows the ROC plot for the 4 variables analysed and for the 
classifier implemented.

Discussion
Scientific work-up of patients with RIS may be a key step to expanding our knowledge of the pathogenesis of 
MS. This study provides a first insight into the afferent system of the visual pathway in RIS patients by analysing 
mfVEP responses and by describing and characterizing new parameters in the mfVEPs’ waveforms in order to 
monitor RIS progression.

Several studies have already shown that the mfVEP can be more sensitive in detecting optic nerve abnormali-
ties than automated visual perimetry or OCT in both affected and unaffected eyes of CIS and MS subjects27–29. 
MfVEP latency and amplitude have been used as surrogate markers of demyelination and axonal loss in MS, 
respectively30–33. MfVEP amplitude has been shown to be a functional biomarker of axonal loss in MS34 while 
prolonged latencies in CIS subjects who have presented with optic neuritis (ON) are associated with increased 
risk of developing clinically definite MS35. In this regard, mfVEP response latency and amplitude show myelin and 

Figure 1.   Kaplan–Meier survival curve showing the risk of clinical progression. At 1 year, 73.3% of RIS patients 
have not experienced CIS/MS conversion. At 2 years, 66.6% of patients have not progressed. This image was 
generated using Prism (Version: 5, Url: https​://www.graph​pad.com/).

https://www.graphpad.com/
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Figure 2.   Multi-phase graphical representation of the method implemented. (a) mfVEP arrays of an RIS_non_
conv patient. (b) mfVEP arrays of an RIS_conv patient. (c) X(t) signal in the sector marked in red in (a). (d) X(t) 
signal in the sector marked in red in (b). (e) CWT modulus of the signal represented in (c). (f) CWT modulus 
of the signal represented in (d). These images were generated using Matlab (Version: R2018b, Url: https​://www.
mathw​orks.com/produ​cts/matla​b.html.

Table 2.   Comparison of the variables obtained between the two groups.

mfVEP signal features RIS_non_conv RIS_conv p value AUC​

SNRmin (dimensionless) 4.07 ± 0.95 2.74 ± 0.92 p = 0.010 (t‐test) AUC = 0.92

Latmax (ms) 0.55 ± 1.50 0.22 ± 3.62 p = 0.62 (t‐test) AUC = 0.58

Bmax (ms) 139.03 ± 11.95 169.44 ± 24.81 p = 0.020 (t-test) AUC = 0.88

Nmax (dimensionless) 24.80 ± 9.93 35.05 ± 15.19 p = 0.086 (W-test) AUC = 0.78

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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axonal integrity respectively. Hence, reduced amplitude reveals retinal ganglion cell or axonal loss whereas longer 
mfVEP latency indicates demyelination. Notwithstanding, latency, amplitude and structural retinal changes are 
all intimately related; thus, greater demyelination or prolonged latency may give on to more axonal degeneration 
due to loss of the metabolic support28.

The results of this study provide an insight into visual pathway neurodegeneration in RIS and new electro-
physiological predictive factors to help monitor disease progression in RIS subjects. Analysis of the mfVEP 

Figure 3.   Boxplot of variables included in the study: (a) SNRmin variable, (b) Latmax variable, (c) bmax variable, 
(d) Nmax variable. These images were generated using Matlab (Version: R2018b, Url: https​://www.mathw​orks.
com/produ​cts/matla​b.html.

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
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recordings obtained in this study was performed in both the time domain (amplitude and latency) and the 
CWT domain (bmax and Nmax variables). We observed that greatest diagnostic accuracy as regards progression 
was achieved with the SNRmin 

(

AUCSNRmin
= 0.92

)

 variable, although in terms of the mean value the two CWT 
variables show greater capacity to identify those patients who will evolve clinically. This is one more example 
of how performing wavelet analysis on a bioelectric signal allows us to calculate new features that complement 
the classic biomarkers obtained in the time domain19,36. What is more, the best results in the automatic classifier 
(Fig. 4) are obtained by combining an input in the time domain (SNRmin) with another in the CWT domain (bmax).

Long-term prospective follow-up of patients with RIS is still rather limited. In our study, one third of our 
patient cohort progressed clinically, in line with the findings published in other papers. One of these first studies12 
revealed that about 34% of RIS patients developed MS within 5 years; similarly, another study37 observed that 
26.7% of their RIS patients converted to MS at 4.2 ± 1.4 years of follow-up. In a larger trial7, 128 out of 453 (28.2%) 
RIS-diagnosed subjects evolved to symptomatic MS. These differences in RIS progression between published 
studies could be explained by differences in the duration of follow-up, the population studied and the diagnostic 
tests used38.

The capacity to correctly identify and predict the evolution of those RIS patients at greatest risk of clinical 
progression is of great interest, as a significant cohort of them will progress over time to more advanced forms of 
demyelination. Younger age at RIS diagnosis, sex (male), higher number of MRI T2-hyperintense lesions, pres-
ence of spinal and gadolinium-enhanced MRI lesions and abnormal conventional VEPs have been associated 
previously with an increase in the risk of progression7,8,39–41.

Our study showed that the functional deficit in the visual afferent pathway detected by mfVEPs in our RIS 
cohort is in line with the structural loss in the retina observed in recent studies using OCT where retinal nerve 
fibre layer (RNFL) thickness and ganglion cell inner plexiform (GCIPL) layer thinning have been associated 
with clinical progression in RIS2.

Later generation spectral-domain OCTs have improved resolution and reliability to small RNFL changes, in 
addition to being able to assess the ganglion cell-inner plexiform (GCIPL) retinal layers, and also by utilizing 

Figure 4.   ROC graph of the variables and classifier. (a) ROC of SNRmin. (b) ROC of Latmax. (c) ROC of bmax. (d) 
ROC of Nmax. (e) ROC of the RUSBoosted Trees classifier. These images were generated using Matlab (Version: 
R2018b, Url: https​://www.mathw​orks.com/produ​cts/matla​b.html.

https://www.mathworks.com/products/matlab.html
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the intereye difference of the GCIPL and RNFL. Likely, It’s expected new generation spectral-domain OCT could 
achieve multiple aims regarding diagnosis, prognosis, and treatment monitoring in RIS and related disorders42.

We acknowledge that our results should be externally validated in other larger cohorts and that combination 
with other biomarkers identified in the literature (based on MRI, cognitive deficit, etc.) would likely increase 
prognostic value. In summary, a significant incidence of subclinical optic nerve involvement was detected in 
RIS eyes by means of mfVEP and our results indicate that the use of advanced analysis of mfVEP signals may 
help identify those high-risk RIS subjects who will progress clinically to more advanced forms of demyelinating 
pathology.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.

Received: 31 May 2020; Accepted: 12 January 2021
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