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Abstract: Obesity, from children to the elderly, has increased in the world at an alarming 

rate over the past three decades, implying long-term detrimental consequences for 

individual’s health. Obesity and aging are known to be risk factors for metabolic disorder 

development, insulin resistance and inflammation, but their relationship is not fully 

understood. Prevention and appropriate therapies for metabolic disorders and physical 

disabilities in older adults have become a major public health challenge. Hence, the aim of 

this study was to evaluate inflammation markers, biochemical parameters and glucose 

homeostasis during the obese-aging process, to understand the relationship between obesity 

and health span during the lifetime. In order to do this, the monosodium glutamate (MSG) 
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obesity mice model was used, and data were evaluated at 4, 8, 12, 16 and 20 months in 

both female and male mice. Our results showed that obesity was a major factor 

contributing to premature alterations in MSG-treated mice metabolism; however, at older 

ages, obesity effects were attenuated and MSG-mice became more similar to normal mice. 

At a younger age (four months old), the Lee index, triglycerides, total cholesterol, TNF-α 

and transaminases levels increased; while adiponectin decreased and glucose tolerance and 

insulin sensitivity levels were remarkably altered. However, from 16 months old-on, the 

Lee index and TNF-α levels diminished significantly, while adiponectin increased, and 

glucose and insulin homeostasis was recovered. In summary, MSG-treated obese mice 

showed metabolic changes and differential susceptibility by gender throughout life and 

during the aging process. Understanding metabolic differences between genders during the 

lifespan will allow the discovery of specific preventive treatment strategies for chronic 

diseases and functional decline.  

Keywords: obesity; aging; monosodium glutamate; diabetes; insulin resistance; 

inflammation; cytokines 

 

1. Introduction 

Obesity has generally been considered an epidemic related to lifestyle, which not only occurs  

in the young and adult population, but is also observed in elderly people. Obesity is a health problem 

defined as an abnormal or excessive fat accumulation [1], due to an imbalance in energetic metabolism 

homeostasis, generated by multiple genetic and environmental factors, usually controlled by the central 

nervous system [2]. According to the World Health Organization, over 300 million obese adults  

and 42 million overweight children undergo this condition [3]. 

Aging has been defined as the molecular, biochemical and cellular progressive decline during the 

lifespan. Aging deterioration may depend on the interplay between intrinsic and extrinsic factors [4], 

as well as on the organism’s capability to respond to different stressors, in order to counteract their 

effects or adapt to the new conditions. 

Both obesity and aging have been defined as low-grade systemic inflammation processes and 

represent risk factors for a wide range of diseases, including insulin resistance (IR) [5], type 2 diabetes, 

dyslipidemia and cardiovascular disease [2,6,7]. In obesity, the intra-abdominal adipose tissue growth 

promotes increased pro-inflammatory cytokines infiltration and activation, such as tumor necrosis 

factor (TNF-α) and interleukin 6 (IL-6) [8], which denotes the primary causes for chronic 

inflammation, morbidity and mortality risk. Nevertheless when it comes to obesity, it is important to 

consider the significant differences associated with gender, which are mostly related to adipose tissue 

distribution and inflammation. In this regard, previous studies found that female mice accumulate 

subcutaneous body fat, whereas fat in male mice is stored in the visceral region [7]. 

Conversely, during the aging process, chronic low-grade systemic inflammation, poor physical 

performance and altered energetic metabolism, combined with obesity, potentiate the risk of 

developing the cited diseases. The visceral adiposity increment along with the accumulation of 
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senescent cells, which are characterized by an inflammatory phenotype, lead to a pro-inflammatory 

cytokine increase in plasma, which, in turn, interferes with insulin signaling. This low-grade systemic 

inflammation, termed “inflammaging”, is associated with diseases, lipo-toxicity and reduced longevity, 

and therefore, TNF-α and IL-6 have become frailty markers in humans [9]. 

Many studies have dealt with obesity’s physiological effects on the organism; however, the 

potential consequences of obesity during the aging process have not been fully understood. Although 

some medical complications of obesity in the elderly have been described (metabolic disorders, 

glucose intolerance, hypertension, dyslipidemia, cardiovascular disease), there are no longitudinal 

studies that analyze the obesity-aging process during the health span and lifespan. 

The obesity model used in this study was generated by monosodium glutamate (MSG) neonatal 

neuro-intoxication, which has been reported to induce a hypothalamic lesion in the arcuate nucleus and 

neuro-endocrine alterations in insulin and leptin signaling, among other effects [5,6]. MSG-treated 

animals develop obesity, which becomes apparent at eight weeks of age [6,10,11], and therefore, it has 

been acknowledged as a suitable model to study metabolic dysfunction [10,12–14]. 

The aim of this study was to evaluate inflammation markers, biochemical parameters and glucose 

homeostasis during the lifetime in MSG-treated female and male mice, in order to determine the 

associated effect and influence of obesity during the aging process. 

2. Results  

2.1. Weight, Size and Lee Index Time Courses 

Gradual increments of body weight over time were observed in obese, as well as in control mice 

while they aged; however, BW was significantly higher in MSG-treated mice than in their control 

littermates. BW increased 20%, 42%, 36% and 20% at 4, 8, 12 and 16 months of age in obese  

female mice, respectively, and 18%, 51%, 23% and 21% in obese male mice (Figure 1a). Interestingly, 

at 16 months-old and more evident at 20 months-old, BW decreased in all four groups. For MSG 

female mice, the BW decrease was 33%, and 17% in MSG male mice compared to their controls. At 

eight months of age, a significant difference between genders was observed, since obese male mice 

had a higher BW (13%) compared to obese female mice; however, at 12 months-old, this behavior 

changed, and the MSG females showed a higher BW than the MSG males (Figure 1a) (p < 0.05). 

The naso-anal length values quantified to determine mice size also lessened in obese and control 

groups over time. Still, the MSG-treated mice shortened more than the control animals: 14% obese 

female and 12% obese male mice (Figure 1b). The Lee index (LI) increased in all of the groups during 

the lifetime, and as expected, the MSG-treated groups obtained significantly higher LI values than 

their controls. LI values in obese female mice were 21%, 32%, 24%, 19% and 26% higher than control 

females’ at 4, 8, 12, 16 and 20 months, while obese male mice’s LI values were 11%, 28%, 27%,  

27% and 20% superior to their controls, at the same time points measured. In regard to the gender, 

female mice showed approximately 10% higher LI values than males in both cases (control and obese) 

(Figure 1c) (p < 0.05). 
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Figure 1. Weight, size and Lee index time courses in male and female MSG-treated mice. 

Temporal courses of (a) body weight; (b) size and (c) the Lee index were performed,  

as described in the Materials and Methods section. Measurements were determined at 4, 8, 

12, 16 and 20 months of age. Plotted values are the mean ± SE of five mice per group.  

* p < 0.05 vs. control; ●, control female; ○, MSG-treated female; ▲, control male;  

∆, MSG-treated male.  

 

2.2. Oral Glucose Tolerance Test (OGTT) 

Figure 2 shows oral glucose tolerance test (OGTT) alterations during the lifetime in obese and 

control mice at 4, 8, 12, 16 and 20 months-old. Both female groups (MSG and control) showed a 

decrease in glucose homeostasis over time, which was only different at the beginning of the study. At 

four months, 35% higher glycemic values were obtained in MSG-treated mice 30 min after dextrose 

administration when compared to the control group. This value increased to 44% at 8 months-old 

(Figure 2a); however, from 12 to 20 months, the differences between groups decreased (Figure 2c,e,g,i) 

(p < 0.05).  

In regards to the male groups, a significant difference was found at 4 and 8 months-old between 

control and obese mice (48% and 61% higher in MSG mice after 30 min dextrose administration),  

but from 16 months-on, no significant differences were observed, since MSG-treated mice glycaemia 

decreased nearly to control values (Figure 2b,d,f,h,j) (p < 0.05).  

Notably, males showed higher glucose intolerance levels than females. At 4 months-old,  

MSG-treated male mice displayed a greater glucose intolerance level of 53% and 52%, respectively  

at 30 and 60 min, and at 8 months-old, the differences increased to 117% and 85%, respectively.  

No differences were found in the following points of the OGTT curve, as well as at 12, 16 and  

20 months-old. 
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Figure 2. Oral glucose tolerance test (OGTT) in male and female MSG-treated mice.  

The test was performed by oral administration of dextrose (2 g/kg body wt).  

Plasma glucose was monitored before (0 min) and 30, 60, 90, 120 and 150 min after 

dextrose-administration, as described in the Materials and Methods section. Determinations 

were measured at 4 (a,b), 8 (c,d), 12 (e,f), 16 (g,h) and 20 (i,j) months of age. Plotted 

values are the mean ± SE for five mice per group. * p < 0.05 vs. control female and male; 

●, control female; ○, MSG-treated female; ▲, control male; ∆, MSG-treated male. 
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Figure 3. Insulin tolerance test (ITT) in male and female MSG-treated mice. ITT was 

performed by insulin intraperitoneal administration (0.75 IU insulin/kg body wt).  

Plasma glucose was monitored before (0 min) and 15, 30, 45 and 60 min after  

insulin-administration, as described in the Materials and Methods section. The 

determinations were measured at 4 (a,b), 8 (c,d), 12 (e,f), 16 (g,h) and 20 (i,j) months of 

age. Plotted values are the mean ± SE for five mice per group. * p < 0.05 vs. control  

female and male; ●, control female; ○, MSG-treated female; ▲, control male;  

∆, MSG-treated male. 
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2.3. Insulin Tolerance Test (ITT)  

Insulin sensitivity increased gradually in all four groups during the lifetime (Figure 3). No significant 

differences in glycemic levels were found between MSG-treated and control female mice from 4 to  

12 months of age; however, at 16 and 20 months-old, the obese mice showed a 25% increment. When  

20-month-old female mice (obese and control) were compared to young female mice (4 months-old), a 

significant rise in glycemic values (35% and 15%, respectively) was observed (p < 0.05). (Figure 3a,c,e,g,i) 

(p < 0.05). 

Conversely, obese male mice at four months of age showed 37% higher glycemic values in the first  

30 min than the control group. Importantly, statistically higher insulin sensitivity impairments were 

observed in obese mice during their whole lifespan (8, 12, 16 and 20 months-old). (Figure 3b,d,f,h,j)  

(p < 0.05).  

When insulin sensitivity was compared between genders, MSG-male mice showed 30% lower 

insulin sensitivity compared with the MSG-female group at four months of age. However, no 

differences were observed in the following ages. In the control groups, no differences between genders 

were found, except at 20 months-old, when the males showed 25% higher ITT values at 30 min  

(p < 0.05). 

2.4. Biochemical Parameters 

Figure 4a shows total cholesterol plasma levels in control and MSG-treated mice over time.  

The obese mice showed higher cholesterol levels than the control groups from 4 to 20 months-old. 

Moreover, the cholesterol content was higher in male groups than in female groups. Obese male and 

female mice increased by 41% and 26% in their cholesterol levels when compared to their control groups 

at 16 months-old; therefore, MSG-male mice showed 50% more cholesterol than MSG-female mice  

(p < 0.05). 

According to Figure 4b, MSG-treated female mice had increased TG levels of 36%, 40%, 100% and 

130% at 4, 12, 16 and 20 months-old, respectively, compared to the control group (p < 0.05). The only 

differences observed in TG content between obese males and controls was found at 4 and 20 months, 

where TG content increased 50% and 55%, respectively, in treated mice.  

No differences were found between genders in control mice; however, triglycerides levels in  

MSG-treated female were 47% and 31% higher than MSG-treated male at 16 and 20 months-old. 

Aminotransferase (AST) levels (Figure 4c) gradually increased along the lifespan, and three of the four 

groups behaved similarly along the study; only the control females showed a lower AST content (180%) at 

16 and 20 months-old compared to the other groups (p < 0.05). 

Alanine aminotransferase (ALT) determinations (Figure 4d) showed a similar behavior in all groups 

from 4 to 20 months-old. The male groups presented 30% higher ALT levels than female mice from 8 to 

16 months-old. At 20 months, both groups decreased 25% in AST content, but the female control mice 

increased 12% over the male control group. 

When comparing between genders, control males showed higher ALT levels than control females  

at 8, 12 and 16 months of age, even though, these differences were not significant. Male MSG-treated 

mice showed a 22% and 35% increment at 16 and 20 months-old, respectively, compared to the 
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control groups. No differences were found between obese female mice and the control group over time 

(Figure 4d) (p < 0.05). 

Figure 4. Biochemical parameters in male and female MSG-treated mice. Biochemical 

parameters: (a) total cholesterol; (b) triglycerides; (c) aminotransferase (AST) and  

(d) alanine aminotransferase (ALT), were determined as described in the Materials and 

Methods section at 4, 8, 12, 16 and 20 months of age. Plotted values are the mean ± S.E.M. 

for five mice per group. * p < 0.05 vs. ●, control female; ○, MSG-treated female;  

▲, control male; ∆, MSG-treated male. 

 

2.5. Serum Cytokines Levels 

To study the inflammatory profile, TNF-α, IL-6 and adiponectin were measured (Figure 5). TNF-α 

levels gradually increased in the four groups from four months of age, reaching higher values  

at 12 months-old. These values decreased during the following months. No differences between obese 

female mice and their control group were found. However, MSG-treated males showed a 43% and 

114% increase against their control group at 8 and 12 months-old (Figure 5a). 

At 12 months-old, the obese and control male mice showed a 197% and 140% rise in TNF-α levels 

compared to obese and control female mice groups. At 16 months-old, TNF-α levels decreased in all 

four groups and remained constant until 20 months of age.  
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Figure 5b shows IL-6 measurements. At 12 months-old, the IL-6 concentration in the male groups 

showed a 163% peak compared to the obese female mice (p < 0.05). Four months later, IL-6 levels 

decreased, and no differences were found between genders. 

Figure 5. Inflammatory profile in male and female MSG-treated mice. (a) TNF-α and (b) 

IL-6 serum levels were quantified by ELISA, as described in the Materials and Methods 

section at 4, 8, 12, 16 and 20 months of age. Plotted values were the mean ± S.E.M. for five 

mice per group. * p < 0.05 vs. control; & p < 0.05 MSG-treated female vs. MSG-treated 

male; ●, control female; ○, MSG-treated female; ▲, control male; ∆, MSG-treated male. 

 

Figure 6. Adiponectin levels (ng/mL) in male and female MSG-treated mice. Serum levels 

of adiponectin were quantified by the ELISA method at 4, 8, 12, 16 and 20 months of age. 

Plotted values were the mean ± S.E.M. for five mice per group. * p < 0.05 vs. control;  

& p < 0.05 MSG-treated female vs. MSG-treated male; ●, control female; ○, MSG-treated 

female; ▲, control male; ∆, MSG-treated male. 

 

According to Figure 6, adiponectin concentrations showed a different behavior than TNF and IL-6. 

Adiponectin decreased along the study in both female and male groups. At 4 months-old, the obese 

female and male mice showed a 33% and 49%, respectively, drop in adiponectin concentrations 

compared to their control groups. At 8 and 12 months-old, the hormone diminished in all of the 

groups, but from 16 months-old, adiponectin levels showed a significant elevation in the obese female 
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and male mice, as well as in the female control group. No differences were found between female 

groups at the end of the study, but the control males showed 185% less adiponectin concentration 

compared to obese male mice at 20 months-old.  

3. Discussion 

The world’s elderly population is growing, and alarmingly, the prevalence of obesity and being 

overweight has also been estimated to increase linearly with age. Even though there are several reports 

studying the relationship between obesity and age, there are almost no longitudinal studies to analyze 

obesity’s effect throughout the whole life, i.e., from the young to the elderly. Therefore, our interest 

was to evaluate alterations in biochemical and inflammatory parameters, as well as insulin and glucose 

homeostasis during the obesity-aging process. 

We used the obesity MSG-model to generate female and male mice that developed higher body 

weights than their respective littermates. This weight gain began to decrease at 16 months of age in  

the four groups, with an inverse correlation at the naso-anal length. Considering the Lee index, the  

MSG-treated female mice showed the higher obesity index of all of the groups; this is consistent with  

the studies performed in humans, where women have higher body fat percentages compared to men [15]. 

Hence, the observed changes might be explained due to an apparent sexual dimorphism, with 

differences in adipose tissue distribution and abundance. In fact, both female mice groups presented  

a high subcutaneous fat content, which has been associated with the reduction of ovarian hormone 

production [16]; meanwhile, in male mice, the adipose tissue predominated in the visceral region [7]. 

Body weight decline in control and obese mice from 16 to 20 months-old is also consistent with 

studies in humans, mice and rats, where the changes in adipose tissue mass and function along the 

lifespan reflect this situation. The weight increase associated with aging is mostly due to fat 

accumulation in several body depots. It has been reported that in humans, average body weight begins 

to decay at the age of 60, and by the age of 80, obesity prevalence has decreased by about a third. The 

weight loss is also a health problem, because it has been associated with sarcopenia, as a result of 

endocrinology changes and decreased physical activity during aging [17]. The precise reasons 

responsible for body weight decline with age are complex and still not understood. Fat redistribution 

during aging occurs in diverse species, and it has been associated with age-related diseases, lipo-toxicity 

and reduced longevity, but a high subcutaneous to visceral fat ratio has been related with enhanced 

longevity [15,16,18,19]. 

It is known that being obese since childhood and throughout life can promote alterations, like 

diabetes [5,20–23]; however, it is not clear how fat dysfunction and obesity disturb the aging process. 

Here, we found an increased glucose intolerance and insulin resistance in MSG-treated mice compared 

to the control groups, from 4 to 16 months old, which correlated with the body weight gain period. 

These results agree with previous studies using animals up to 54-week of age [15,24] and has been 

related to increased adiposity, oxidative stress and inflammation [20,25]. The control male and female 

mice showed impaired glucose tolerance and insulin resistance throughout the study, but never exceeded 

the values determined for the obese mice. MSG-treated male and female mice from 4 to 16 months-old 

showed glucose and insulin tests significantly higher than controls, but after 16 months, the values 

decreased in both tests in a similar manner as the control groups. This behavior in older obese mice 
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could be correlated with the weight loss and the fat distribution as part of the aging process, in an 

attempt to reduce risk factors, like inflammation and oxidative stress, which are related to altered 

glucose homeostasis and insulin secretion. Although little is known about adaptation mechanisms to 

chronic low-grade stress, like obesity during aging, these adaptive responses must certainly be present 

to allow the organism to adjust to metabolic alterations. One of several mechanisms in which the 

insulin sensitivity is lost in obesity is due to the increase production of nitric oxide (NO), particularly as  

a result of inducible nitric oxide synthase (iNOS), which has also been associated with resistance to  

insulin [26]. During aging, many factors are known to contribute to insulin sensitivity decrease, such as 

insulin secretion loss stimulated by glucose and mediated by Sirt1, a β cell sensitivity decrease, 

mitochondrial function decline, senescent cell accumulation in adipose tissue and increasing oxidative 

stress. However, the fundamental molecular mechanism of these changes is not clear and is commonly 

attributed to multiple causes [23,27,28].  

Our results show a great impairment in male mice glucose tolerance and insulin sensitivity, which 

could be related to adipose tissue augmentation, since this feature is known to play a significant role in 

glucose homeostasis and insulin sensitivity control. Moreover, Macotela and collaborators (2009) 

found an important role for sex steroids in modulating adipose mass and insulin sensitivity. For 

example, female adipocytes have magnified lipid synthesis compared with male adipocytes in both the 

perigonadal (PG) and subcutaneous (SC) depots [29]. In females, PG adipocytes also have higher 

insulin sensitivity to lipogenesis and to insulin signaling. This situation contributes to whole-body 

insulin sensitivity, allowing female mice to remain insulin sensitive, despite their higher fat mass. 

Gender differences in visceral adipose tissue diminish at older ages, since postmenopausal females 

have enlarged visceral fat accumulation [30,31], emphasizing gonadal steroids’ role in this 

phenomenon. Despite the higher Lee index determined for female mice, it is known that female 

humans and rodents are more insulin sensitive than males. Thus, women have improved glucose 

tolerance and increased insulin sensitivity compared to men [32]. In different rodent models  

of glucose intolerance, insulin resistance and diabetes, males showed a stronger phenotype than 

females [33,34]. These sex-related differences in insulin sensitivity and adipose tissue development 

and function could be partially attributable to estrogen and testosterone effects. However, how insulin 

affects males and females differently and how these differences account for sex-specific adipose tissue 

development and function regulations are mostly unknown. Diverse structural or anatomical variations 

are most likely involved in some of the functional differences between adipose tissues from males and 

females. For example, adipose tissue is innervated by sympathetic efferents, and these innervations are 

distinct between genders. Interestingly, male rats have more neurons projecting to abdominal fat, 

whereas females have more projections to subcutaneous fat [35]. The triglyceride levels in female mice 

were higher than male mice during the all of the experimental time points measured, but MSG-treated 

animals showed higher TG values than the controls. This result might be explained by dyslipidemia 

and lipogenesis induction during aging [36,37], along with increments in total lipid levels, free fatty 

acids, triglycerides and phospholipids [38–41]. One of the important contributions of our study is the 

finding that TG seems to be exacerbated by obesity during aging. 

As expected, cholesterol levels were higher in obese mice than in control groups; however, when 

the obese mice were compared by gender, the only statistical difference was observed at 16 months of 

age, with a significant increase in males compared to females. Therefore, our results agree with 
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previous studies of severe dyslipidemia in MSG-treated female and male mice, characterized by  

hyper-insulinemia and hyper-cholesterolemia at 17 [42] and 29 weeks of age [12]. No reference studies 

exist where TG and total cholesterol content were determined in a longitudinal way during obese 

mice’s lifespan. Hence, another finding of our study is that TG and cholesterol levels at 16 and  

20 months-old decreased or were constant in obese mice, coinciding with the changes in glucose and 

insulin homeostasis at these ages. It is important to mention that aging’s effect on cholesterol 

homeostasis is poorly defined. A number of epidemiological studies suggest that serum cholesterol 

levels tend to increase in adults, but subsequently decrease in the very elderly [43]. Similarly, it has 

been found that obese young and older patients showed significantly higher cholesterol and TG plasma 

levels compared with their control age matched groups [44]. Interestingly, Karaouzene’s group (2010) 

showed that younger obese men had relatively larger and accentuated changes in plasma lipids and 

lipoproteins than the older patients [45]. This result could explain the elevated cholesterol peak found 

in obese male mice at 16 months of age and the further reduction at 20 months (Figure 4a). Despite 

this particularly high value, the plasma cholesterol increase occurs continuously throughout life. 

There are other studies performed in middle-aged humans, where total cholesterol increased in 

serum several years before it started to decrease by 0.04 mmol/L a year [46]. Moreover, Abbot and 

collaborators (1997) found that total cholesterol declined by 1.6–1.8 mg/dL per year with over a 20-year 

period in elderly men [47]. This value is similar to the decrement in cholesterol observed in healthy 

young men and women, where the weight loss was the most important factor associated with lipid 

change [48]. The rise in total cholesterol and its fall in the elderly are significantly associated with 

similar trends for obesity. A reduction in plasma total cholesterol was highly associated with greater 

age and a reduction in body mass index over the study interval [49]. These results suggest that the total 

cholesterol level decline with advancing age may be part of the natural aging process. 

Another whole issue is the redistribution of fat outside the fat depots during aging; this condition 

promotes abnormalities, like non-alcoholic fatty liver disease (NAFLD) [20]. The high body  

mass index and the large waist circumference observed in obesity are associated with aspartate 

aminotransferase (AST) and alanine aminotransferase (ALT) elevated levels [50], both of them used as 

hepatocellular damage markers [51]. Although ALT and AST are found in the liver, they are also 

present in serum and in various tissues. In particular, ALT serum levels become elevated during liver 

diseases, and therefore, it is considered a more specific marker for liver injury than AST [52].  

When liver function was assessed, we found a gradual increment in ALT and AST levels during the 

lifespan in obese and control groups and a high AST/ALT ratio, which is used as a reference for liver 

damage. Interestingly, the male groups had superior ALT values compared to female groups over time, 

this difference decreasing at 20 months of age. Furthermore, AST in the female control group was 

lower compared to the other three groups. To our knowledge, there are almost no studies assessing 

liver markers in obese mice during aging; however, studies in humans have shown that AST is slightly 

increased in obese males; while in females, the ALT and AST levels did not change with obesity, and 

the levels of these enzymes were well below the levels reported in males [28,53]. Similarly, Choi and 

coworkers studied human obesity and found that the male cohort displayed higher AST and ALT values, 

than obese women [54]. In our model, ALT levels decreased in male mice from 16 to 20 months-old; 

however, obese mice’s ALT values remained higher relative to their control. In female mice during the 

same time period, ALT levels were also augmented, but not with the same intensity compared to the 
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previous months. These results agree with the ones by Dong and collaborators, where ALT levels 

decreased with age in both men and women, independent of metabolic syndrome components, 

adiposity signaling biomarkers and other commonly used liver function tests [55]. Further studies are 

needed to understand the mechanisms responsible for the ALT decline with age; however, it seems 

clear that a different cutoff value in ALT and AST between genders in the elderly should  

be considered.  

Adipose tissue mass accumulation in the visceral region during obesity has been associated with 

elevated levels of inflammatory mediators, including serum C-reactive protein (CRP), acute phase 

proteins and pro-inflammatory cytokines TNF-α and IL-6 [56–58]. In general, inflammation plays  

an important role in insulin resistance, diabetes mellitus type 2 and cardiovascular risk progression in 

the elderly [56,59]. Hence, the low-grade systemic inflammation characterized by raised CRP and  

pro-inflammatory cytokines during aging has been termed inflammaging and has been linked to 

increased oxidative stress. In agreement with that, in this study, the pro-inflammatory serum markers, 

TNF-α and IL-6, increased in MSG-treated and control mice over time. The cytokine rise correlated 

with obesity, the Lee index and the glucose and insulin homeostasis results. This correlation is 

consistent with the fact that TNF-α is a key factor during insulin sensitivity loss  

pathogenesis [58,60–62]. Male mice showed higher TNF-α expression compared to female mice along 

the study, but MSG-treated male mice had even higher TNF-α levels compared to control mice. No 

differences were found between the female obese and control groups. Serum IL-6 levels gradually 

increased over time in the four groups, and at 12 months of age, a significant increment in male mice 

compared to female mice was observed. No differences between MSG-treated mice and their controls 

were found. It is important to note that pro-inflammatory cytokines levels decreased in all groups from 

12 to 20 months-old, without differences between them. To explain the TNF-α effect on insulin 

sensitivity, three possible mechanisms have been proposed: (1) through abnormal insulin receptor 

substrate (IRS)-1 phosphorylation; (2) by glucose transporter 4 (GLUT-4) loss in the adipocyte; and 

(3) by adiponectin suppression [56,57,63].  

It is important to say adiponectin’s precise role in diabetes is not well characterized, although it is 

considered a beneficial adipokine, showing negative correlations with many age- and obesity-related 

diseases and a positive correlation with longevity and insulin sensitivity [64]. Previous results from our 

group showed that lower adiponectin concentrations in obese animals were associated with chronic 

inflammation, insulin resistance and diabetes mellitus type 2 [65]. Here, adiponectin levels decreased 

gradually from 4 to 12 months-old, with significant differences between MSG-treated female and male 

mice. In this time period, the mice showed body weight gain and elevated TNF- levels, as well as  

an altered glucose and insulin homeostasis. However, from 16 months-old-on, adiponectin levels 

improved in obese and control mice, while body weight and TNF- reduced. Previous studies have 

reported that adiponectin concentrations increase with age in humans [66]. Circulating adiponectin 

levels positively correlate with insulin sensitivity induced by the nuclear receptor PPAR-γ activity in 

humans and rodents [67–69]. Comparing by gender, male mice showed lower adiponectin levels in 

comparison to female mice. A sexual dimorphism in adiponectin circulating levels has been shown in 

mice, since females present higher levels than males [70,71]. This fact was also corroborated in our 

study; however, the direct influence of androgens on adiponectin concentrations is not clear yet. It has 

been suggested that sexual hormones might regulate adiponectin production, although it is still 
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controversial how this regulation is being performed during the organismal lifetime. This might partly 

explain why females are more susceptible to insulin than males [72], because adiponectin concentrations 

negatively correlate with fat visceral mass, but positively with subcutaneous fat mass [73]. In the  

MSG-treated mice model, we found that obesity induced a low-grade chronic inflammatory state 

accompanied by pro-inflammatory cytokine (TNF-α and IL-6) increments, with adiponectin gene 

expression reduction [74] and plasma adiponectin elevation following weight loss. Still, more detailed 

analyses of the association among adiponectin, gender, aging and metabolic risk factors are necessary. 

One of the main findings of our work was the damage attenuation or adaptation effect associated 

with increased age, both in control and MSG-treated mice. At the beginning of the study, female and 

male obese mice showed increased metabolic alterations. However, at middle and older ages, when all 

of the groups started losing weight, they improved the glucose tolerance and insulin action. This effect 

was stronger in MSG-treated mice, diminishing in this way the differences in comparison to the 

control groups. Another factor that possibly contributed to this attenuation is the adiponectin increase 

during aging, which positively correlates with weight loss and insulin sensitivity improvement. It is 

known that weight reduction in obese elderly people improves the cardiovascular risk profile, reduces 

chronic inflammation and correlates with a better life quality [75].  

Our results show that obesity effects were attenuated during aging, despite the alterations first 

observed at young ages. Increasing evidence suggests that the association between obesity and 

mortality declines with advancing age in both genders [76]. Therefore, it might be important to discuss 

the paradigm that obesity is always associated with a significantly higher risk of all-cause  

mortality [77], because it is unknown if the obesity-mortality association is sustained at old age. Wang 

recently reported a systematic meta-analysis on the obesity-mortality association in men and women; 

his results support the weakening trend of the obesity-mortality association with increasing age. 

Therefore, obesity may play a more important role in the elevated mortality risk in younger people 

than in older people [78]. 

4. Materials and Methods  

4.1. Chemicals 

All chemicals and reagents were purchased from Sigma Chemical Co. (St. Louis, MO, USA).  

The reagents obtained from other sources are detailed throughout the text. 

4.2. Animals 

CD-1 mice (Mus musculus) were obtained from the closed breeding colony at the Universidad 

Autonoma Metropolitana Iztapalapa (UAM-I). Mice were handled according to international and 

national ethical standards, taking into account the Official Mexican Rule (NOM-062-ZOO-1999, 

revised in 2001) and the International Guide for Laboratory Animals Caring and Use NRC 2002.  

The experimental protocol was approved by the University Ethics Committee for Animal 

Experimentation (UAM, CDCBS.127.08).  
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4.3. Obesity Induction with Monosodium Glutamate (MSG-Treated Mice) 

MSG-induced obesity was carried out in CD-1 mice by neonatal neuro-intoxication with 

monosodium glutamate (MSG), as described before [6]. On the day of birth, pups were randomly 

divided into two groups upon delivery. On postnatal Days 2 and 4, MSG-treated pups were injected 

subcutaneously (SC) with MSG (2 mg/kg body weight dissolved in 0.01 mL/kg saline solution), and 

further, 4 mg/kg injections were performed on Days 6, 8 and 10. Control pups were SC injected with 

equivalent volumes of isotonic saline solution [14]. After weaning, MSG and control mice were again 

separated by gender. Biochemical and physiological determinations were performed in the four mice 

groups at 4, 8, 12, 16 and 20 months of age. Animals were given standard commercial diet  

(Harlan 2018S, Harlan Teklad, Madison, WI, USA), water ad libitum and were housed under a 

controlled environment room (55% humidity, 21 ± 1 °C, 12:12 h light-dark cycle). 

4.4. Lee Index (LI) Quantification  

Lee index is usually used to quantify the mice obesity index by dividing the body weight cubic root 

(g), by the nose-to-anus length (cm) [79]. Mice length was measured with calipers, and body weight 

(BW) was determined using a sensitive electronic balance.  

4.5. Oral Glucose Tolerance Test  

The oral glucose tolerance test (OGTT) was performed at 4, 8, 12, 16 and 20 months of age. 

Overnight (12 h) fasted mice were orally administered with dextrose anhydrous (2 g/kg body wt) by 

gavage. Blood samples were obtained from the tail vein at 0, 30, 60, 90, 120 and 150 min after 

dextrose administration. Blood glucose levels were determined with the glucose dehydrogenase 

method (Roche Diagnostics, Mannheim, Germany) [8]. 

4.6. Insulin Tolerance Test  

Insulin tolerance test (ITT) was performed at 4, 8, 12, 16 and 20 months of age. Overnight fasted 

animals were intra-peritoneal injected with insulin (0.75 IU/kg body wt). Blood samples (20 μL) were 

collected from the tail vein. Measurements were performed at 0, 15, 30, 45 and 60 min, and blood 

glucose levels were measured in the same way as in the OGTT [8,80]. 

4.7. Sera Samples Preparation  

Mice were sacrificed at 4, 8, 12, 16 and 20 months of age. The blood samples were allowed to  

clot at room temperature for 1 h and centrifuged at 2000× g for 15 min. Sera samples were stored  

at −80 °C until assayed. The serum was used for biochemical parameter measurement and 

inflammatory profile determinations. 
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Biochemical Parameters 

Alanine aminotransferase (ALT) and aspartate aminotransferase (AST), as well as triglycerides and 

total cholesterol were determined spectrophotometrically from serum using a Reflotron System  

(Roche Diagnostics, Indianapolis, IN, USA) [8]. 

4.8. Enzyme-Linked Immunosorbent Assays (ELISA) 

Serum cytokines, IL-6, TNF-α (Thermo Fisher Scientific, Rockford, IL, USA) and adiponectin 

(Invitrogen of Life Technologies Corporation, Frederick, MD, USA) expression were assayed by an 

enzyme-linked immunosorbent assay (ELISA) [8]. 

4.9. Statistical Analysis  

Values are expressed as the mean ± SEM (n = 5 in each group). Statistical analyses were performed 

by a one-way ANOVA followed by Tukey’s post hoc multiple comparison test. All p-values < 0.05 

were considered statistically significant. All statistical analyses were done using the NCSS 2000 

software package (NCSS, Kaysville, UT, USA). 

5. Conclusions 

Our data agree with previous reports where alterations in metabolic control and increased 

inflammation have been observed in obese female and male mice. However, our data suggest the 

existence of an attenuation or adaptation effect at older ages, which might weaken the association 

between obesity and mortality with advanced age in both genders. Future research is necessary to 

understand the processes that relate inflammation and oxidative stress with obesity during aging, as 

well as to unveil the adaptation mechanisms, which might induce protective cellular responses.  
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